クラスタ状態 TQC 回路のループ削減手法

Loop Reduction for Cluster State Quantum Circuits

羽田 健太郎[†]山下 茂[‡] Kentaro Haneda Shigeru Yamashita Simon Devitt* Kae Nemoto

1. はじめに

量子重ね合わせ状態を利用した高度な並列計算により, 素因数分解 [1] や構造化されていないデータベースから の探索 [2] などの様々な問題を高速に解くことができる として,量子コンピュータは近年盛んに研究されている. しかし,量子状態は外部からの影響によって容易に変化 してしまう.この状態の変化を量子デコヒーレンスとい い,この問題の解決が量子コンピュータの実現への大き な課題の一つとなっている.

トポロジカル量子コンピュータ(TQC)は、効率的な 誤り訂正をしながら計算を行うことができるフォールト トレラントな量子計算モデルであり、量子デコヒーレン スによる問題を解決できるものとして注目を浴びている. TQC では2次元平面上に量子ビットを規則的に配置し, defect と呼ばれる自由度の高い量子ビットを操作するこ とで計算を行う.実際の回路は、これに時間軸を加えた 3次元空間上に作成される.この3次元空間上のTQC をクラスタ状態 TQC という [3].

この回路は位相幾何学的に同相であるならば同等の計 算を実現することが証明されており,この性質を利用し て回路を小さくすることができる[4].この同相性を保っ た変形のほかにも,効果的に回路規模を小さくできる 様々な変形規則が発見されている[5],[6].こういった 様々な変形規則を組み合わせて TQC 回路を最適化する ことで,より効率的に量子コンピュータを実現できるよ うになる.しかし,同相な回路が同等な計算を実現する という性質により,等価な回路が無限に存在することに なってしまう.そのため,クラスタ状態 TQC 回路は計 算機上で扱うことが困難である.よって,この最適化は 現在人手によって行われており,いまだ自動化には至っ ていないため,その実現が望まれている.

** 国立情報学研究所, National Institute of Informatics

図 1: 同相な defect

そこで、本論文ではループ状の defect とその交わり に着目して TQC 回路を効率的に記述し、最適化を行う 手法を提案する.これによって冗長な情報を排除し、こ れまでに発見されている変形規則を簡単な集合の演算に よって定式化することが可能となった.これにより、計 算機上で TQC 回路を最適化することに成功した.

2. 既知の変形規則

まず,クラスタ状態の TQC 回路を変形する際に利用 できる既知の変形規則を紹介する.

変形規則 1 *TQC*の回路は同相性を保ってさえいれば自由に変形できる.

これは, TQC の回路が位相幾何学的に同相であれば 同等の計算を実現することが証明されているためである. ここで位相幾何学的に同相であるとは, ある図形を伸ば したり縮めたり折り曲げたりしてできる図形のことであ る. 一方で, 切り離したり繋げたりすることで得られる 図形はもとの図形とは同相ではない. 従って, 図1に示 す defect はすべて同相である.

変形規則 2 図 2のように, ループ状の defect の中をただ 一本の defect が通っているとき, そのループ状の defect を消去できる.このとき, ループ状の defect 上に存在す るインジェクタやキャップは通っている defect 上に移さ れる.なお, クラスタ状態 TQC 回路において, インジェ クタは Tゲートや Sゲートなどの 1 量子ビットゲート

 [†] 立命館大学大学院, Graduate School of Information Science and Engineering, Ritsumeikan University

[‡] 立命館大学, Ritsumeikan University

^{*} 理化学研究所, Institute of Physical and Chemical Research

図 3: 二回交差の無効化

に対応しており,キャップは回路全体の外部入出力を表 している.

この変形規則は「テレポーティング」として知られて いる.

変形規則 3 図 *3* のように,同じ *defect* 同士が二回交差 しているとき,その交差は無効化される.従って,同一 の *defect* の組による偶数回の交差は全て無効化される.

変形規則 4 図 4 のようにループ状の defect の中を一組 の defect が通っている場合,そのループ状の defect を外 すことができる.

変形規則 5 図 5のように,二つの *defect* を結合するこ とができる [6].

この変形規則は「Φ変形」として知られている.

変形規則 6 変形規則 5 を利用して, 図 6 のように, 一つ のループ状の *defect* の中を通っている複数の *defect* を結 合することができる.

図 4: ループ状の defect の無効化

図 5: Φ 変形

図 6: Φ 変形の応用

3. ループの集合を利用した最適化

3.1 ループ

すべての量子回路はクラスタ状態にしたときにループ 状の defect だけで構成することができる.例えば,図7 をクラスタ状態にして幾何モデルで表現すると図8の回 路となるが,これは,位相幾何学上での同相性を保った 変形のみによって,図9のように変形できる.この回路 は実際にループ状の defect のみで構成されている.以 下,ループ状の defect を単にループと呼び,以下のよう に定義する.

定義 1 ループは他のいくつかのループと交差すること ができる.ただし, primalのループ(図中では赤で表現) は dualのループ(図中では青), dualのループは primal のループとしか交差できない.あるループ*l* に交差する ループの集合を *l.C* と表記する.

定義 2 ループはインジェクタやキャップを含むことがで きる. ループ*l* に含まれるインジェクタおよびキャップ の集合は *l.E* と表す.

ここで, *l.C*, *l.E* ともに空集合であるループ*l*は,回路の演算にいかなる影響も与えない.従って,そのような

図 7: 量子回路の例

図 8: 量子回路の幾何モデルによる表現

図 9: ループによって構成された量子回路

ループは消去することができる.また,回路全体をループの集合 *L* として表記する.

3.2 各変形規則の定式化

続いて,量子回路をループの集合としてとらえたうえ で,既知の各変形規則を再定義する.

まず変形規則1について,この手法では回路はループ の集合として捉えられているため,defectの位置情報な どは失われている.そのため,同相な回路は全て同一の 表現とすることができるので変形規則1は考慮する必要 がなくなる.

続いて,変形規則2の再定義を行う.式1に示す条件 を満たすループ1が存在するとき,変形規則2を適用す ることができる.

$$\exists l \in L, n(l.C) = 1 \tag{1}$$

なお, 集合 A に対して n(A) は集合 A の要素数を示す.

条件を満たしたループを*l*,*l*と交差しているループ を*l*'とする.このとき実行される処理は,以下のように なる.

1. *l*に含まれるインジェクターを*l*'に移す.

2. *l*を消去する.

これらの処理を数式で表現すると、一つ目のインジェク ターを移動する処理は式2、続く*l*1を消去する処理は式 3のようになる.

$$l'.E = l'.E \cap l.E, \quad l.E = \phi \tag{2}$$

$$l'.C = l'.C - l, \ l.C = \phi$$
 (3)

図 10: ループに対する変形規則6の適用

図 11: 図 10 の回路に対する変形規則1の適用

ここで, ϕ は空集合である.また,集合 *A*,*B*に対して 集合 *A* – *B*は *A*から *B*を引いた差集合であり,集合 *A* および要素 *x*に対して集合 *A* – *x*は *A*から *x*を除いた 集合である.

次に変形規則3および4について記す.変形規則3,4 を適用する前の状態はループで表現すると,あるループ *l*と交差しているループの集合*l.C*に同一のトーラスが 複数個含まれている状態となる.この状態はTQC回路 をループの集合に変換する際や変形規則1,2を利用し て変形する際にはできない.変形規則6を適用した後に のみ表れる.従って,変形規則6を適用する際に考慮す れば良い.

変形規則5は提案手法では利用しない.ループ同士の 結合については考慮しないためである.しかし,代わり にこの変形規則を利用してできる変形規則6を利用する.

変形規則6をループに対して実行すると,図6のようになるが,この状態に対して更に変形規則1を実行すると図11のように変形できる.この変形では,結果として primal と dual のループを一つずつ消去している. このとき,消去される二つのループは外部入出力とインジェクターのいずれも含んでいてはならない.この変形ができるのは,以下の条件をすべて満たすループ *l*₁, *l*₂が存在する場合のみである.

• *l*₁ は三つ以上のループと交差している.

*l*₁ と *l*₂ は互いに交差している.

● *l*₁, *l*₂ は外部入出力もインジェクターも含まない.

これらの条件は数式4,5によって表すことができる.

$$\exists l_1 \in L, (n(l_1.C) \le 3) \cap (l_1.E = \Phi)$$
(4)

$$\exists l_2 \in l_1.C, l_2.E = \Phi \tag{5}$$

これらの条件を満たすループ l_1 , l_2 に対して変形を行 うに当たって、変形規則1を使った変形をしたとき、 l_2 は l_1 と交差する l_2 以外のすべてのループ共有の辺とな る.このとき l_2 と交差していたループはすべて、新たに l_2 を共有の辺としたループと交差することとなる、従っ て、変形規則6に対応する操作は以下のようになる。

- 1. *l*₁ と交差するすべてのループ*l* について, *l*₂ と交差 しているすべてのループと交差させる.
- 2. *l*₂ と交差するすべてのループ*l*'について, *l*₁ と交差 しているすべてのループと交差させる.
- 3. l1 と l2 を消去する.
- *l*₁, *l*₂の消去以外の処理は式 6, 7のように表現できる.

$$\forall l \in l_1.C, \ l.C = l.C \cup l_2.C \tag{6}$$

$$\forall l' \in l_2.C, \ l'.C = l'.C \cup l_1.C \tag{7}$$

しかし,このとき変形規則3および4の適用を考慮する 必要がある.新たにループを*C*に追加するとき,その ループが既に含まれているならば消去すれば良い.従っ て,式6,7を集合の対称差⊕を利用して式8,9のよ うに再定義する.

$$\forall l \in l_1.C, \ l.C = l.C \oplus l_2.C \tag{8}$$

$$\forall l' \in l_2.C, \ l'.C = l'.C \oplus l_1.C \tag{9}$$

このとき, $l_1.C \geq l_2.C$ にはそれぞれ l_2 および l_1 も含ま れている.対称差の定義より集合 A に対して A \oplus A = ϕ となることから,この操作により $l_1.C = \phi$, $l_2.C = \phi$ となる. $l_1 \geq l_2$ は条件より, I および E が空集合なので C, E のどちらもが空集合となり, $l_1 \geq l_2$ は消去される.

また,変形6の変形ができるのは一つ目の条件で示し ている通り,ループl₁が三つ以上のループと交差してい る場合であるが,交差しているループが二つの場合,図 12のような少し異なる変形が行われる.変形規則6と同 様に primal と dual のループが一つずつ無くなっている が,変形規則1によって複数のループの共有の辺となる ループがない.共有の辺となるループはインジェクター や外部入出力を含んでいてはならないが,この場合はそ のようなループがないため,条件が緩和される.従って, この変形ができる条件は以下のようになり,式10のよ うに表現できる.

図 12: 二つのループと交差している場合の Φ 変形と bridge を利用した変形

- インジェクターも外部入出力も含まないループ*l*₁が 存在する.
- 2. l1 は二つのループと交差する.

$$\exists l_1 \in L, (n(l_1.C) = 2) \cap l_1.E = \Phi$$
 (10)

この条件を満たすループ*l*₁が存在するとき,行われる処 理は以下のようになる.

1. *l*₁ と交差する二つのループを一つにまとめる.

2. *l*₁ を消去する.

l1 と交差する二つのループのうち一つをl2 とすると、これらの処理を数式で表現したとき式 11 から 13 のようになる.

$$\forall l \in l_1.C, \ l.C = l.C \oplus l_2.C \tag{11}$$

$$\forall l \in l_1.C, \ l.E = l.E \oplus l_2.E \tag{12}$$

$$l_1 \cdot C = \phi \tag{13}$$

この変形を変形規則7とする.

3.3 クラスタ状態 TQC 回路の最適化

回路全体最適化するに当たって,変形規則2による変 形ではループを一つ減らすことができる.一方で変形規 則6,7による変形ではループを二つ減らすことができ る.従って,変形規則6,7の方が変形規則2よりも優 先度が高いと考えた.よって,回路の最適化は以下の手 順で行われる.

- 1. 条件を満たすすべてのループに変形規則 6,7 を適 用する.
- 2. 条件を満たすすべてのループに変形規則 2 を適用 する.

これによって回路の最適化を行うことができる.

この最適化の実行例として、図 13 に示すような回路 の最適化を示す.この図の $|I_1\rangle, |I_2\rangle, |O_1\rangle, |O_2\rangle$ はそれ

図 13: スワップ回路

図 14: 幾何学モデルで表したスワップ回路

ぞれ外部入力 1,2 および外部出力 1,2 を意味する.こ の回路は CNOT ゲートを利用したスワップ回路として 知られており, $|O_1\rangle = |I_2\rangle$, $|O_2\rangle = |I_1\rangle$ となる.この回 路を幾何モデルで表すと図 14 のようになる.このとき の各ループの状態を表 1 に示す.

まず、 l_2 が条件を満たしているため変形規則 6 により、 l_2 と l_7 を消去して図 15 の回路を得る. このときの 各ループの状態は表 2 のようになる.

続いて,変形規則7を利用して*l*₆,*l*₅を消去する.す るとすると,回路は図16のようになり,各ループの状態 は表3のようになる.

最後に,変形規則7を利用して*l*₈ と*l*₄ を消去する.こ れによって図 17の回路が得られ,各ループの状態は表 4のようになる.

このように、この回路の I_1 に入力された値が O_2 に出力され、 I_2 に入力された値が O_1 に出力される回路が得られる. 従って、スワップ回路の入出力の関係を変化さ

表	1:	汊	14	におけ	る各	ルー	プ	°の	状態	100
---	----	---	----	-----	----	----	---	----	----	-----

ループ	С	Е
l_1	l_6	I_1
l_2	l_6,l_7,l_8	
l_3	l_8	O_1
l_4	l_6, l_7	I_2
l_5	l_7, l_8	O_2
l_6	l_1, l_2, l_4	
l_7	l_2, l_4, l_5	
l_8	l_2, l_3, l_5	

図 15: l₂ と l₇ を消去

表 2: 図 15 における各ループの状態

ループ	С	Е
l_1	l_6	I_1
l_3	l_8	O_1
l_4	l_8	I_2
l_5	l_6	O_2
l_6	l_1, l_5	
l_8	l_{3}, l_{4}	

図 16: l₆, l₅ を消去

表 3: 図 16 における各ループの状態

1 1 2	, = 1	
ループ	С	Е
l_1		I_1, O_2
l_3	l_8	O_1
l_4	l_8	I_2
l_8	l_3, l_4	

l ₁	×	X
l ₄	×	×

図 17: l₈, l₄を消去

表 4: 図 17 における各ループの状態

ループ	С	Е
l_1		I_1, O_2
l_3		I_2, O_1

表 5: ループ数の削減率

	量子回	路	ルー	プ数	
ビット	ゲート	外部入出力	最適化前	最適化後	削減率 (%)
10	10	1	30	1.00	96.7
10	10	5	30	4.55	84.8
10	10	10	30	6.38	78.7
10	10	20	30	17.82	40.6
100	100	1	300	1.00	99.7
100	100	50	300	36.49	87.8
100	100	100	300	51.84	82.7
100	100	200	300	221.45	26.2

せることなく最適化することができた.

4. 評価および考察

提案手法を用いて実際に最適化ができるのか評価を行 うため,量子回路をランダムに作成し最適化を行った. そして,最適化前後のループの数を比較した.なお,こ れらの実験はそれぞれの実験に対して 10,000 回ずつ回 路の作成と最適化を行っている.

まず,量子ビット数とゲート数を固定して外部入出力 の数を変化させながら,最適化前のループ数と最適化後 の平均のループ数を比較した.この実験の結果を表5に 示す.

加えて,量子ビットと量子ゲートの個数をそれぞれ10 個に固定してこの実験を行った結果を表18にまとめた. この実験の結果から,外部入出力やインジェクタの数が 多いほど削減率が下がり,最適化後のループの数は外部 入出力の数にほぼ比例するということが分かった.これ は,外部入出力やインジェクタが含まれているか否かが 変形の条件に関係していることによるものと考えられる. また,外部入出力が1つだけでありインジェクタを持た ない回路はループが一つとなるまで最適化できることが 分かった.

続いて,最適化の際に複数の選択肢がある場合につい て,消去するループの違いによる影響を調査したところ, 調査した限りではどの選択肢を選んでも最終的に同一の 結果を得られた.ただし,変形規則2を優先的に適用し たところ,最適化にかかる操作の回数が増加した.これ

図 18: 外部入出力の数による最適化後ループ数の変化

は変形によって消去できるループの個数の違いによるも のである.

また,各変形規則を適用する順序が最適化の結果に与 える影響を調査した.この調査では.同一の回路に対し て変形規則を適用する順番を変えながら複数回最適化を 行い,その結果を比較した.例えば,図14に示した swap 回路の初期状態に対しては以下の五つの選択肢がある.

1. 変形規則6を適用してl₂とl₆を消去する.

- 2. 変形規則6を適用して l₂ と l₇ を消去する.
- 3. 変形規則6を適用してl₂とl₈を消去する.
- 4. 変形規則2を適用して*l*1を消去する.

5. 変形規則2を適用してl₃を消去する.

こういった選択肢に対する変形規則の適用順序を網羅し て調査したところ,最終的にすべて同一の結果が得ら れた.

それぞれのループをノード,ループ間の交差関係をエッ ジとすると無向グラフが得られる.この無向グラフを用 いて swap 回路の状態遷移の分岐を表現すると図 19 の ようになる.この図において木構造の葉になっている状 態はすべて,あと1回変形を行うだけで図 17 に示した ものと同一のものとなる.このことから,最適化をする 際に変形規則を適用する順序は最適化の結果に影響しな いと考えられる.

ただし、変形規則2を優先的に適用した場合、変形規 則6や7を優先的に適用した場合に比べて、最終的な結 果を得られるまでの手数が多く必要となった.これは変 形規則6、7では二つのループを消去できるのに対し、変 形規則2では一つしか消去できないことに起因している.

図 19: 外部入出力の数による最適化後ループ数の変化

5. おわりに

本研究では、クラスタ状態 TQC 回路をループの集合 に変換し、最適化する手法について提案した.これまで クラスタ状態 TQC 回路の最適化に利用できる様々な変 形規則が提案されてきたが、それらは体系立てられてい なかった.そこで、各変形規則の条件とその処理を定式 化し、各変形規則間の優先順位を定めた.これによって、 これまで人手で行われてきたクラスタ状態 TQC 回路の 最適化を計算機上で行うことに成功した.

一方で、今後の課題としてループの再配置問題と bridge という変形のための組み合わせ問題が挙げられ る.本研究ではループの数を減らすことを目的として最 適化を行ったが、TQC 回路のコストはそれを内包する最 小の直方体の体積と定義されているため、ループの数が コストに一致しない.従って、ループの集合を再度 TQC 回路に変換し直さなければならない.このとき、ループ の配置と各ループ間の bridge による、更なる最適化が 見込まれる.したがって、これらの順序や組み合わせを 工夫する必要がある.

謝辞

本研究は JSPS 科研費 JP24106009, JP15H01677 の助 成を受けたものです。

参考文献

- Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM journal on computing, 26(5):1484–1509, 1997.
- [2] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM, 1996.
- [3] Austin G Fowler and Kovid Goyal. Topological cluster state quantum computing. *arXiv*, 2008.
- [4] Austin G Fowler and Simon J Devitt. A bridge to lower overhead quantum computation. arXiv preprint arXiv:1209.0510, 2012.
- [5] Keisuke Fujii. Quantum computation with topological codes: from qubit to topological faulttolerance. arXiv preprint arXiv:1504.01444, 2015.
- [6] Robert Raussendorf, Jim Harrington, and Kovid Goyal. Topological fault-tolerance in cluster state quantum computation. New Journal of Physics, 9(6):199, 2007.