複数出力を考慮した量子回路設計手法

Request of the Manuscript for IPSJ Kansai-Branch Convention 2015

小野田 将人[†] 山下 茂[‡] Masato Onoda Shigeru Yamashita K

櫛田 耕平[†] Kohei Kushida

1. はじめに

量子計算は量子ビットと呼ばれる、従来のビット(以 下古典ビット)とは異なる特殊なビットを用いた新しい 計算方式である。古典ビットが0か1どちらかの値しか 保持することができない1ビットを扱うものであるのに 対し、量子ビットは1量子ビットにつき0と1の値を任 意の割合で同時に保持することができる。これは、量子 の重ね合わせと呼ばれる性質である。この性質を利用す ることで、n量子ビットは 2ⁿ 通りの状態を同時に保持 するができ、この 2ⁿ 通りの状態を持つ n量子ビットに 対して演算を行うことで、2ⁿ 通りの状態全てを並列的 に処理することができる。この並列処理により、量子コ ンピュータは古典コンピュータでは解くことのできない 問題を解くことが可能だとされている。このことから、 量子コンピュータは古典コンピュータの処理能力を上回 るとされ、注目が集まっている。

量子コンピュータとは、量子状態を用いることで、ある 種の計算を高速に実行するものである。量子コンピュー タを実現する量子回路は、量子ゲートの組み合わせに よって構成される。量子回路は与えられる論理関数ごと に設計する必要があるため、論理関数を計算するための 回路に対する効率的な設計手法が求められている。ここ で、効率的な設計手法とは、より回路全体の量子コスト が小さくなるような設計手法のことを意味する。

量子回路を設計する効率的な手法として、論理関数を表 すゲートの直前に MPMCT (Mixed-Polarity Multiple-Control Toffoli) ゲートを挿入し、論理関数の真理値表 における入力の組み合わせを入れ替えることで回路のコ スト削減を図る手法が櫛田らにより提案されている [1]。 この手法を用いることで、MPMCT ゲートを挿入する 前の回路と比較して、大きく量子コストを削減した回路 を作成することが可能である。しかしながら、この手法 は出力を複数持つ量子回路に適用することができず、現 在主流となっている多くの量子回路設計にそのまま利用 することができないという問題点がある。そこで本稿で は、CNOT ゲートを用いることで論理関数を複製する ことができるという特性を利用し、複数の出力を持つ量

図 1: 量子回路

子回路に対応した効率的な回路設計手法を提案する。

2. 量子コンピュータ

本章では量子コンピュータを構成する量子回路、また 量子回路を構成する量子ゲートについて説明する。

2.1 量子回路

量子回路とは量子ゲートと量子ビットにより構成され た、量子コンピュータの演算によって起こる量子状態の 変化をモデル化したものである。量子回路は図 1 のよ うに表される。量子回路において量子ビットは左側が入 力、右側が出力であり、1量子ビットは1本の直線で示 される。n量子ビットの場合は、n本の直線を平行に並 べることで示す。量子ゲートには様々な種類のゲートが 存在するが、ゲートの左側が入力、右側が出力であるこ とは、全ての量子ゲートにおいて共通である。

量子回路とそれを構成する量子ゲートは古典コンピュー タにおける論理回路(以下古典回路)と論理ゲート(以 下古典ゲート)と基本的な役割は同じである。しかし ながら、量子回路は全体が常に可逆性を保持しなければ ならないという点で古典回路とは異なる。つまり、量子 回路は入力値から出力値、出力値から入力値が一意に求 められる必要がある。

2.2 量子ゲート

量子ゲートとは、量子ビットを入出力として、量子ビッ トの量子状態を変化させる役割を持つものである。量子 ゲートを用いて行われる演算は、全てユニタリ行列を用 いて表現できる。量子ゲートは、0個以上のコントロー ルビットと1個以上のターゲットビットで構成される。 コントロールビットはゲートが作用するかどうかを判定 する量子ビットであり、ターゲットビットはゲートが作 用することで状態が変化する量子ビットである。すなわ ち、量子ゲートはコントロールビットの入力を元に、ター ゲットビットの量子状態を変化させる役割を持つ。

コントロールビットは極性と呼ばれる、正極か負極の 性質を持つ。正極のコントロールビットは量子ビットが 1の時、負極のコントロールビットはその量子ビットが

[†] 立命館大学大学院, Graduate School of Information Science and Engineering, Ritsumeikan University

[‡] 立命館大学, Ritsumeikan University

0の時にゲートを作用させる。量子ゲートを表現する際、 一般的に正極のコントロールビットは黒丸、負極のコン トロールビットは白丸で表現される。一方、ターゲット ビットは量子ゲートの種類により表現が異なる。本稿で は、コントロールビットの極性に従いゲートが作用する 場合、そのコントロールビットの状態を真であると言う。 以下では様々な量子ゲートの中でも、本稿で重要となる MPMCT ゲートについて詳しく説明する。

MPMCT(Mixed-Polarity Multiple-Control Toffoli) ゲートとは、任意の極性のn 個のコントロールビットを 持つ、n+1入力n+1出力のゲートである。MPMCT ゲートの中でも、n = 0、n = 1の MPMCT ゲートは それぞれ NOT ゲート、CNOT ゲートと呼ばれている。 MPMCT ゲートは、MPMCT ゲートの持つ全てのコン トロールビットが真の場合、ターゲットビットに NOT ゲートを作用させる。コントロールビットは正極と負極 の2つの極性を持つため、1 コントロールビットにつき 2 通りの組み合わせが存在する。よって、コントロール ビット数がnの MPMCT ゲートには、 2^n 通りの組み合 わせが存在することがわかる。

本稿では、MPMCT ゲートを表記する際、 C^n NOT (*C*; *t*)と表記する。*C* は正極の場合は肯 定、負極の場合は否定をとったコントロールビットの論 理積を示し、*t* はターゲットビットを示す。また、コン トロールビットの極性を区別するため、*C* が示すコン トロールビットが負極である場合、否定を意味する記 号である を対応するビットに付属させる。図 2 に、 C^n NOT (*C*; *t*)を表す MPMCT ゲートの一例を示す。 図 2 において、 $x_1, \overline{x_2}, x_3...x_n$ がこの MPMCT ゲート のコントロールビットである。よって、*C* はこれらのコ ントロールビットの論理積であるため、*C* = $x_1\overline{x_2}x_3...x_n$ となる。コントロールビットである $x_1, x_2, x_3...x_n$ の 極性が全て真である場合のみ、この C^n NOT (*C*; *t*) ゲー トのターゲットビットが反転するため、ターゲットビッ トの出力が $t \oplus 1$ となる。

2.3 量子コスト

量子コストとは、量子回路を実装するために必要なコ ストのことである。本稿において、量子コストは、量子 回路を構成する、ユニバーサル・ゲートセットに含まれ る量子ゲートの数とする。ユニバーサル・ゲートセット とは、2量子ビットゲートと1量子ビットゲートを用い

ることで、全てのユニタリ変換を構成できるゲートセットである。

MPMCT ゲートは分解することで、ユニバーサル・ ゲートセットのみで表現することができる。例として、 図 3 の左に示された MPMCT ゲートは、右に示された ユニバーサル・ゲートセットに分解できる。したがって、 図 3 の左に示された MPMCT ゲートのコストは、右に 示されてた量子ゲート数と等しい5である。同一の回路 内に複数の MPMCT ゲートが存在する場合、その回路 全体のコストはそれぞれの MPMPC ゲートのコストの 総和とする。

本稿では、MPMCT ゲートの量子コストとして、文 献 [2] に示された量子コストを用いる。文献 [2] が示す 通り、MPMCT ゲートのコントロールビット数が増加 するほど、量子コストは大きくなる。そのため、効率的 な量子回路を設計するためには、可能な限り回路全体の MPMCT ゲート数と、各 MPMCT ゲートのコントロー ルビット数を削減する必要がある。

3. 従来の量子回路設計手法

この章では、基礎的な量子回路の設計方法と、既存手 法の説明をする。

3.1 論理関数を実現する量子回路設計手法

一般的な量子アルゴリズムは論理関数を計算する箇 所を含んでいる [3]。そのため、量子回路を設計する 際、論理関数を量子回路上に実現するための量子回路 設計手法が必要となる。n 変数の論理関数 $f(x_1, x_2, \cdots$, x_n) は、 C^n NOT (C; t) ゲートで実現できる。この C^n NOT (C; t) ゲートは x_i が1ならば正、 x_i が0ならば 負の極性を持つコントロールビットを、i番目のビットに 持つ。この時、論理関数の論理式が真となる変数の組み 合わせを最小項と呼ぶ。論理関数が複数の最小項を持つ 場合、一つの最小項に対して一つの C^n NOT (C; t) ゲー トを用いることで実現する。すなわち、論理関数の最小 項がm 個の場合、量子回路は C^n NOT (C; t) ゲートを m個用いることで実現できる($0 \le m \le 2^n$)。例えば、 表 1 に示した 4 変数 4 最小項の論理関数は、図 4 のよ うに実現できる。

3.2 カルノー図を利用した効率的な量子回路設計手法

一般的に論理関数の論理式は、カルノー図を用いるこ とで最適化することが可能である。この最適化を利用す ることで、一部の論理関数を量子回路で実現する際、よ り効率的な回路設計を行うことができる。

表 1:4 変数 4 最小項を持つ 論理関数の真理値表の例

1

1

1

1 0

本稿では、カルノー図の1の記入されたセルを'1値の セル'、0の記入されたセルを'0値のセル'と呼ぶ。n入 力1出力の論理関数のカルノー図における1値のセル は、それぞれその論理関数の最小項に対応している。そ して、前述した通り、論理関数の最小項は CⁿNOT ゲー トを用いて表現することが可能である。つまり、サイズ $2^{p}(p \ge 0)$ のカルノー図における1値のセルは、それぞ れ CⁿNOT ゲートを用いることで表すことができる。

古典回路におけるカルノー図による論理式の最適化は、 1 値のセルを大きさ 2^p のループで囲うことで実現でき る。ここでいうループとは、正方形または長方形の枠で 囲まれた隣接するセルの集合のことである。サイズ 2^p のループで囲まれている 1 値のセルが表す論理式は、そ れぞれの 1 値のセルが示す論理積の、共通変数を用いて 最適化することができる。例えば、図 5 に示すカルノー 図は、サイズ 2² のループで 1 値のセルを囲うことがで きる。そのため、図 5 のカルノー図の論理式は、それぞ れの 1 値のセルが示す論理積の排他的論理和ではなく、 共通変数である x₂x₄ と表すことができる。

ループを用いて論理式を最適化することで、ループで 囲うことのできる 2^p 個のセルは、2^p 個の CⁿNOT ゲー トではなく、1 つの C^{n-p}NOT ゲート表すことが可能に なる。例として、図 5 のカルノー図の最適化する前の論 理式を表す量子回路を図 6 の左に、最適化後の論理式 を表す量子回路図 6 の右に示す。これは、サイズ 2^p の ループにより論理式を最適化することで、CⁿNOT ゲー トの数を ¹/₂ 倍、コントロールビットの数を ^{n-p}/_n 倍に削減 できることを意味する。すなわち、論理関数を実現する CⁿNOT ゲートの数とコントロールビットの数は、ルー プのサイズが大きいほど少なくなる。文献 [2] から、コ ントロールビット数が少ないほど、CⁿNOT ゲートの量 子コストが小さいことがわかる。よって、同じ論理関数 のカルノー図であれば、より大きなループを用いて論理 式を最適化することで、回路全体のゲート数とゲートの

図 5: サイズ 2² のループで囲うことのできるカルノー図

図 6: 図 5 の示す論理関数を実現する量子ゲート

持つコントロールビット数を少なくし、量子コストを小 さくすることができる。

3.3 MPMCT ゲート挿入による回路コスト削減手法

ループを用いて論理式を最適化できるのは、カルノー 図の1値のセルが隣接したセルに集合している場合の みである。しかしながら、多くの論理関数におけるカル ノー図の1値のセルの初期位置は、隣接したセルに集合 していない。そのため、このままだとカルノー図を用い た手法では、多くの論理関数を効率よく量子回路に実現 することができない。そこで、カルノー図の1値のセル の位置を移動し、1値を隣接したセルに集合させ論理式 を最適化することで、量子コストを削減する手法が櫛田 らにより提案されている [1]。櫛田らの手法 (以下、既存 手法と呼ぶ)を用いることで、1 値が初期位置のカルノー 図と比べて、よりサイズの大きなループを用いることが できるため、回路全体の量子コストを小さくすることが できる。この手法は、論理関数を実現する量子ゲートの 前に CⁿNOT ゲートを挿入し、カルノー図の1値を隣接 したセルに移動させることにより実現される。

ある n 変数の論理関数を実現する量子ゲートをG(C; t)とする $(C = x_1...x_n, t = x_t)$ 。この時、 $C^mNOT(C'; t')$ となる MPMCT ゲートを、ゲート G の直前に挿入す る $(1 \le m < n)$ 。ここで、 $C' \ge t'$ の示す論理式は、共 に C の示す論理式に含まれる論理のみで表す必要があ る。つまり、ゲート G の持つ n コントロールビットのう ち m ビットをコントロールビットとして持ち、1 ビット をターゲットビットとして持つ C^mNOT ゲートを、ゲー ト G の直前に挿入する。挿入する C^mNOT ゲートは複 数であってもよい。 C^mNOT ゲートを挿入することによ り、挿入した C^mNOT ゲートが作用する場合、 C^mNOT ゲートのターゲットビットにあたる、ゲート G のコント ロールビットの論理が反転する。

ゲート *G* のコントロールビットは、ゲート *G* が実現 している論理関数の入力変数を表している。そのため、 C^mNOT ゲートを挿入し、ゲート *G* のコントロールビッ トを変更することで、ゲート *G* が実現している論理の

図 7: 図 4 に対する C¹NOT(x₃; x₄) ゲートの挿入

国 8. 0 NOT (*x*3, *x*4) 挿入前のカルノー図

図 9: C¹NOT (x₃; x₄) 挿入後のカルノー図

カルノー図を変更できる。複数の C^mNOT ゲートを挿 入した場合、ある C^mNOT ゲートにより変更されたカ ルノー図を、さらに変更することになる。

例として、図4の量子回路の直前に、C¹NOT($x_3; x_4$) ゲートを挿入する。挿入後の回路を図 7 に示す。 C¹NOT($x_3; x_4$) ゲートの挿入により、 x_3 のビットが正 極の場合、 x_4 のビットの極性が反転する。よって、図 7 の場合、図4の左から2つ目と、左から4つ目のゲート の、 x_4 のビットの極性が反転する。これは、カルノー図 で表すと、図10のようなカルノー図の変更が行われるこ とになる。つまり、図8のカルノー図が表している論理 関数を実現する、図4のカルノー図は、C¹NOT($x_3; x_4$) ゲートの挿入により図9のように変更される。

図8のカルノー図と図9のカルノー図を比較すると、 最小項0110が0111へ、1010が1011へ移動しているこ とが分かる。このように、C^mNOTゲートを挿入するこ とで、カルノー図の特定のセルの内容を、隣接したセル の内容と入れ替えることができる。図10では4対の隣 接したセルの内容を入れ替えているが、内容を入れ替え るセルの個数は、挿入するC^mNOTゲートにより異な る。例えば、n変数の論理関数にC^mNOT(C'; t')ゲー トを挿入した場合は、2^{n-m}個のセルが入れ替わる。

 $C^{1}NOT(x_{3};x_{4})$ ゲートの挿入後、図 11 のように更 に $C^{1}NOT(x_{1};x_{2})$ ゲートを挿入すると、 $C^{1}NOT(x_{3};x_{4})$ ゲート挿入後の回路の x_{1} のビットが正極の場合、 x_{2} の ビットの極性が反転する。これにより、図 9 のカルノー 図が図 12 のカルノー図に変更される。図 12 から分か るように、このカルノー図の1 値のセルは 2^{2} ループで 囲うことができるため、論理式を最適化することができ る。図 13 に、 $C^{m}NOT(C'; t')$ ゲートの挿入により最適

1x2 x3	$x_4 \\ 00$	01	11	10
00			•	•
01			+	•
11			+	•
10			+	•

図 11: 図 7 に対する、C¹NOT(x₁; x₂) ゲートの挿入

図 12: 図 11 の示す C¹NOT(*x*₁;*x*₂) ゲート 挿入後のカルノー図

図 13: 図 12 を元に最適 化した量子回路

化された論理式を実現した量子回路を示す。

しかしながら、図 13 の量子回路と、図 4 の量子回路 は等価ではない。なぜなら、C^mNOT(C'; t') ゲートを 挿入することにより、C^mNOT(C'; t') ゲートのターゲッ トビットに当たるビットの論理が変更されるからである。 例えば、図 13 の回路では、 x_2 にあたる論理が $x_2 \oplus x_1$ に、 x_4 にあたる論理が $x_4 \oplus x_3$ に変更されている。よっ て、量子回路の可逆性を保つため、C^mNOT(C'; t') ゲー トの挿入により変更された論理を元に戻す必要がある。 C^mNOT(C'; t') ゲートの挿入により変更された論理は、 挿入した C^mNOT(C'; t') ゲートと同じゲートを、論理 関数を実現している量子ゲートの直後に挿入することで 元に戻すことができる。複数の C^mNOT(C'; t') ゲート を挿入した場合、後に挿入した C^mNOT(C'; t') ゲート から順に挿入することで元に戻すことができる。図 14 に、図 4 と等価な量子回路を示す。

このように、C^mNOT(C'; t')ゲートを挿入すること で、カルノー図の1値のセルを自由に移動させること ができる。よって、カルノー図の1値のセルの初期位置 がどのような状態であっても、論理式を最適化すること ができる。また、論理式を最適化することにより、量子 回路のコストを大きく削減することができる。例えば、 図4の回路コストは80であるのに対し、この手法を利 用して実現した図14の回路コストは9である。

3.4 既存手法の問題点

既存手法を利用することで、既存手法を利用しない場 合と比較して、大きく量子コストを削減することができ る。しかしながら、既存手法はいくつか問題点を含んで いる。

まず、最小項が 2ⁿ でない論理関数を実現する量子回

r			r
x1	I	I	- ~
x ₂	-(D-•	<u>−⊕</u> −	<u> </u>
x	Ť	· ·	x
3		Å	、 · · ·
$x_4 - ($) (-x
t —	()	t

図 10: C¹NOT (x₃; x₄) 挿入により入れ替わるセル

図 14: 既存手法を利用した最終的な量子回路

図 15: 最小項が3のカルノー図の一例

路を、効率的に設計することができないという問題点が ある。前述した通り、ループの大きさは必ず 2ⁿ である 必要がある。よって、最小項が 2ⁿ でない場合、1 値のセ ルをどのように移動させたとしても、全ての 1 値のセル を 1 つのループで囲うことができず、複数のループで囲 わなければいけない。そのため、論理関数の最小項が 2ⁿ でない場合、その論理関数を実現する量子回路の、効率 的な設計ができない。

また、複数出力の量子回路を考慮していないという問 題点もある。複数出力の量子回路は、1つの出力につき 1つの論理関数を実現する量子ゲートの集合で構成され るため、複数のカルノー図を利用する。しかし、既存手 法は1つのカルノー図の1値のセルを移動させることで 効率的な回路設計を行う手法である。そのため、複数出 力の量子回路に対しても、単一出力の量子回路を設計す る方法と同じ方法でしか量子回路設計を行うことができ ない。そこで本稿では、これらの問題を解決し、より効 率的な量子回路を設計できる手法を提案する。

4. 複数出力を持つ量子回路のコスト削減手法

4.1 CⁿNOT ゲートの挿入による回路コスト削減手法

既存手法の問題点の1つとして、最小項が2ⁿではない 論理関数を実現する量子回路の、効率的な回路設計がで きないという点があった。この問題点は、量子回路を実現 する論理関数の最小項が $2^p - 1(p \ge 0)$ の場合、 C^n NOT ゲートを用いることで解決できる。ある n 変数、2^p-1 最 小項の論理関数を実現する量子ゲートの集合をGとした 場合、Gの直前、もしくは直後に C^n NOT(C; t) ゲート を2つを挿入する $(C = x_1...x_n, t = x_t)$ 。この時、挿入 する $C^n NOT(C; t)$ ゲートの論理は、Gの実現する論理 と異なるものである必要がある。同一の $C^nNOT(C; t)$ ゲートを2つ挿入すると、1つ目のゲートが変更したター ゲットビットの論理を、2つ目の同一のゲートが元に戻 すため、最終的なターゲットビットの論理を変更するこ となく、 $C^n NOT(C; t)$ ゲートを挿入することができる。 2つの同一の $C^n NOT(C; t)$ ゲートが挿入されることで、 挿入された $C^n NOT(C; t)$ ゲートの1つと G により、最 小項が2ⁿとなる論理関数を実現する量子ゲートの集合 を作ることができる。例として、図 15 のカルノー図を 用いて説明する。このカルノー図の示す論理関数の最小 項の数は3であり、図15の水色と、緑色の枠の示すルー

x1	<u> </u>	~			x1 -	_		-		_
-1	I	I	I		1		II	I		
¢ ₂	•	\rightarrow	-		$x_2 -$	-	ŧ t	++	+	
(z	L				x2		Ш			
-3	Ĭ	Ĩ	Í	_				Ĭ		
¢4 ——	•		<u> </u>		$x_4 -$	-		++	1	-
t —	ħΛ	ħΥ			t -	-6	Þ	-4	Y	_
	$\nu <$		ν		•		ν	UL L	7	

図 16: 図 15 の示す論理関数を実現する量子回路

x ₁ —	(m	} _₹	PP	_	<i>x</i> ₁
r ₂ —	╞╋╌	┝╴┿╴	┼┽┼┿╎─	_	
r	Ì	ΓÌ			x ₃
t —	Φ	64	66	_	

図 17: 図 16 の左の回路に対する、CⁿNOT (x₁x₂x₃x₄; t) ゲートの挿入

プが最大のループである。よって、図 15のカルノー図の 示す論理関数は、図 16の右の回路で表すことができる。 ここで、図 16の左の回路を構成する量子ゲート*G*の直 前、もしくは直後に同一の C⁴NOT $(x_1x_2x_3x_4; t)$ ゲー トを2つ挿入する。図 17の左の回路は、図 16の左の 回路を構成する量子ゲート*G*の直後に、同一の C⁴NOT $(x_1x_2x_3x_4; t)$ ゲートを2つ挿入した回路を表している。

ここで、図 17 の赤枠で囲まれているゲートについて 考える。図 17 の赤枠で囲まれているゲートの集合は、 図 6 の左の回路のゲートの集合と等しいことがわかる。 よって、図 6 の左の量子回路が図 6 の右の量子回路と等 しいことから、図 17 の左の量子回路は、図 17 の右の 量子回路と等しい。ここで、図 16 の右の回路コストは 35、図 17 の右の回路コストは 25 である。このことから、 図 16 の量子回路に量子コストが 20 である C⁴NOT(C; t) ゲートを 2 つ挿入したにも関わらず、最終的な量子回路 のコストが削減できていることがわかる。このように、 最小項の数が $2^n - 1$ の論理関数を実現する量子回路に 対して、同一の CⁿNOT(C; t) ゲートを 2 つ挿入するこ とで、CⁿNOT(C; t) ゲートを挿入していない回路と比 較して、最終的な量子回路のコストを削減することがで きる。

4.2 CNOT ゲートを利用した論理の複製による回路 コスト削減手法

既存手法の別の問題点として、複数の出力を持つ量子 回路を効率的に設計することができないという問題点が あった。4.1 節で提案した手法を用いても、複数出力を持 つ量子回路の効率的な回路設計を行うことができない。 そこで、CNOT ゲートを用いることで、量子ゲートの 実現している論理を複製できるという特性を利用し、複 数の出力を持つ量子回路のコストを削減する手法を提案 する。

ある n 変数の論理関数を実現する、n + 1入力の量 子ゲートを $G(C; t_a)$ とする ($C = x_1...x_n, t_a = x_{t_a}, a \ge 1$)。この時、 C^1 NOT($t_a; t_b$) ゲートを、ゲート G の

図 18: 図 4 の論理全てを 図 19: 図 4 の論理を一部 複製する C^1 NOT $(t_1; t_2)$ 複製する C^1 NOT $(t_1; t_2)$

図 20: 図 14 に対する C¹NOT(t₁; t₂) ゲートの挿入

直後に挿入する $(a \neq b)$ 。つまり、ゲート Gのターゲットビットにあたるビットをコントロールビットとして持ち、1 ビットをターゲットビットとして持つ CNOT ゲートを、ゲート G の直後に挿入する。すると、ゲート G の実現している論理を、CNOT ゲートのターゲットビットにあたるビットに複製することができる。また複数のゲート G の直後に C¹NOT(t_a ; t_b)ゲートを挿入した場合、C¹NOT(t_a ; t_b) より前にある全てのゲート G の実現する論理を、C¹NOT(t_a ; t_b) ゲートのターゲットビットにあたるビットに複製する。

例として、図 18 に図 4 の示す論理を複製する C¹NOT(t₁; t₂)を示す。図 18 では図 4 の示す論理を 全て複製しているが、 C^1 NOT(t_1 ; t_2) ゲートを挿入する 位置を変更することで、複製する論理を選択することがで きる。例えば、図 19 のように、図 4 の示す論理関数を実 現するゲートの間に C¹NOT(t₁; t₂) ゲートを挿入するこ とで、 $C^{1}NOT(t_{1}; t_{2})$ ゲートより左にあるゲートによっ て変更された、t1ビットの論理を複製することができる。 ただし、 C^1 NOT(t_1 ; t_2)ゲートを図 14のような最適化さ れたゲートの直後に挿入する場合、最適化されたゲート の論理のみが複製されるわけではない。 C^1 NOT $(t_1; t_2)$ ゲートにより複製されるのは、直前のゲートが示す論 理ではなく、 C^1 NOT $(t_1; t_2)$ ゲートを挿入した場所の、 $C^{1}NOT(t_{1}; t_{2})$ ゲートのコントロールビットである t_{1} の 論理である。そのため、図 20 では、図 4 が実現する論理 である $t \oplus x_2 x_4 \overline{x_1 x_3} \oplus x_2 x_3 \overline{x_1 x_4} \oplus x_1 x_4 \overline{x_2 x_3} \oplus x_1 x_3 \overline{x_2 x_4}$ が、 C^1 NOT $(t_1; t_2)$ ゲートにより複製される。

前述した CNOT ゲートを用いて論理が複製可能な性 質を利用して、複数の出力を持つ量子回路のコストを削 減する。例えば、図 21 と図 22 の 2 つのカルノー図の示 す論理関数を実現する量子回路について説明する。図 21 と図 22 のカルノー図の示す論理関数を実現する量子回 路を図 23 に示す。図 23 の左の回路は、図 21 と図 22 の カルノー図が示す論理式をそのまま実現した量子回路、 右の回路は、既存手法を用いて論理式を最適化した量子 回路を示している。ここで、図 21 と図 22 の 1 値のセル

図 23: 図 21 と図 22 を同時に実現する量子回路

は、それぞれ最大であるサイズ 2¹、サイズ 2² のループで 囲むことができる。そのため、既存手法では図 23の右の 量子回路のコストを、これ以上削減することができない。 しかしながら、CNOT ゲートを用いて論理を複製する ことで、図 23の右の量子回路のコストをより削減する ことができる。図 24 のように、図 21 のカルノー図の示 す論理関数を実現するゲートの直後に、 $C^1NOT(t_1; t_2)$ ゲートを挿入する。すると、 C^1 NOT(t_1 ; t_2)ゲートによ り、図 21 のカルノー図の示す論理が、図 22 の論理を実 現しているビットに複製される。これは、複製される論 理を実現するカルノー図の1値のセルが、複製先のビッ トの論理を実現するカルノー図に複製されることを意味 する。つまり、図 25 のように、複製されるカルノー図の 1値のセルの内容が、複製先のカルノー図の同じ位置の セルに対して複製される。もし複製先のカルノー図の、 複製されるセルが1値のセルの場合、そのセルは0値の セルに変更される。これは、複製先のカルノー図の1値 のセルに当たる CⁿNOT ゲートにより変更された論理 が、同じ CⁿNOT ゲートが複製されることにより、元に 戻るからである。論理が複製されたことにより、図 25の カルノー図は図 22 のカルノー図と比較して、より大き なループで囲うことができる。これにより、図 25の示す 論理関数は図 22 の示す論理関数と比較して、論理式を より最適化できるため、より量子コストの小さいゲート で量子回路を設計することができる。これにより、図25 の示す論理関数は、 C^1 NOT(x_4 ; t_1) ゲート1つで実現 できるため、図 24 の量子回路は、図 26 の量子回路で示 すことができる。図 24の回路コストが 35 であるのに対 し、図 26の回路のコストは17であることから、CNOT

図 24: 図 23 に対する C¹NOT(t₁; t₂)ゲートの 挿入

図 25: C¹NOT(*t*₁; *t*₂) ゲートにより図 21の論理 が複製されたカルノー図

図 26: 図 25 の示す論理関数を実現する量子回路

図 27: 図 29の1つ目の論 図 28: 図 29の2つ目の論 理関数を示すカルノー図 理関数を示すカルノー図 ゲートにより論理を複製したことで、回路コストが削減 できていることがわかる。

続いて、図 27 と図 28 のカルノー図が示す論理関数を 共に実現する量子回路について説明する。これらの論理 関数の最小項の数はそれぞれ3と7であり、共に2ⁿ-1 である。そのため、4.1 節で提案した CⁿNOT ゲートの挿 入により、これらの論理関数を実現する量子回路はコス ト削減が可能である。図 29 に CⁿNOT ゲートの挿入に より、図 27 と図 28 の示す論理関数を実現した量子回路 のコストを削減したものを示す。この時、図 29 を実現す る、それぞれの論理関数に対し挿入された CⁿNOT ゲー トは異なる。これは、それぞれの論理関数に対して挿入 するべき、最適な CⁿNOT ゲートが異なるためである。 しかし、それぞれの論理関数を実現する量子回路に対し て挿入する CⁿNOT ゲートが等しい場合、CNOT ゲート を用いて CⁿNOT ゲートを複製することで、回路コスト を削減することができる。例として、図 27の示す論理関 数を実現する回路に対して挿入するべき最適なゲートで ある C⁴NOT(*x*₁*x*₂*x*₃*x*₄; *t*) の代わりに、図 28 を実現す る回路に対して最適なゲートである $C^4NOT(\overline{x_1}x_2x_3x_4;$ t) を挿入する場合を考える。それぞれの論理関数を実現 する量子回路に対して、 $C^4NOT(\overline{x_1}x_2x_3x_4; t)$ ゲートを 挿入した量子回路を図 31 に示す。図 31 の赤枠で囲まれ ているゲートについて考える。赤枠で囲まれているゲー トが実現している論理関数を示すカルノー図を図 30 に 示す。

図 30 の 1 値のセルは、1 つのループで囲うことができ ない。しかし、最小項の数が 2ⁿ である論理関数を実現

$x_1 - $	-		<u>٢</u>		x ₁
x_2 —			┥		x ₂
$x_3 \longrightarrow$	<u> </u>	}	┥──		x ₃
<i>x</i> ₄ —	-		┥─┥	•	x_4
$t_1 - ($	Ѐ	Ð			$- t_1'$
$t_2 $			+	\rightarrow	$- t_{2}'$

図 29: CⁿNOT により最 適化された図 27 と図 28 を実現する量子回路

図 30: 図 31 の赤枠の ゲートが実現する論理関 数を示すカルノー図

r ₁	ᡩ	~	~	~	A				• x ₁
r ₂	┥┤┥					-			<i>x</i> ₂
r ₃	┥┤┥	\vdash	┝─┥	┝─┥	┝	-			<i>x</i> ₃
r4 —	ŧ⊣∙	\vdash			┝┥	+	-	-	- x ₄
$t_1 - ($	Ѐ	ÐÐ	Ѐ	Ѐ	Ð	+			• t ₁ '
t ₂ —	-				_	Ð	9-6	З	• t ₂ '

図 31: 図 28 に対して最適な CⁿNOT ゲートをそれぞれ の論理関数に対して挿入した量子回路

図 32: CNOT ゲートによる論理の複製と既存手法を用 いて最適化された量子回路

している量子回路と考えることができるため、既存手法 を適用できる。よって、図 31 の回路は、既存手法を用い て図 32 のように変形することができる。ここで、図 29 の回路のコストは 46、図 32 の回路のコストは 39 であ る。つまり、それぞれの論理関数にとって最適な CⁿNOT ゲートを挿入した場合と比較して、最適ではないが互い に等しい CⁿNOT ゲートを挿入した場合の方が、最終的 な量子回路のコストが小さくなることが分かる。

このように、CNOT ゲートを用いて論理を複製する ことで、既存手法では考慮されていない、複数出力を持 つ量子回路のコストを削減することができる。また、提 案手法と既存手法を共に適用することで、複数出力を持 つ最小項が 2ⁿ でない論理関数を実現する量子回路のコ ストを削減することができる。つまり、既存手法のみを 用いる場合と比較して、より多様な論理関数を実現する 量子回路のコストを削減することができる。

実験結果と考察

5.1 実行環境と評価方法

提案手法の評価を行うために、提案手法を C++で実 装した。評価は、提案手法と既存手法に対して、同じ論 理関数を2つ適用し、設計された量子回路の量子コスト を比較することにより行った。今回は、変数の数が4、 最小項の数が2個以上7個以下の2つの論理関数を、そ れぞれの組に対して10000通りのランダムな組み合わせ を作成し、提案手法と既存手法に対してその関数を適用 することで実験を行った。

前述したように、既存手法は最小項の数が 2ⁿ である 論理関数にしか適用することができない。そのため、今 回の実験では 4.1 節で説明した手法と櫛田らの手法を同 時に用いたものを既存手法とし、それに加えて 4.2 節で 説明した手法を適用したものを提案手法とする。

表 2: 実験結果

最小項の組	既存手法	提案手法	削減率 (%)
[2,2]	32.055	32.055	0.000
[2,3]	54.346	53.494	1.568
[2,4]	35.061	35.061	0.000
[2,5]	55.148	55.148	0.000
[2,6]	51.413	49.187	4.331
[2,7]	74.809	74.809	0.000
[3,3]	76.591	58.712	23.344
[3,4]	57.269	56.943	0.570
[3,5]	77.560	58.856	24.115
[3, 6]	73.688	66.796	9.353
[3,7]	96.906	76.294	21.270
[4, 4]	38.035	38.018	0.044
[4,5]	58.378	58.221	0.270
[4, 6]	54.361	51.663	4.962
[4,7]	77.725	58.840	24.297
[5,5]	78.437	60.707	22.604
[5,6]	74.588	72.856	2.323
[5,7]	98.084	78.180	20.293
[6, 6]	70.894	57.397	19.037
[6,7]	94.180	85.092	9.649
[7,7]	117.368	84.992	27.585
合計	68.8998	60.2747	12.5184

図 33: 既存手法と比較した量子コスト別の量子回路数

5.2 実験結果と考察

実験結果を表2に示す。表2の既存手法と提案手法 は、最小項の組から各手法により設計された10000通り の量子回路の、量子コストの平均を示している。また削 減率は、(1-提案手法)*100の値を示している。すなわち、 提案手法のコストが既存手法と比較して小さい場合プラ スの値を示し、大きい場合マイナスの値を示す。表2の 結果から、全ての場合で、削減率が0以上の値を示して いることがわかる。

さらに、図 33 に既存手法と提案手法により設計され た量子回路を、量子コスト別に分けた場合の個数を示す。 図 33 によると、量子コストが 69 以下の回路は提案手 法、70 以上の回路は既存手法により多く設計されてい る。このことから、提案手法は既存手法と比較して、量 子コストの小さい回路を多く設計できていることがわか る。これらの結果から、提案手法は既存手法と比較して、 より多くの論理関数に対して効率的な量子回路設計がで きることがわかる。

6. おわりに

本稿では、CNOTゲートの挿入により論理を複製する ことができるという特徴を利用することで、複数の出力 を持つ量子回路のコストを効率的に削減する手法を提案 した。実験の結果、提案手法は最小項の数が2個以上7 個以下である4変数の、2つの論理関数の組み合わせに 対しては、既存手法と比較して平均で約12.5%のコスト を削減することができた。また提案手法は全ての組で、 既存手法と比較して量子コストの小さい量子回路を設計 することができた。

今後の課題として、アルゴリズムの改善が上げられる。 現在のアルゴリズムでは、特定の最小項の組を持つ論理 関数しか適用することができない。そのため、不特定の 論理関数の組を入力として扱うことができない。した がって、不特定の論理関数の組に対してアルゴリズムを 適用させることができれば、より多くの論理関数の組の 量子回路コストを削減することができると考えられる。

謝辞

本研究は JSPS 科研費 JP24106009, JP15H01677 の助 成を受けたものです。

参考文献

- [1] 櫛田耕平. MPMCT ゲートの挿入による論理関数を 実現する量子回路のコスト削減手法. 情報処理学会 関西支部支部大会講演論文集, 2015.
- [2] Zahra Sasanian and D. Michael Miller. Reversible and quantum circuit optimization: A functional approach. In Reversible Computation4th International Workshop, RC 2012, Copenhagen, Denmark, July 2-3, 2012. Revised Papers, pp.112-124, 2013.
- [3] Yamashita Shigeru, Minato Shin-ichi, and Miller D.Michael. DDMF:An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction. IE-ICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, pp.3793-3802, 2008.
- [4] David Deutsch. Quantum theory, the church-turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 400, No. 1818, pp.97-117, 1985.