
Vol. 46 No. SIG 8(TOD 26) IPSJ Transactions on Databases June 2005

Regular Paper

Example-Based Outlier Detection for High Dimensional Datasets

Cui Zhu,† Hiroyuki Kitagawa†,†† and Christos Faloutsos†††

Detecting outliers is an important problem, in applications such as fraud detection, financial
analysis, health monitoring and so on. It is typical of most such applications to possess high
dimensional datasets. Many recent approaches detect outliers according to some reasonable,
pre-defined concepts of an outlier (e.g., distance-based, density-based, etc.). Most of these
concepts are proximity-based which define an outlier by its relationship to the rest of the data.
However, in high dimensional space, the data becomes sparse which implies that every object
can be regarded as an outlier from the point of view of similarity. Furthermore, a fundamental
issue is that the notion of which objects are outliers typically varies between users, problem
domains or, even, datasets. In this paper, we present a novel solution to this problem, by
detecting outliers based on user examples for high dimensional datasets. By studying the
behavior of projections of such a few outlier examples in the dataset, the proposed method
discovers the hidden view of outliers and picks out further objects that are outstanding in the
projection where the examples stand out greatly. Our experiments on both real and synthetic
datasets demonstrate the ability of the proposed method to detect outliers that match users’
intentions.

1. Introduction

Abnormal or outlier objects often contain
useful information in applications like fraud de-
tection, financial analysis and health monitor-
ing. It is an interesting and important prob-
lem to detect such outliers in large datasets.
However, it is also a difficult problem especially
when the data is in high dimensional spaces,
which is often the case with most its applica-
tions.

In general, an outlier is an object which is
different greatly from the rest of the data.There
are various interpretations of the notion of out-
lier in different scientific communities, based
on some measure of difference like distance-
based 14), density-based 9), etc. However, these
definitions of an outlier which are based on
proximity is not meaningful when the dimen-
sionality is very high. In fact, all pairs of points
are almost equidistant in a high dimensional
space, for a wide range of data distributions
and distance functions 12). This infers that each
object is an equal good outlier from a point of
view of proximity.

It has been shown that by examining the be-
havior of the data in low dimensional projec-

† Graduate School of Systems and Information Engi-
neering, University of Tsukuba

†† Center for Computational Sciences, University of
Tsukuba

††† School of Computer Science, Carnegie Mellon Uni-
versity

tions, meaningful outliers are likely to be de-
fined 2). It is also observed that different ob-
jects may be detected as outliers with respect
to different subsets of dimensions 2).

Naturally, the notion of what is an outlier
varies among users, problem domains and even
datasets (problem instances): (i) different users
may have different ideas of what constitutes an
outlier, (ii) the same user may want to view
a dataset from different “viewpoints,” and (iii)
different datasets do not conform to specific,
hard “rules” (if any).

Example
In order to clarify the point, we give an exam-

ple illustrated in Figs. 1 and 2. The example is
a real abalone dataset obtained from the UCI
machine learning repository 13). The abalone
dataset has eight numerical features. In Fig. 1,
the triangle objects present abnormal behavior
in subspace1, i.e., diameter-whole weight sub-
space. However, most of the same objects show
average behavior in other views like subspace2
(shucked weight-shell weight subspace). At the
same time, outliers (circle dots) detected in sub-
space2 are overwhelmed in subspace1 in Fig. 2.

This is consistent with intuition that different
objects may be regarded as outliers, depending
on different views from which we examine the
datasets.

Being experts in their problem domain, not in
outlier detection, users often have a few exam-
ple outliers in hand, which may “describe” their

120



Vol. 46 No. SIG 8(TOD 26) Example-Based Outlier Detection for High Dimensional Datasets 121

Fig. 1 Illustration of same objects in different sub-
spaces for Abalone Outliers O-DW. Top: O-
DW outliers in subspace1, bottom: O-DW out-
liers in subspace2.

Fig. 2 Illustration of same objects in different sub-
spaces for Abalone Outliers O-SS. Top: O-SS
outliers in subspace1, bottom: O-SS outliers in
subspace2.

intentions and they want to find more objects
that exhibit “outlier-ness” characteristics simi-
lar to those examples. Existing systems do not
provide a direct way to incorporate such ex-
amples in the discovery process to find out the
“hidden” outlier concept that users may have
in mind.

Several problems should be resolved to design

an example-based outlier detection approach
for high dimensional datasets. We briefly list
the most important: (1) How to define “outlier-
ness” meaningfully in a low dimensional sub-
space, if not in the original high dimensional
space? (2) How to measure the degree of
“outlier-ness” identically as well in subspaces
with different dimensions. (3) The approach
should provide some insights to the reason-
ing that brings about the abnormality. (4)
It should be computationally efficient to detect
outliers for high dimensional applications. (5)
At last, the method should clearly require mini-
mal user input and effectively use a small num-
ber of outlier examples in order to be practi-
cal. Given these requirements, can we design a
method which uses only the handful of outlier
examples and discovers more other objects with
similar outlier characteristics?

In this paper, we propose an novel outlier de-
tection method specially designed for high di-
mensional datasets that can discover the de-
sired view of “outlier-ness”, based on a small
number of examples.

The remainder of the paper is organized as
follows: In the next section, we discuss related
work on outlier detection. In Section 3, we dis-
cuss the definition of “outlier-ness” in a high
dimensional dataset. Section 4 presents the
novel method to detect outliers based on exam-
ples and its design decisions in detail. The ex-
periment evaluation on both synthetic and real
datasets are reported in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. Related Work

In essence, outlier detection techniques tra-
ditionally employ unsupervised learning pro-
cesses. The several existing approaches can be
broadly classified into the following categories:
(1) Distribution-based approach. These are the
“classical” methods in statistics 7),15),19). They
deploy some distribution models, objects which
deviate from the model are flagged as out-
liers. However, they are unsuitable for high
dimensional datasets. When dimensionality in-
creased, it is difficult, expensive and inaccurate
to assess the multidimensional distributions of
points in the feature space. (2) Depth-based
approach. This computes different layers of k-
d convex hulls and flags objects in the outer
layer as outliers 18). It is known that these algo-
rithms also suffer from the curse of dimension-
ality. (3) Clustering approach. Many cluster-



122 IPSJ Transactions on Databases June 2005

ing algorithms detect outliers as by-products 8).
Obviously, they are not optimized for outlier de-
tection. (4) Distance-based approach. Distance-
based outliers 9)∼11),17) are defined by using a
full dimensional distances of the points from
one another. When dimensionality is high and
the data is sparse, the full dimensional distances
become no more meaningful. (5) Density-based
approach 14). They introduced a local outlier
factor (LOF) for each object, indicating its de-
gree of “outlier-ness.” LOF depends on the
local density which is computed by using the
distance to the MinPts-th nearest neighbor. It
is again difficult to define the concept of lo-
cality meaningfully in high dimensionality due
to data sparsity. (6) LOCI. Papadimitriou and
others 16) proposed the multi-granularity devi-
ation factor (MDEF) and LOCI. MDEF mea-
sures the “outlier-ness” of objects in neighbor-
hoods of different scales. LOCI examines the
MDEF values of objects and flags as outliers
those objects whose MDEF values deviate sig-
nificantly in neighborhoods of some scales. Our
previous work proceeded to use MDEF to de-
tect outliers based on user examples 20). Basi-
cally, MDEF defines neighborhoods by full di-
mensional distances. Therefore, this measure of
“outlier-ness” naturally fails to deal with high
dimensionality.

In order to deal with the curse of high dimen-
sionality, a quite different technique is proposed
by Aggarwal and Yu 2), where outliers are found
by studying the behavior of projections from
the dataset. The most sparse low-dimensional
cubes in the data are found by GA algorithm,
and all the objects in these cubes are reported
as outliers. However, no notion of example was
used in their approach. Furthermore, the di-
mensionality of projections is assumed to be
given by users. Without any prior knowledge
of the datasets, it is hard for users to figure
out.

In summary, none of existing methods detect
outliers by incorporating directly user examples
and are specifically designed for the high dimen-
sional datasets as well.

3. Definition of Outliers for High
Dimensional Datasets

Researches in the contexts like clustering and
similarity search 1),3),6) show that it is possible
to design more effective algorithms by study-
ing the behavior of data in subspaces. This in-
sight is similar for outlier detection. Aggarwal

and Yu 2) defined outliers by examining pro-
jections of data whose density is abnormally
low. “Outlier-ness” is measured by the spar-
sity coefficient shown below. In our approach
to example-based outlier detection in high di-
mensional datasets, we employ their sparsity
coefficient.

In order to define such projections, they di-
vide each attribute of the data into ϕ equi-
depth ranges. Then, in each range, there are a
fraction f = 1/ϕ of the data. Here equi-depth
rather than equi-width ranges are employed be-
cause different localities may have different den-
sities and such local density problem should be
taken into account while detecting outliers.

A k-dimensional cube is made by ranges from
k different dimensions. (Note that each range
is associated with f = 1/ϕ of the data.) The
expected fraction of objects in the cube would
be fk, if the attributes were independent sta-
tistically. While attributes in real applications
is far from statistically independent, the actual
fraction of objects in a cube would differ greatly
from the average behavior.

Let N be the dataset size and n(D) denotes
the number of objects in a k-dimensional cube
D. If the attributes were independent sta-
tistically, then the number of points in a k-
dimensional cube is a Bernoulli random variable
with probability fk of presence, because of the
equi-depth grids. Consequently, the number of
points in a cube will approximately follows a bi-
nomial distribution. Then the average number
of objects in a k-dimensional cube is N ·fk, and
the standard deviation is

√
N · fk · (1 − fk).

Then the sparsity coefficient S(D) of the cube
D can be calculated by:

S (D) =
n(D) − N · f k

√
N · f k · (1 − f k )

(1)

Negative sparsity coefficients indicate those
cubes that contain less objects than average.
The less the objects is in a k-dimensional cube,
the smaller the sparsity coefficient. For the
same number of objects in a cube, lower di-
mensionality of the cube leads to smaller spar-
sity coefficient☆. Even though the attributes
may not be statistically independent, the spar-
sity coefficient implies the degree of deviation
of density in a cube from the average.
☆ We have proved that the partial derivative of S(D)

with respect to k is always great than 0, indicating
that S(D) is a monotonously increasing function of
k.



Vol. 46 No. SIG 8(TOD 26) Example-Based Outlier Detection for High Dimensional Datasets 123

At last, objects in the significantly sparse
cubes are defined as outliers.

4. Proposed Method

In this section, we discuss the algorithm
to detect outliers based on examples in high
dimensional datasets. Here, the problem is
whether we can discover a low dimensional sub-
space where the user examples are outstanding
significantly than any other subspaces. And ob-
jects that are outlying in the same subspace
seem to accord with the user’s view of what
is an outlier.

Let the total dimensionality of the data is d.
In order to find a k-dimensional subspace where
examples are isolated from the great majority,(

d
k

)
possible combinations of dimensions should

be examined. With no idea of the dimension-
ality of the subspace, we have to check all sub-
spaces when dimensionality vary from 2 to d.
Totally, there are

∑d
k=2

(
d
k

)
possible combina-

tions of dimensions to be examined. It is ex-
hausting or even untenable to discover a desired
subspace by brute force method which exam-
ines all these sets of possible combinations,even
for middle d. For example, the search space is
around 1014 for datasets of 50 dimensions.

We propose to solve the problem by employ-
ing an evolutionary algorithm which is able to
quickly find the hidden subspace in which ex-
amples stand out greatly.

4.1 An Overview of Evolutionary
Algorithm

Evolutionary algorithms 5) are developed on
the principles of natural evolution in order to
solve parameter optimization problems. These
class of search methods model some natural
phenomena like the Darwinian strife for sur-
vival and approximate an optimal solution to
the problem at hand.

In the algorithms, each solution to an op-
timization problem can be represented as a
string, called a chromosome. The coding strings
are composed of features that are analogous to
genes. Each feature has its own position and a
definite value. The quality of a solution is es-
timated based on the “fitness” value, which is
its objective function. Instead of a single solu-
tion, evolutionary methods work with a group
of solutions called a population. The popula-
tion undergoes repeated processes of selection,
crossover and mutation. During the evolve-
ment, members with fitter values are more

likely to survive and participate in recombina-
tion operations. Mutation occasionally throws
in a variant, so as to add to the diversity of
a population. Thus, the methods search in a
greater scope for improvement and the popula-
tion becomes overall better and better until it
converges and a “best” solution may be found.
These processes combine the methods of hill
climbing, solution recombination and random
search over the search space. That is why evo-
lutionary algorithms can often outperform clas-
sical methods of optimization when applied to
difficult, real-world problems.

Evolutionary algorithms start with encod-
ing a solution carefully for a given problem.
Then genetic operators should be designed elab-
orately as well. These processes provide a way
to incorporate domain knowledges into evolu-
tionary algorithms and play key roles in deter-
mining their performances.

4.2 The Algorithm of Outlier Detec-
tion Based on Examples

Here we discuss the application of the evolu-
tionary algorithm to the outlier detection prob-
lem.

In the context, a solution indicates a sub-
space. Therefore a bit string representation is
used. The length of a coding string is equal to
d, the total dimensionality of the data. Each
position in the string corresponds to a dimen-
sion and 1 denotes that the corresponding di-
mension is identified with the subspace of the
solution whereas 0 means not. For example,
for a 4-dimensional problem, a solution of 1010
means that the subspace is constructed by the
first and third dimensions.

The fitness of a solution is equal to the av-
erage value of sparsity coefficients of cubes in
the subspace which contain user examples. The
evolutionary search method starts with a pop-
ulation of p random solutions. Then it seeks
to maximize the overall fitness function in the
population by an iterative processes of selec-
tion, crossover and mutation, until the popula-
tion converge to a global optimum. The conver-
gence goal of a population is achieved when all
features in solutions have converged. Conver-
gence of a feature is defined as the stage where
95% of the population had the same feature
value 4). Note that in our context, to maximize
the fitness value is achieved by minimizing the
average sparsity coefficient.

Finally, the best solution discovered by the
evolutionary algorithm is just the subspace



124 IPSJ Transactions on Databases June 2005

Fig. 3 Overall procedure of the example-based outlier
detection algorithm.

where user examples stand out significantly.
Then to discover more outliers, we scan the sub-
space to find objects in cubes which are sparser
than or as sparse as those of examples and re-
port them as outliers.

Figure 3 illustrates the overall procedure of
the algorithm. The evolutionary algorithm em-
ploys the following processes in order to create
a new better population from the current gen-
eration.
( 1 ) Selection
Selection process chooses parents for the next
generation. The idea is that better solutions
should have a larger number of copies. We use
rank selection mechanism because it is often
more stable. First all solutions are sorted in
descending order of their fitness values. A line
is laid out in which each solution corresponds
to a section of the line of length proportional to
its rank. The mechanism moves along the line
in steps of equal size. At each step, it allocates
a parent from the section it lands on. The first
step is a uniform random number less than the
step size. Thus a solution with better fitness
(namely, smaller average sparse coefficients of
cubes holding examples) will have more chances
to be selected.
( 2 ) Crossover
Crossover technique plays a key role in evo-
lutionary algorithms to find a better child by
combinations of parent solutions. First we ex-
plain the common scattered crossover mecha-

nism and then show the optimized crossover
method specially designed for our outlier de-
tection problem.
Scattered Crossover It is one of the pop-

ularly used mechanisms in evolutionary al-
gorithms to create the recombinant children
strings. The scattered mechanism starts by
creating a random binary vector. Then it se-
lects the genes where the vector is a 1 from
the first parent, and the genes where the vec-
tor is a 0 from the second parent. The child is
formed by combining the selected genes. For
example, if p1 and p2 are the parents: p1
= 1100, p2 = 0011, and the binary vector is
1010, the recombined child is 1001.
Note that if the binary vector is 1011, the re-
combined child would be 1000. This string
indicates a subspace formed only by the first
dimension. In a 1-dimensional subspace, the
data is uniformly allocated in all ranges be-
cause we use a equi-depth grid. This kind of
string is useless to find outliers. Such solu-
tions tend to be discarded in subsequent gen-
erations because of their worse objective val-
ues. Evolutionary algorithms have bad per-
formance if the recombination process cannot
create solutions of high quality. Therefore, we
propose an optimized crossover process which
avoids such strings and outputs better chil-
dren.

Optimized Crossover Except positions
where both parent strings have 0, there are
two types of positions in the parent strings.
If both parent strings have 1 in the position,
it is type I. Otherwise, it is type II. It is ob-
vious that the child string can only change
within possible combinations of positions in
type II. Of course, to find the best recom-
bination child from the parents is the ideal
goal. However, it is difficult to achieve since
there are a total of

∑x
k′=0

(
x
k′

)
possibilities for

the child string, when there are x positions of
type II. In order to make the crossover oper-
ation effective, we look for a child string that
has better fitness value.
We proved that the sparsity coefficient S(D)
is a monotonously increasing function of k,
when k > 1 and ϕ > 1. This implies that a
better solution, i.e., a smaller S(D) value is
likely to be found in lower dimensional sub-
space. Therefore, we examine the set of pos-
sible recombination from low dimensionality.
The recombination with lowest dimensional-
ity is a solution whose values are 0 in all po-



Vol. 46 No. SIG 8(TOD 26) Example-Based Outlier Detection for High Dimensional Datasets 125

Fig. 4 Optimized crossover algorithm.

sitions of type II. We examine such a solution
first and keep increasing the dimensionality of
the solution by adding one position from type
II, which results in the solution with minimal
average sparsity coefficient, until a solution
that is better than the two parent solutions is
found. Then, the better solution is returned
as the child recombination. Such a crossover
procedure creates a new solution which com-
bines the good aspects of both parent strings.
The optimized crossover algorithm is shown
in Fig. 4.

( 3 ) Mutation
A simple uniform mutation algorithm is used.
It is a two-step process. First, the algorithm
picks a fraction of the positions of a solution for
mutation, where each position has a probabil-
ity prob of being mutated. In the second step,
the algorithm inverses each selected position to
form a child solution.

4.3 Postprocessing Phase
After the evolutionary algorithm terminates,

the subspace in which user examples are out-
lying greatly is found. In the postprocess-
ing phase, we find all the objects contained in
the cubes which are sparser than or as sparse
as cubes containing examples in the subspace.

Table 1 Description of synthetic and real datasets.
Dim denotes dimensionality of the dataset.

Dataset Dim Description
Data I 20 20,100 data which are uniformly

distributed in 16 dimensions and
holding two sets of outliers in the
remainder two 2-dimensional sub-
spaces.

Data II 30 20,100 data. 25 dimensions are
uniformly distributed. There are
two sets of outliers obtained in
3-dimensional and 2-dimensional
subspaces respectively.

Abalone 8 Abalone data, obtained from the
UCI machine learning repository,
4177 examinations of abalones
with 8 attributes.

These objects are example-like outliers and are
reported to users.

5. Experimental Evaluation

In this section, we describe our experimen-
tal methodology and the performance of the
proposed method over synthetic and real data.
These experiments demonstrate effectiveness
and efficiency of our method.

5.1 Datasets
We test the proposed method on two syn-

thetic and one real dataset (see Table 1 for de-
scriptions). In the low dimensional subspaces of
synthetic data, we let the majority distributed
uniformly in some areas and scatter a few iso-
lated outliers in other zones. For each test data,
two sets of outlier examples with quite different
natures are engaged to test the capability of
the method of detecting outliers from different
views of users.

5.2 Experimental Procedure
Our experimental procedure is as follows:

( 1 ) To label low dimensional outliers, we se-
lect objects which are in the most sparse
cubes in the relevant subspaces. More
concretely, we divide each attribute of
the data into ϕ equi-depth ranges. Sev-
eral ranges of diverse attributes form a
cube. If the number of objects in a cube
is small than θ (θ is a threshold), we de-
fine all objects in the cube as outliers.

( 2 ) Then, we randomly sample y%☆ of the
outliers to serve as examples that would
be picked by a user and “hide” the rest.

( 3 ) Next, we detect outliers using the pro-
posed method, by learning only from

☆ In our experiments, y = 10.



126 IPSJ Transactions on Databases June 2005

Table 2 Interesting outliers and the definitions. S-
Dim denotes dimensionality of the relevant
subspace.

Outlier Description
Dataset

Label S-Dim ϕ θ # of Outliers
O-2D-1 2 20 4 99

Data I O-2D-2 2 20 4 146
O-3D-1 3 10 2 74

Data II O-2D-2 2 20 4 83
O-DW 2 20 4 89

Abalone O-SS 2 20 4 88

Fig. 5 Outliers in low-dimensional subspaces of data
I. Top: O-2D-1 outliers in subspace1, bottom:
O-2D-2 outliers in subspace2.

such a few examples.
( 4 ) We mainly test two aspects of our

method: one is how often the evolution-
ary algorithm discovers the right relevant
subspaces, and the other is the execution
time.

Description of the outliers and their defini-
tions is shown in Table 2. Figure 5 dis-
plays two subspaces of data I where outliers
are discovered. Corresponding subspaces of
data II are shown in Fig. 6. For abalone data,
Figs. 1 and 2 in Section 1 illustrate two kinds
of outliers which are discovered respectively
in diameter-whole weight and shucked weight-
shell weight subspaces.

In order to show how few the examples are,
we display two sets of the picked examples in
the abalone data in Fig. 7. One of picked
O-DW outliers in Fig. 7 has the diameter of
0.521008, but weights only 0.088496. How-

Fig. 6 Outliers in low-dimensional subspaces of data
II. Top: O-3D-1 outliers in subspace1, bottom:
O-2D-2 outliers in subspace2.

Fig. 7 Two sets of examples for abalone. Top: O-DW
examples in subspace1, bottom: O-SS examples
in subspace2.

ever the majority of the like diameter weight
from 0.15 to over 0.2. Other users may give
an abalone example whose weight of meat (i.e.
shucked weight) is 0.332213 and having an ex-
tremely light shell of 0.029895. These abnormal
abalones are called O-SS outliers in our paper.

5.3 Results
The algorithm is implemented on a 2.80 GHz

machine of Windows XP with 1024 MB of main



Vol. 46 No. SIG 8(TOD 26) Example-Based Outlier Detection for High Dimensional Datasets 127

Table 3 Average # of iterations, accuracy and time showing performance
of the scattered and optimized crossovers. Note that all the results
are average of 100 trials from different sets of examples and initial
population.

Scattered Crossover Optimized Crossover
Test Data

Average # of iters Accuracy Time (Second) Average # of iters Accuracy Time (Second)
O-2D-1 16.4 64% 124 5.6 96% 228

Data I
O-2D-2 16.6 65% 186 5.6 93% 349
O-3D-1 20.5 37% 159 7.2 84% 244

Data II
O-2D-2 19.8 31% 148 6.7 71% 178
O-DW 11.4 51% 3 4.4 98% 5

Abalone
O-SS 11.4 51% 3 4.4 99% 5

memory. We particularly compare the perfor-
mance of the scattered and optimized crossover
mechanisms. The evolutionary algorithm is run
on each test data 100 times with different sets
of examples and initial populations. Statistical
measurements of accuracy are obtained on suc-
cess rate of the methods in discovering the right
subspaces among 100 trials.

Table 3 shows the results. It is obvious
that the optimized crossover mechanism out-
performs substantially in terms of the accuracy
of finding the best solution. This is because
the optimized crossover process always iden-
tifies better child solutions by combining the
good aspects of both parent solutions.

The average number of iterations required for
convergence is shown under the column (Aver-
age # of iters). Time results are also the aver-
age of 100 trials. As expected, although the op-
timized crossover process needs less number of
iterations to converge, they spend a little more
time than the scattered crossover method. The
reason is that in each process of the optimized
crossover, at least one possible recombination is
evaluated in order to find a child solution better
than both parent solutions. Note that the time
extension is within a reasonable and tolerant
range.

When we increase the size of the population
in the evolutionary algorithm, more time will
be required to converge. On the other hand,
the increased population size tends to discover
the best solution with higher probability. Fig-
ure 8 shows the performance of the proposed
methods in the terms of accuracy versus time
consuming. Results in Fig. 8 are obtained when
we test the scattered and optimized crossovers
over a set of various population sizes.☆ It is
evident from these results that the optimized

☆ In our experiments, the population size is varied as
20, 30, 40, 50, 60, 80 and 100.

Fig. 8 Accuracy and time. Top left: O-2D-1 in data
I, top right: O-2D-2 in data I, middle left: O-
3D-1 in data II, middle right: O-2D-2 in data
II, bottom left: O-DW in abalone data, bottom
right: O-SS in abalone data.

crossover process works qualitatively quite bet-
ter than the plain scattered crossover for test
data.

5.4 Effect of Examples
Now that there exist subjectivities of outlier

notion, by incorporating user examples directly
in detecting process, our method discovers out-
liers which are more likely to meet user’s inter-
ests. Other methods which leave users outside
the loop of detection do not have this merit.

Specifically, when we run Aggarwal’s algo-
rithm in Ref. 2) on data I, all 245 outliers in-
cluding 99 O-2D-1 and 146 O-2D-2 are found
together. (Note that there are no more 2-
dimensional outliers except O-2D-1 and O-2D-
2 in data I.) Using Aggarwal’s algorithm, it is
up to users to evaluate those reported outliers



128 IPSJ Transactions on Databases June 2005

Fig. 9 Time cost versus number of dimensionality.

manually. However our method detects those
outliers similar to user examples. Based on a
few O-2D-1 examples (only 9 as 10%), for ex-
ample, only O-2D-1 outliers are discovered and
reported.

For abalone data, things become worse. Ag-
garwal’s algorithm finds a total of 269 best
outliers at one time. Among them, only 40
abalones are outliers in O-SS and 69 outliers
belong to O-DW. Note also that the results are
obtained under the condition that the dimen-
sionality of subspaces is determined correctly
and a proper number of best cubes is given
as well.☆ However, our method does not need
these two inputs and only needs a few outlier
examples.

5.5 Impact of Dimensionality
To answer the question of how high dimen-

sional data our method can cope with, we con-
duct more experiments. Additional test data
of 50 and 100 dimensions are constructed by
adding extra attributes of uniform distribution
to the data of data I. Also 10% of O-2D-1 out-
liers are sampled as examples. We always set
population size as 100 and examine the per-
formance of optimized crossover algorithm (as
aforementioned, optimized crossover performs
better in our experiments). We report accu-
racy rate and time required when population
converged.

Results are shown in Figs. 9 and 10. Total
time in Fig. 9 includes CPU and I/O taken to
detect outliers and is average of 50 trials. Accu-
racy is success rate for the method discovering
the right subspace among 50 trials.

As expected, when the dimensionality in-
creases the problem becomes difficult and more
time is required for convergence of population.
Probability of success decreases for higher di-

☆ The Aggarwal outliers of abalone are detected in
cubes with best two sparsity coefficients.

Fig. 10 Accuracy versus number of dimensionality.

mensional data. In order to increase probabil-
ity of success, we have to raise the population
size. And this in turn results in more computa-
tional time, just as experiments in Fig. 8 have
proven. Obviously, it is a tradeoff of time and
accuracy.

6. Conclusion

It is an important and difficult problem to de-
tect outliers in high dimensional data. Besides,
the problem is tricky, since the exact notion of
an outlier often depends on the user and/or the
dataset. We proposed to solve this problem
by detecting outliers based on user examples
which indicate the user’s perspective of what is
an outlier. The proposed method is especially
designed to deal with the curse of dimensional-
ity.

The method works by examining the behavior
of examples in low-dimensional subspace and
finds one in which such examples are isolated
from the great majority. This search problem
cannot be solved by the brute-force method due
to the number of possible combinations. A
evolutionary algorithm is designed to address
the search problem. Experiments on both real
and synthetic data strongly indicate that the
method can find the best relevant subspaces
from the standpoints of users with high con-
fidence and within reasonable time.

References

1) Agrawal, R., Gehrke, J., Gunopulos, D. and
Raghavan, P.: Automatic Subspace Clustering
of High Dimensional Data for Data Mining
Applications, Proc. SIGMOD Conf., pp.94–105
(1998).

2) Aggarwal, C.C. and Yu, P.S.: Outlier Detec-
tion for High Dimensional Data, Proc. SIG-
MOD Conf. (2001).

3) Aggarwal, C.C. and Yu, P.S.: Finding Gener-
alized Projected Clusters in High Dimensional



Vol. 46 No. SIG 8(TOD 26) Example-Based Outlier Detection for High Dimensional Datasets 129

Spaces, Proc.SIGMOD Conf., pp.70–81 (2000).
4) De Jong, K.A.: Analysis of the Behavior of a

Class of Genetic Adaptive Systems, Ph.D. Dis-
sertation, University of Michigan, Ann Arbor,
MI (1975).

5) Goldberg, D.E.: Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley (1989).

6) Hinneburg, A., Aggarwal, C.C. and Keim,
D.A.: What is the Nearest Neighbor in High
Dimensional Spaces? Proc. VLDB, pp.506–515
(2000).

7) Hawkins, D.M.: Identification of Outliers,
Chapman and Hall (1980).

8) Jain, A.K., Murty, M.N. and Flynn, P.J.: Data
Clustering: A Review, ACM Comp. Surveys,
Vol.31, No.3, pp.264–323 (1999).

9) Knorr, E.M. and Ng, R.T.: Algorithms
for Mining Distance-Based Outliers in Large
Datasets, Proc. VLDB, pp.392–403 (1998).

10) Knorr, E.M. and Ng, R.T.: Finding Inten-
tional Knowledge of Distance-Based Outliers,
Proc. VLDB, pp.211–222 (1999).

11) Knorr, E.M., Ng, R.T. and Tucakov, V.:
Distance-Based Outliers: Algorithms and Ap-
plications, VLDB Journal, Vol.8, pp.237–253
(2000).

12) Beyer, K., Goldstein, J., Ramakrishnan, R.
and Shaft, U.: When is Nearest Neighbors
Meaningful? Proc. Int. Conf. Database Theo-
ries, pp.217–235 (1999).

13) http://www.ics.uci.edu/˜ mlearn/
MLRepository.html

14) Breunig, M.M., Kriegel, H.P., Ng, R.T. and
Sander, J.: LOF: Identifying Density-Based Lo-
cal Outliers, Proc. SIGMOD Conf., pp. 93–104
(2000).

15) Rousseeuw, P.J. and Leroy, A.M.: Robust Re-
gression and Outlier Detection, John Wiley and
Sons (1987).

16) Papadimitriou, S., Kitagawa, H., Gibbons,
P.B. and Faloutsos, C.: LOCI: Fast Outlier De-
tection Using the Local Correlation Integral,
Proc. ICDE, pp.315–326 (2003).

17) Bay, S.D. and Schwabacher, M.: Mining
Distance-Based Outliers in Near Linear Time
with Randomization and a Simple Pruning
Rule, Proc. KDD (2003).

18) Johnson, T., Kwok, I. and Ng, R.T.: Fast
Computation of 2-Dimensional Depth Con-
tours, Proc. KDD, pp.224–228 (1998).

19) Barnett, V. and Lewis, T.: Outliers in Statis-

tical Data, John Wiley and Sons (1994).
20) Zhu, C., Kitagawa, H., Papadimitriou, S. and

Faloutsos, C.: OBE: Outlier by Example, Proc.
PAKDD, pp.222–234 (2004).

(Received December 20, 2004)
(Accepted April 6, 2005)

(Editor in Charge: Atsuhiro Takasu)

Cui Zhu is a student of
Graduate School of Systems and
Information Engineering, Uni-
versity of Tsukuba. She re-
ceived the M.Sc. degree from
School of Mechanical Engineer-
ing & Automation, Beihang

University, China, in 1999. Her research inter-
ests include data and web mining. She is a stu-
dent member of ACM, ACM SIGMOD Japan,
and DBSJ.

Hiroyuki Kitagawa is a
Professor at Graduate School of
Systems and Information Engi-
neering, University of Tsukuba.
His research interests include in-
tegration of heterogeneous in-
formation sources, WWW and

databases, structured documents, semi-
structured data, multimedia databases, and hu-
man interface. He is a member of ACM, IEEE
Computer Society, DBSJ, IEICE, IPSJ, and
JSSST.

Christos Faloutsos is a Pro-
fessor at Carnegie Mellon Uni-
versity. He has received the
Presidential Young Investigator
Award by the National Sci-
ence Foundation (1989), four
“best paper” awards, and sev-

eral teaching awards. He is a member of the
executive committee of SIGKDD; he has pub-
lished over 120 refereed articles, one mono-
graph, and holds four patents. His research
interests include data mining for streams and
networks, fractals, indexing methods for spa-
tial and multimedia bases, and data base per-
formance.


