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Abstract:
We present CrowdApp: a participatory system that leverages the sensed data collected from users’ phones during their daily
train commutes to gauge the real-time congestion level in railway stations. CrowdApp tracks the passenger’s position in the
station as well as identifies his/her context (e.g., waiting for a train, etc.). Therefrom, CrowdApp extracts novel features,
based on the user’s location and context, from the phone sensors to identify the surrounding congestion level in railway
stations. Evaluation of CrowdApp through a field experiment in eight train stations shows that it can infer the congestion
levels efficiently, highlighting its promise as a ubiquitous travel-support service.

1. Introduction
In highly populated cities, trains are the best-traveling option (e.g.,

79% of commuters in Tokyo use trains [1]) as others, like buses, are
often suffering from heavy traffic jams. Consequently, the traffic vol-
ume on certain trains is so intense (e.g., train cars’ capacity reaches
to 250% on average during morning rush hours compared to their
typical capacity [2]). Even worse, the problem is acute in devel-
oping countries to the extent that train doors never close in some
rail lines leading to killing a commuter every day [3]. Accordingly,
overcrowding creates high levels of discomfort making train riding
becomes harder for many passengers (e.g., pregnant women, handi-
capped people and parents with infants). Thus, many travelers may
decide their preferable routes based on comfort than travel time [4].

The spatiotemporal analysis of railway stations’ congestion level
shows two peaks in weekdays at morning (8.00AM) and afternoon
(5.30PM) as people have to arrive/leave their work by a certain time
[4]. However, during peak times, the congestion level variability
are higher than other daytimes due to some unpredictable factors
(e.g., train delays, sports events, etc)[4]. In addition, the congestion
peaks at some stations (i.e., higher than normal) do not necessarily
mean that they are congested. Furthermore, at afternoon, the con-
gestion level is not as steep as the morning (people do not have obli-
gations on the return time to home). On the other hand, at weekends,
the congestion level has a very high standard deviation, suggesting
that it will not be as easy to predict [4]. Finally, as quantified in
our survey study, the congestion level is not consistent either across
all platforms in the same station nor across all waiting lines (i.e.,
train cars) on the same platform. Thus, the knowledge of congestion
level beforehand will enable a myriad of potential applications like
advanced station navigation which optimize passenger’s route dur-
ing the trip by rerouting her alternatively when a congestion is de-
tected (e.g., avoid crowded cars and/or platforms) in large hub sta-
tions. Secondly, trip planning where passengers are urged to travel
from/to a different but geographically close less crowded stations
(i.e., congestion-based public transit selection). Thirdly, prevention
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of crowd accidents by asking passengers to change their travel time
(i.e., travel slightly earlier or later). Finally, the congestion infor-
mation will allow for actual travel-time prediction and evacuation
guidance strategy for disaster control.
To alleviate the congestion problem, some train operators have at-
tempted to discourage peak-time travel by increasing fare of peak-
time than normal one [5]. However, this has had no observable ef-
fect on the congestion level at peak times [6]. Emerged congestion
estimation Apps require passengers to manually report their travel
experience which is invasive and susceptible to attacks [6]. Ideally,
a congestion level estimation solution should meet/address the fol-
lowing criteria/challenges: (1) Ease of deployment: leverages exist-
ing infrastructure without installing special sensors. (2) Scalability:
works across a large number of stations with minimal configuration.
(3) Energy efficiency: avoids drainage of the phone battery (4) Min-
imal intrusion: minimal involvement of the user while preserving
anonymity and privacy. (5) Accuracy: a fairly good estimate is nec-
essary. (6) Low participation: no prerequisite on the active users
number.

To tackle this problem, bountiful approaches have been proposed.
However, they don’t satisfy one or more of the previous criteria.
Some techniques require specialized hardware for crowd monitor-
ing (e.g., CCTV) [7], [8] limiting large scale deployment and may
breach passengers’ privacy. Existing phone-based techniques, e.g.,
[9], [10], prerequisite a considerable penetration ratio which is not
predictable at the implementation time. This sparks the need for
stations congestion level estimation system that meets/addresses the
previous requirements/challenges.

In pursuit of this goal, we propose CrowdApp as a participatory
system that gauges the congestion level in railway stations with min-
imal active users (as few as one). CrowdApp tracks the user’s loca-
tion along her trip in the station from the entrance. Simultaneously,
it extracts different features from phone sensors to detect the passen-
ger’s state (e.g., walking, etc.). The passenger’s detected states are
forwarded to an inference algorithm employing Hierarchical Hid-
den Markov Model (HHMM) [11] to infer higher level passenger’s
activities (e.g., buying a ticket, etc.) while mitigating the human be-
havior artifacts effect and thus making the system robust to different
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Fig. 1: Passengers
average walking dis-
tance on platforms.
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Fig. 2: Passengers
average distribution
over train cars.
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gers preference of
platform accesses.

users and stations. To address the challenge of low users participa-
tion, we extract novel features from sensors data based on the user’s
location (platform versus passageway) and context (walking versus
queuing) to characterize the congestion level. In particular, the har-
nessed features draw on different passenger’s behaviors and different
characteristics of the ambient environment at different surrounding
congestion levels. Finally, we implemented CrowdApp on Android
phones where sensors are sampled in energy efficient manner, the
data processing are guaranteed to preserve the user’s privacy, and
the evaluation results show that it can estimate the congestion level
efficiently. In summary, our contributions are three-fold:
• We conduct a study of passengers’ behavior in railway stations

that reveals interesting findings regarding passengers’ crowded-
ness pattern in railway stations (Section 3).

• We present the CrowdApp system that extracts novel feature
from phone sensors, based on its context and location, to auto-
matically and unobtrusively gauge the congestion level without
having a prerequisite either on the number of participatory users
or infrastructure support (Section 7).

• We collect real-time data by 16 participants, implement Crow-
dApp on Android phones, and evaluate it in 8 stations in 2 dif-
ferent cities (Section 8).

2. Related Work
Crowd density estimation is extensively studied research area.

Many CCTVs have already been installed in railway stations for se-
curity. However, vision-based crowd estimation techniques are not
effective due to occlusion, lighting condition and large-scale deploy-
ment cost. In addition, CCTVs are operators’ property and they do
not either share their videos (privacy issue) nor report the estimated
congestion, if any, in public [12]. As smartphones are becoming
increasingly powerful, their equipped sensors become a more cost
effective approach to crowd density estimation. Refs. [9], [10] lever-
age audio tones to count the number of people in a place as it closely
estimates the size of the crowd. To achieve this, [9] infers the num-
ber of active speakers in a dialog from audio data recorded on users’
phones. However, it requires all passengers to speak while the si-
lence is predominant in stations. Ref. [10] mines the number of mo-
bile phones in a crowd by exchanging audio beacons among neigh-
boring phones. However, it can recognize only phones participating
in the crowd counting service and stations are filled with noise (es-
pecially at platforms) that will overlap with the audio beacon. More-
over, Ref. [13] show the possibilities of flock/group detection. How-
ever, it requires all group members to be system users and they have
to swarm together into the station which is not practical. Ref. [14]
sniffs WiFi packet transmitted from the surrounding phones to count
the number of unique MAC addresses overheard and thus the num-
ber of people in the area. However, this scheme breaches the user’s

privacy (packet sniffing is almost illegal everywhere) as well as the
need of phone kernel adaptation. Ref.[15] counts the number of de-
vices leveraging Bluetooth collaboration by measuring RSSI fluctu-
ation. However, the accuracy significantly depends on the number
of Bluetooth-enabled phones. Finally, Ref. [16] estimates train car-
level congestion leveraging Bluetooth signal strength interchanged
among boarding passengers. However, it is infeasible for our prob-
lem as quantified in the evaluation section. In summary, existing
phone-based techniques do not satisfy one or more of design crite-
ria and substantially have different approach and goal. Our target,
however, is to estimate the congestion level without reliance either
on users count nor a special infrastructure.

3. The passengers’ behavior survey study
To inspire the design of our work, we conduct a survey study on pas-
sengers’ behavior at railway stations. We videotaped 19000 passen-
gers trips from stations’ entrance to platforms accommodating local
trains (with non-reserved seats so their congestion level is unpre-
dicted) at 12 different days and times and inspected them manually
for analysis. Our study intends to concentrate on 3 questions: 1)
which station’s areas are usually congested?, 2) what is the distribu-
tion of waiting passengers along the platform and whether it is re-
lated to the location of the platform accesses (escalators, staircases,
elevators)?, and 3) how are passengers distributed among platform
accesses?
Regarding the first question, station’s areas where passengers com-
pete to acquire different facilities (e.g., elevators, platforms, ticket
vending machines, staircases, escalators, trains, restrooms) are usu-
ally congested than the others.
To answer the second question, we analyzed passengers’ trajecto-
ries on the platform. Figure 1 shows that the majority of passengers
(76%) walk a short distance (less than 60m) on the platform to join
a waiting line. The passenger’s selection of a line depends on many
factors including the elapsed time between the passenger and train
arrivals to the platform, passengers’ information and experience, the
platform layout, among others. We noticed that waiting lines oc-
cupancy passes through three phases. Passengers reaching the plat-
form early, finding most lines approximately empty, will mostly join
lines optimized for short walking distance. Secondly, passengers
reaching later, finding the nearest lines are a bit crowded, will tend
to join the next available less crowded lines. Finally, passengers
reaching shortly before the train arrival will join the nearest lines
(even if crowded) to catch the train. Nonetheless, some experienced
passengers may board cars near to their exits at the destination sta-
tion [17]. In addition, the number and physical location of platform
accesses have an impact on the passengers’ distribution. Figure 2
shows the average passengers’ distribution per train car on a plat-
form with 2 entrances where passengers follow a skewed distribu-
tion (more dense near platform accesses). This is due to the short
headway time of local trains (3 minutes on average) where passen-
gers do not walk further to a convenient line as they do not wait a
long time on the platform. However, in a multiple-accesses plat-
form, the passengers’ load will be dispersed among different lines
(i.e., cars). Finally, the nonuniform passengers’ distribution across
station’s street entrances, where passengers flow densely from main
entrances (e.g., near shopping area or bus stops) than the others [18],
also contributes to the skewed passengers’ distribution near the ac-



cesses connected to main entrances.
For the third question, we found that most passengers prefer esca-
lators than the collocated stairs (Fig. 3) due to passengers concern
about the climbing effort. The number of passengers opted to move
up using escalators (81%) is more than when moving down (73%)
due to the fact that the effort in walking down a stairway is perceived
to be less than that for climbing it up. In both cases, we noticed that
passengers opted to climb stairs mostly when there is a potential de-
lay in using crowded escalators. Elevators move a small number of
passengers only.
Summary: Our study highlights that the congestion level is not uni-
form across the station and its estimation has the potential to enhance
the passengers’ experience and reduce their wait time (in crowded
stations, they may wait for several trains before boarding [19]), en-
abling the next generation of travel-support system.

4. System Overview
As the user reaches the station, CrowdApp collects sensors in-

formation (gyroscope, accelerometer, magnetometer, barometer and
microphone). The raw sensor measurements are preprocessed to
reduce the effect of (a) phone orientation changes by transforming
the readings from the mobile coordinate system to the world coordi-
nate system [20] and (b) noise by applying a low-pass filter to raw
sensor data. Given the privacy implications of turning on the mi-
crophone, we grant users full control over their sensed audio data
where, despite natural concern, most users (71%) allow sound sens-
ing in crowdsensing[21]. Additionally, we process audio data lo-
cally on users’ devices to completely preserve their privacy and thus
incentivize them.
We employ the TransitLabel system[22] which adopts Dead-
Reckoning (DR) to tracks the passenger’s position in the station
due to its high accuracy, low-energy consumption, and reliance only
on the phone sensors. It is designed specifically for stations where
it leverages unique physical points (ticketing machines, fare gates,
etc.) to alleviate the accumulation of the displacement error of DR.
TransitLabel provides not only the user’s physical location (X ,Y)
but also her logical location (platform, passageway, etc.) as it builds
stations indoor floorplan highlighting different landmarks (ticketing
machines, fare gates, etc.).
The Passenger’s State Detection Module will detect the passen-
ger’s state (e.g., walking, etc.) along her trip in the station. The se-
quence of the detected states is fed to the Passenger’s High-level
Activities Inference which incorporates the HHMM to infer the
most likely sequence of passenger’s high-level activities (e.g., buy-
ing a ticket, etc.). The recognized activities are harnessed to refine
the user’s location as each activity (e.g., buying a ticket) is uniquely
associated with a landmark (ticketing machine).
Finally, the passenger’s context and location are forwarded to the
Congestion Level Estimation Module which, based on them, ex-
tracts a novel set of features to characterize the surrounding conges-
tion level at the most susceptible areas to passengers’ crowdedness.
In particular, in crowded stations, passengers line up for different fa-
cilities (e.g., ticketing machines, elevators, etc.) where their waiting
time and order in the queue are used as the temporal/spatial fea-
tures to infer the congestion level on the nearby of these facilities.
In addition, the passenger’s walking behavior (e.g., walking speed)
and the ambient sound at walking areas (e.g., passageway) could re-

Sensor Feature

Accelerometer Time domain mean, STD, variance, magnitude, correlation, min,
max, range, steps

Frequency domain FFT-Peak, spectral Energy and Entropy, FFT
DC,1,2,3,4,5,6 Hz

Gyroscope Time domain mean, variance, gradient, min, max
Magnetometer Time domain variance, max, min, range, gradient, peak length and

intensity
Barometer Time domain variance, gradient, mean, min, max

Audio Time domain normalized occurrence count
Frequency domain 512pt FFT, FFT-Peaks

Table 1: The extracted features list for each sensor.

flect the surrounding congestion level. An identifiable signature of
rapid change rate and heavy distortion surfacing on the barometer
and magnetometer values respectively can characterize the conges-
tion at escalators and elevators. Finally, the user’s spontaneous loca-
tions and activities could be employed to estimate passengers’ flow
on the platform.

5. The Passenger’s State Detection
To detect the passenger’s state, we extract different features

from sensor data as shown in Table 1 where the frequency domain
features are not extracted for some sensors as they proved inef-
fective. To be robust, we use offset-independent (e.g., variance)
and orientation-independent (e.g., magnitude of acceleration and
magnetic field) features. The set of the extracted features (Tab. 1),
except audio data, and the corresponding passenger’s states from
a large dataset collected in our preliminary experiments are used
to train a Random Forest based classifier [23] offline. Later at run
time, the classifier can infer the passenger’s state from the real-time
extracted features. The detected passengers’ states include: A.
Motion States
We extract different features (Tab. 1) from the accelerometer to
identify the following states (standing, sitting, stepping, normal
walking, slow walking, climbing, accelerating, decelerating).

B. Change Altitude
To identify it, we adopt the technique in [24] that is based on the
difference among the relative barometer readings (i.e., pressure) in
consecutive overlapping windows. This is essential to separate the
usage of elevation change elements (elevator, escalator or staircase)
from other activities (e.g., buying a ticket, etc.).
C. Sense a Magnetic Distortion
Nowadays, many electronic machines are installed in railway
stations (e.g., fare collection gates, etc.). The direct passenger
interaction with these machines distorts the sensed magnetic field
reading by machines’ metals and electronics. This distortion forms
a peak in the magnetic field readings where the peak duration and
strength are extracted to identify this state.
D. Change Heading
Station installed machines (e.g., vending machines) are usually
mounted to walls, so their usage (e.g., buying tickets) involves
a sudden change in the user direction (i.e., surge in gyroscope
readings) directly after the activity. The derivative of gyroscope
values within a time window is used to detect this sudden change.
E. Hear a Unique Sound
We adopt the technique in [22] to detect the drink and ticket vending
machines based on the unique sounds (drink falling and beep sounds
respectively) they emit during the user interaction.



Observation
(user state)

Possible Hidden state (Context)

Change altitude Move from a floor to floor
Change heading walk away after using a machine, join a waiting line, etc.
Near a magnetic
distortion

Interacting with an electronic machine, being on an escalator, etc.

Hear a unique
sound

Interacting with a vending machine

Stand using a machine, Waiting for a train or in a queue, etc.
Walk Walking at a walking area, walking into a train, etc.

Table 2: Examples of passenger’s states and their contexts.

F. Be in a Train
We follow a hybrid approach fusing different sensors (accelerometer
[25], barometer [26] and magnetometer [27]) to provide a high
accuracy detection of being on a moving train. In addition, the
algorithm in [27] is adopted to detect train stops.

6. The Passenger’s High-Level Activities Infer-
ence

This module receives the sequence of the user’s detected states by
the previous module and leverages it to recognize her activities. A
passenger’s activity is composed of a temporal sequence of micro-
activities (i.e., states). For example, buying a ticket consists of the
following sequence of states. First, the user has to be stationary
while buying a ticket from the vending machine. Second, the phone
senses a magnetic distortion and overhears a distinct beep sound dur-
ing the user interaction. Finally, the user has to change his direction
after finishing machine interaction to resume walking. In addition,
the overall commute process is a sequence of temporally correlated
in-station activities. An example of a whole commute process con-
sists of the following activities sequence: buy a ticket, cross a fare
gate, walk at a passageway, access the platform by an escalator, walk
at the platform, wait in line for the train, and board the train. Thus,
we employ the HHMM (Fig. 4) to infer the most likely sequence
of passenger’s activities constituting her train commute from the de-
tected states sequence. HHMM allows to capture the idea of the
whole commute process instead of a sequence of unrelated activi-
ties. The HHMM is invoked when the context (Start-Commute) is
signaled as the user enters the station. The inference process ends
signaling (Finish-Commute) after the passenger gets off the train.
We use a two-layer HHMM where in the bottom layer, the relation
between the observation (passenger’s state) detected from the sen-
sor data and the passenger’s context (hidden state) is modeled as
an HMM with standard first-order Markov assumptions. As HMM
factors in the temporal correlations between consecutive passenger’s
contexts, it may potentially counteract the errors in classifying the
passenger’s states by inferring the most likely sequence of contexts
that corresponds to the detected state sequence. For example, if the
phone is in the state of sensing a magnetic distortion, it may not
definitely mean that the user is interacting with a vending machine.
Instead, the user may be on an escalator, on the nearby of other elec-
tronic devices, or it may be a noise. So, depending on the given
sequence of states, HMM will infer the most likely corresponding
context (Tab. 2). The emission probability for a given <state, con-
text> pair represents the probability of seeing that context condi-
tioned on the user being in that state. The transition probability is
the probability of transitioning from one context to another. The
upper layer of HHMM, modeled as a Markov chain, will infer the
most likely sequence of passenger’s activities where each activity is
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Fig. 4: The model of the whole commute process.

Activity States
Use an elevator normal walk, stand, slow walk, direction change, floor

change, accelerate, stationary, decelerate
Stand on escalator stand, floor change, sense distortion
Climb a half-landing stair climb, floor change, direction change, walk, floor

change, climb
Climb an escalator climb, floor change, sense distortion
Climb a straight stairs climb, floor change, no magnetic distortion, no direction

change
Use a drink vending machine no floor change, stand, sense distortion, drink falling

sound, direction change
Use a ticket vending machine no floor change, stand, sense distortion, beep sound, di-

rection change
Cross a gate by a ticket no floor change, normal walk, decelerate, slow walk,

sense magnetic distortion, accelerate, normal walk
Cross a gate by an IC card no floor change, normal walk, decelerate, slow walk,

pause, sense distortion, accelerate, normal walking
Queue no floor change, stand, step forward, stand, step

foward,....
Wait for and board a train normal walk, stand, head towards platform, step aside,

stand, walk, stand, be on a train
Get off a train be on a moving train, train stops, normal walk

Table 3: The passenger’s states used in activities recognition.

identified from a temporal sequence of user’s context detected at the
lower HHMM layer (Tab. 3).
We learn the HHMM parameters offline based on a collected train-

ing dataset by applying the Expectation-Maximization (EM) algo-
rithm [28]. As EM converges to local maxima and searching for
global maxima in the likelihood landscape is intractable, we used
the Gibbs Sampling [29] technique for a more robust estimation. To
derive the initial values for the stationary, transition and observation
probabilities, we apply statistics on our dataset used for training. To
apply this model for identifying the most likely sequence of high-
level passenger’s activities from a sequence of observation, we use
the Viterbi algorithm [30]. Now, the list of recognized passengers’
activities includes:
A. Using an Elevation Change Element
In this class of activities, users move from one floor to another. We
adopt the idea in [31] to classify their fine-grained activities (using
elevators, escalators, and stairs) as shown in Tab. 3.

B. Using a Ticket or a Drink Vending Machine
Their typical usage trace consists of normal walking to the machine,
standing in front of, inserting currency, beginning the service (choos-
ing a drink or ticket type), finishing the service (grabbing the ticket
or the drink), and finally walking away. To discriminate the two
vending machines classes, we draw on which unique sound (drink
falling, beep) is detected from the audio recorded during the ma-
chine interaction [22].

C. Crossing a Fare Collection Gate by Tickets or IC Cards
As the passenger approaches a gate, a noticeable slows down in her
walking speed is observed till she pauses by the gate to drop the
ticket into or tap the IC card over the machine, and then she resumes
walking. Simultaneously, crossing the gate heavily distorts the mag-
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Fig. 7: Sensor readings at two escalator congestion levels.

netic field by the gate’s ferromagnetic metals.

D. Using a Restroom
We incorporate the algorithm in [32] which actively probe the acous-
tics of environment with the phone’s built-in speaker and micro-
phone and analyze the impulse response (IR) to detect the type of
space (restroom or not).

E. Queuing in Front of a Facility
In a crowded station, passengers normally line up for different fa-
cilities. The typical queuing behavior for elevators, ticketing ma-
chines, and restrooms (i.e., with long service times) takes the form
of a repetitive sequence of standing interspersed with short bursts of
stepping forward states (e.g., 4-episodes pattern is shown in Fig. 5)
till the user dequeues. Once the user dequeues and allocates the fa-
cility, its unique sensor pattern will surface on the phone sensor, so
we associate each queuing activity with a certain facility. On con-
trast, users will continuously walk forward slowly with short time
pauses when they line up for escalators as they carry more people.
To accommodate the variability in queuing patterns among different
facilities, we run concurrent motion classifiers with different win-
dow sizes to detect queuing.

F. Being on Platform and Boarding a Train
The platform is the area where passengers board trains during their
train commute. As shown in Fig. 6, the user’s motion state on the
platform changes during a short time period from (1) walking on the
platform, (2) joining a line, (3) (4) short walking with slight head-
ing change and then standing (step aside making the departure route
available for alighting passengers), (5) walking into the train car, (6)
waiting the train to move, and finally (7) being on a moving train.
This short temporal sequence of states is leveraged to detect the plat-
form track position (estimated from the passengers’ positions during
the train boarding).
Once the platform area is identified, when the passenger is being
on the platform and its state is switching from walking to standing
while turning to face the platform track (Fig. 11), this means that
the user joined a waiting line. Later, lines position on the platform
can be estimated from the passengers’ positions reported while they
are waiting for the trains on the platform by the DBSCAN clustering
approach. Once lines are detected, every neighbored collection of n
lines (n is the number of doors per car, which is a known constant)
is representing a queuing area for a train car.

G. Getting off a Train
It is detected from a sequence of context changes from being on a
moving train to a stopped train to walking (Fig. 6, Sects. 8,9).

7. The Congestion Level Estimation
This module extracts different features from sensors data based

on the user’s location and context (e.g., walking on the platform) re-
trieved from the previous modules to characterize the surrounding
congestion level. The congestion indicator function differs from oc-
casion (location and context) to another where, for example, it may
be the queuing time for facilities and the passengers flow on plat-
forms. However, at all occasions, we map the congestion indicator
function to a coarse-grained congestion level (low, medium, high)
which is reported to the users. We estimate the congestion level
across the following locations:
A. In Front of Facilities
In the steady state, the location of stations’ facilities (ticketing ma-
chines, restrooms, elevators, etc.) will be already identified from
users’ locations during their usage[22]. CrowdApp tracks the user’s
location and as soon as she becomes stationary in the vicinity of one
of the facilities, the enqueuing event is triggered. Whenever the pat-
tern of the designated facility surfaces on the user’s trace identified
by the instants of level changing (for elevators and escalators), mag-
netic distortion (for ticketing machines) and the active probing signal
(for restrooms), it marks the start of the service time and the dequeu-
ing time. When the user walks away from the facility, it marks the
end of the service time. Given that the context changing (enqueue,
dequeue, allocate and release the facility) times are recorded, we can
directly derive the queuing (waiting) and service times. Although the
service time does not contribute to the congestion level estimation,
it could be leveraged in the average travel time computation. The
number of consecutive stepping forwards episodes during queuing
can allude to the passenger’s order at her enqueuing time. Eventu-
ally, the waiting-time and the order in queue represent the tempo-
ral/spatial features that are mapped to a congestion level category
(low, medium, high) arbitrarily by the user and vary from facility to
another (e.g., we use 2, 4 as queue length thresholds for low, medium
and high levels for ticketing machines).

B. On Escalators/ Elevators
As most passengers access the platform by escalators, they are the
most crowded elevation change element. Additionally, as passengers
tend to join the nearest less-crowded lines, so gauging the congestion
level on escalators is indicative of the congestion on the connected
platforms’ part. Many manufacturers (e.g., [33], [34]) have devel-
oped new variable speed escalator/elevators models (Eco machines)
that adjust their speed based on passengers’ load. The escalator au-
tomatically slows or halts when it carries fewer passengers or no pas-



sengers respectively to save energy. The escalator operates at a low
speed in stand-by and gradually increases speed to the rated speed
after detecting a passenger approaching the boarding area by using
weight sensors. This model is ideal for railway platforms where pas-
sengers’ flow tends to be intermittent, so they are in the market since
2008 [35]. Figure 7a shows that the time an escalator takes to move
from one height to another is contingent on the congestion level. To
recognize whether the escalator is congested (carries more than 65%
of its maximum capacity) or not, we draw on its speed of movement
measured by the rate of pressure change (i.e., barometer readings)
during its usage time as illustrated in Algorithm 1.

In addition, for escalators to maintain a fast speed while moving

Algorithm 1 Estimate Escalator Congestion
Input: p . Pressure values during escalator use
Input: m .Magnetic magnitudes during escalator use
Output: CL . Escalator congestion level

∆p← PressureChangeRate(p)
if ∆p > THp then

CLp ← high
else

CLp ← low
end if
V ← VarDistribution(m, 4sec) . Variances estimated every 4 secs
if KL(V |Klow) > KL(V |Khigh) then . Variances distributions similarity

CLV ← high
else

CLV ← low
end if
CL=Fuse ( CLp,CLV ) . Fuse both estimations

Algorithm 2 Fuse Congestion Estimation Results
Input: CLA,CLB . Individual congestion estimation results
Output: CL . Final estimated congestion

if CLA = CLB then
CL = CLA . Agreed levels

else if CLA = medium OR CLB = medium then
CL = medium . One is medium an the other is low or high

else . contradicted levels
CL = unknown

end if

a large number of passengers, it has to exert more force (i.e., en-
ergy). This causes a large distortion of the ambient magnetic field
(by escalator machinery) which can be leveraged to estimate the load
on the escalator. Figure 7b shows the cumulative distributions of the
magnetic variance values for data collected in our preliminary exper-
iment. In low congestion level cases, more than 80% of the variance
samples are concentrated below 15. This is in contrast to the high
congestion level where the variance samples are distributed over a
much wider range. This inspires us to identify the congestion level
by using the K-L divergence [36] technique to examine the differ-
ence in the distribution of the magnetic field changes. The KL di-
vergence is calculated among the histograms of magnetic field vari-
ances collected while the passenger is on the escalator (V) against
the magnetic fingerprints labeled with less or highly congested esca-
lators (Glow and Ghigh) as:

KL(V |G) =
∑

i V(i)log V(i)
G(i)

The estimated congestion level (low, high) will be deemed as the
one having the lowest K-L value (i.e., similar magnetic variance
distribution) with the test magnetic field variance histogram as
shown in Algorithm 1. We will fuse the barometer and magnetome-
ter estimations to enhance the final congestion level estimation as

shown in Algorithm 2.

Algorithm 3 Estimate Congestion around Path from ps to pe

Input: L . Inertial sensor values from ps to pe

Input: mic .Microphone amplitudes
Output: CL . Area congestion level

S ← StepIntervalDistribution(L)
if more than 80% of intervals in S < 0.6 sec then

t← UserTrace(L) . Normal or fast walk
if Distance(t,ShortestPath(ps, pe)) < THd then

CLL ← low .Walk along with shortest path
else

CLL ← high .Winding path
end if

else
CLL ← high . Slow walk

end if
A← NormalizedDist(mic) . Normalized Occurence Count
if ClosestDistribution(A) = Alow then

CLmic ← low
else if ClosestDistribution(A) = Amed then

CLmic ← medium
else

CLmic ← high
end if
CL=Fuse ( CLL,CLmic) . Fusion

C. At Walking Areas
They include the mezzanine, passageways, and platforms. We har-
ness the following two features:
Inertial Sensors-based Features Analysis of pedestrian movement
shows a strong correlation between the walking speed and the sur-
rounding crowd density. The average step interval (i.e., walking
speed) tends to be longer with higher crowd density as pedestrians
have to walk at a similar speed with the surrounding people (Fig.
8). We mine the interval among steps detected by [37] to identify
the surrounding congestion level. If more than 80% of the step in-
tervals in the window are less than 0.6 seconds, we regard that the
user is walking at the normal speed and moving at a slow speed oth-
erwise. However, some passengers walk at normal speed even in
highly crowded areas resulting into some misclassifications. To mit-
igate this effect, we observed that passengers, in this case, have to
change their heading frequently to maintain a normal walking speed
while avoiding collision with nearby people (Fig. 9). Our hypoth-
esis is that when the walking area is empty, the user trajectory will
theoretically be a straight line. Thus, we break the user’s trace into
multiple trajectories where each one comprises a part of the trace
from one landmark to the next in the route (e.g., from the ticketing
machine to the gate). Then, we calculate the trajectory stretch fac-
tor as the Euclidean distance between the corresponding points in
the shortest and user actual trajectories. Finally, the user’s walking
speed and her trajectory stretch factor are mapped to the conges-
tion level empirically as shown in Algorithm 3. A walking region is
low congested when the crowd density is lower than 1.0 person/m2,
medium when it is between 1.0 and 2.5 persons/m2 and high other-
wise (Fig. 12).

Audio-based Features
The basic idea is that the people crowd generates noise that could
be identified from the ambient sound. To identify the congestion
level from the ambiance, we employed a light-weight fingerprint-
ing scheme (to avoid increasing the workload on the user’s phone)
to characterize each congestion level with a sound fingerprint. Fin-
gerprints are collected regardless of the station or the walking area
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Fig. 11: Passengers behavior on the platform.

they collected at. Before fingerprinting, we extracted the frequency
components below 2KHz from the audio recording which are found
empirically to be effective in the congestion level estimation. Our
fingerprinting scheme is based on the signal amplitude to capture
the loudness of the sound [38]. Specifically, the amplitude is divided
into 100 equal intervals and the number of samples per interval is
normalized by the total number of samples in the recording. The
100 normalized values are considered as the feature characterizing
the congestion level. Figure 10 shows the fingerprint for three dif-
ferent congestion levels. At run time, we compute the Euclidean
distance among the sound fingerprints of the three congestion levels
and the test signal as shown in Algorithm 3. The congestion level fin-
gerprint showing the lowest Euclidean distance with the test signal is
deemed as the congestion level. The audio-based and inertial-based
estimated congestion levels are fused by Algorithm 2 to report the
final congestion level.

D. On The Platform
The passenger’s waiting location on the platform could identify the
car she boarded as the X and Y coordinates of her position corre-
spond to the waiting line (i.e., car and door numbers) and her loca-
tion away from the platform track respectively (Fig. 11-a). So, the
user order in the line (O) can be estimated as: O = (Y−Bsize)/(Rspace)
where Bsize and Rspace are the buffer size (the free space between the
track and first row) and the row space (space allocated to each row)
respectively (Fig. 11-a) and their values are fixed for all stations
run by the same company. The user order in line alludes to the in-
stantaneous line length at her enqueuing time. Since the user’s line
occupancy changes rapidly while waiting for train, the instant line
length is infeasible to indicate the congestion. However, the arrival
rate to the line can be estimated, if we have many users in the line,
and thus indicating the congestion. As this violates our assumption
of few users, we finally revert to estimate the passenger’s flow to
or from train cars to indicate the congestion level. To achieve that,
we track passengers’ activities on the platform. Specifically, when
the train reaches, the waiting passengers step aside to free the depar-
ture route for alighting passengers as soon as it stops (Fig. 11-b).
When the doors open, the alighting passengers walk across the wait-
ing lines till they reach their end where they will make a turn (i.e., the
turning point) to walk away (Fig. 11-c). After the last passenger de-
parted the train, the waiting passengers will walk into the train. The
time elapsed since the instant a waiting passenger waits after step-
ping aside to the time she started walking into the train, alighting
time, is directly proportional to the number of alighting passengers.
On the other hand, the straight distance walked (orthogonal to train
movement direction) by alighting passengers on the platform before
turning, alighting distance, is proportional to the length of line on

the platform. However, sometimes we cannot separate the distance
walked on the platform from that walked inside train as some trains
doors are in the same level of the platform. To mitigate this effect,
we track the alighting passenger till she reaches any of the platform
accesses (e.g., escalator) which we maintain their locations. Then,
we build a backward trajectory from the access point to the turning
point location (Fig. 11-c). The alighting distance is the distance be-
tween the platform track to the turning point. Finally, we build two
linear regression models to map the alighting time and distance to the
corresponding alighting and waiting passengers’ counts respectively
which are in turn mapped to a congestion category (low, medium,
high) by an empirical setting (e.g., high level is indicated if there are
14 or more waiting passengers).

8. Performance Evaluation
CrowdApp is evaluated through deployment at 8 stations by a group
of 16 users collecting two datasets (scenario-based and free). In
scenario-based, 10 participants were assigned specific trips from the
station entrance to different platforms. The free dataset is collected
by 6 individuals from their everyday train commute. We deployed
two Android applications: a background data collection tool to sam-
ple all sensors and a foreground tool to manually record ground truth.
The data collection was conducted at different times and days and us-
ing different Android phones including Samsung Galaxy S5 and LG
Nexus 5. In addition, stations are in two different cities, managed
by different companies and having different buildings designs and
sizes. This captures the time-variant nature of the congestion level,
the heterogeneity of users and devices and emphasizes CrowdApp
scalability. The average platform dimensions are 180m×12m. Train
cars are of 20m length with 3 doors with average inter-distance of
5.2m.

A. Activity Detection Accuracy
Figure 13 shows that most user’s activities can be identified
accurately due to their unique sensor pattern regardless of the
user/station. Detecting boarding and getting off trains are challeng-
ing due to the error inherent in the employed transportation-mode
detection method. Queuing for long service-time facilities (eleva-
tors, restrooms, ticketing machines) can be detected in 100% of
cases but it is more challenging for escalators as the congestion has
to exceed a certain threshold to impede user’s smooth mobility to be
detected. In all cases, queuing detection incurs false positive sam-
ples. However, these errors can be mitigated by leveraging the user’s
and landmarks’ location information as queuing be at certain loca-
tions, so we can filter out outlier activities happening far from the
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designated facilities.

B. Location Estimation Accuracy
Figure 14 shows that the user’s position while waiting in line can
be accurately estimated especially when users’ lines are near to plat-
form accesses (Fig. 1). This accuracy stems from the fact that plat-
forms have many accesses (elevators, escalators, etc.) and whenever
their pattern surface on the user’s trace, the dead-reckoned derailed
position will be calibrated to their access locations on the platform.
Thus, the location error grows only when the user moves away from
this access point on the platform.
Figure 15 demonstrates that the average waiting lines location accu-
racy relies on their distance to the nearest platform accesses (location
is more precise for lines near to the platform accesses as most user
trails are short). Generally, given that we can estimate passengers’
location when they are waiting in lines accurately (Fig. 14) and the
inter-line distance of 5.2m, so we can identify the waiting lines lo-
cation and thus boarded cars accurately.

C. Congestion Level Estimation Accuracy
In front of facilities Figure 16 shows the accuracy in the waiting
times error estimation which is up to 12, 16 and 20 seconds for el-
evators, ticketing machines and escalators where the extreme val-
ues are rare (the median error is 5, 7 and 9 seconds respectively).
The enqueuing recognition is more challenging than the dequeuing
especially for escalators where passengers do not have the normal
queuing pattern. In this case, the enqueuing time is detected through
at least 3 short windows of activity for verification. The dequeuing
time, also, is a bit tricky for all facilities as there is a time elapsed to
detect the marking signal of starting the service time (level change
for escalators/elevators, magnetic distortion for ticketing machines,
IR for restrooms). To mitigate this effect, we roll back to the trace
and subtract this elapsed time (from dequeuing to the start of service
time detection) from the estimated queuing time. The final conges-
tion level (mapped from the waiting time) estimation accuracy is
shown in the first (yellow) row in Table 6.
On escalators The confusion matrix (Tab. 4) shows that the
barometer-based congestion estimation can detect the high and low
level correctly in 76% and 79% of cases. However, this approach
cannot be applied when the user climbs the escalator as the rate of
change of barometer values will be affected the climbing speed of
the users. Nevertheless, the magnetometer-based method can be ap-
plied in all cases disregarding the passenger motion state (standing or
climbing) as the magnetic distortion, by the escalator machinery, is
persistent. However, it sometimes estimates the congestion level in-
correctly due to some overlap in the magnetic variance between low
and high crowd densities (Fig.7b). The fusion of the two reported

congestion categories provides a better congestion level estimation
of 82% on average.
At walking areas The confusion matrix (Tab. 5) shows that
acceleration-based method can correctly identify the high conges-
tion level in 79% of cases. We observed that users sometimes walk at
normal speed without snaking in narrow crowded areas when nearby
people flow in the same direction (no intersections with opposing
passengers). This leads to some high congestion misclassification
and restricts the system ability to separate medium and low con-
gestion level classes. Nevertheless, the low/medium, as one class,
congestion level can be estimated correctly in 83% of cases as pas-
sengers do not slow down their walking unreasonably. The errors
in low/medium density estimation mainly happen at upslope areas
where users may naturally slow down the walking speed regardless
of the surrounding congestion levels.
The confusion matrix (Tab. 5) shows that audio-based congestion
level estimation achieves an average accuracy of 77%. In the case
of low congestion, CrowdApp achieves lesser accuracy (especially
in platforms) due to the surrounding noise that is not caused by a
human crowd (e.g., announcements, human speech, trains on oppo-
site platform). While we trained the audio-based classifier by ag-
gregating all the audio samples regardless of the area where they are
recorded, the accuracy of the classifier would be further improved by
constructing tailored classification models for each area. However,
it incurs heavy processing and power consumption that does not fit
the phone limited resources.
Finally, fusing the two methods could gauge the congestion level
with an accuracy of 76-87%.
On the Platform Figure 17 reports the accuracy in detecting the user
order in the line. In 76% of users’ traces (i.e., users walk <60m on
the platform), we can identify the user order in line with +1/-1 error
in 63% of cases. Although the user’s location while waiting in line
can be estimated accurately (Fig. 14), the order in line have errors
which are mainly due to the nonuniform space allocated by each row
of passengers (Fig. 11).
Figure 18 quantifies the CDF of the estimation error of the num-
ber of boarding and alighting passengers. It shows that the error
in estimating the number of waiting passengers (up to 4 in 82% of
cases) is lesser than the estimation of alighting passengers (up to 4
in only 61% of cases). The estimation error of the alighting dis-
tance (mapped to the number of waiting passengers) is due to users’
step size differences, steps miscount and some users do not turn di-
rectly after reaching the last passengers in the waiting line. How-
ever, this error is empirically bounded by 2.4m which is mapped to
around 3 rows (6 passengers) and does not happen frequently. On



Barometer Magnetic Fusion
Low High Low High Low High Unknown

Low 79% 21% 77% 23% 84% 12% 4%
High 24% 76% 26% 74% 14% 80% 6%

Table 4: Accuracy of congestion
level estimation on escalators

Acceleration Audio Fusion
Low Med. High Low Med. High Low Med. High Unknown

Low 83% 17% 73% 20% 7% 87% 7% 3% 3%
Med. 9% 76% 15% 6% 76% 10% 8%
High 21% 79% 4% 13% 83% 3% 6% 86% 5%

Table 5: Congestion level estimation accuracy at
walking areas.

Act.
Recog.

Congestion Estimation (%)
Facilities Escalator Walking Platform
L M H L H L M H L M H

Database 90 94 89 88 87 86 90 84 89 83 86 82
Validition 86 91 90 86 80 77 87 81 85 80 85 80

Table 6: CrowdApp performance (mea-
sured by F-Measure [39])
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contrast, the alighting time may be inaccurately estimated as some
alighting passengers (e.g., parent with infants, handicapped people
and people with luggage) spend more time to get off the train af-
fecting the estimated alighting time. However, we believe that the
number of alighting passengers (within 4 passengers errors in 61%
of cases) is acceptable as our goal to infer the congestion level not to
count boarding and alighting passengers. The final congestion level
(mapped from alighting and waiting passengers count) estimation
accuracy is shown in the first (yellow) row in Table 6.

D. Power Consumption
Figure 19 shows the power consumption of CrowdApp. To illustrate
the contrast in power consumption, we run a 1-second GPS sampling
APP (GPS is not available in stations but it is used as a baseline).
The power is calculated using the PowerTutor [40] and the Android
APIs using the HTC Nexus One cell phone. CrowdApp leverages
inertial and sound sensors for its operation. The inertial sensors are
always running to detect the phone orientation changes and for in-
door positioning which are basis functions for a variety of mobile
applications. So, CrowdApp typically consumes a little extra power
of 79mW from the sound sensor and its local data processing. The
power consumption of CrowdApp is significantly (32%) less than
the GPS consumption which will not impede the user participation
to the system.

8.0.1 Generalization of CrowdApp
E. Generalization of CrowdApp

We based the activity recognition and congestion level estimation
on the majority of commuters typical behavior and typical envi-
ronment characteristics. However, some users may have different
behaviors and some stations have different building structures and
machines hardware that may lead to some activity and/or congestion
misclassifications. Thus, to demonstrate that CrowdApp could gen-
eralize over various users and stations, we show a one-station-out
cross-validation (one station data from the free dataset is selected
as the validation data while all data collected at other stations
is used as the database) results in Table 6. The table compares
the F-measure [39] of the activity recognition and congestion
estimation of the database against the one-station-out data. The
results demonstrate that CrowdApp performance does not deviate
much between different stations/users (escalators have the worst
deviation due to hardware differences) due to the uniform nature

of passengers’ activities at stations and fusing multiple features to
identify activities and congestion level, reducing the sensitivity to
specific user or machines.

9. Discussion
Impact of phone pose Experiments carried out in different phone
poses (hand, pocket) suggest that the accuracy is not significantly
dependent on the device pose. This robustness may due to the trans-
formation of sensor readings to the real world coordinates, data
smoothing and extraction of pose-independent features (e.g., mag-
netic field). Additionally, the maximum in-pocket discrepancy in
audio spectrum values is only 0.07dB on average.
Congestion variance We rely on a few number of users (as few
as one) which may report a spontaneous anomalous (spike or false)
congestion level. The increase in the users’ count will mitigate this
effect. If there are many users reporting congestion of an area, we
select the congestion level based on the majority vote. If an area had
been reported as congested, the event can be removed if multiple
following users report contradicted level or it will be set to unknown
after a certain time frame which is closer.
User incentive Users are naturally incentivized to get the congestion
information. To increase their engagement, we can support social in-
teractions where users see locations of nearby users and do chat with
them which give users the sense of large community. We may offer
users virtual rewards (e.g. mayorship, badges) which reflect their
contribution based on other members feedback.
Cars congestion level It can be estimated by tracking the number of
passengers boarding or alighting cars at each station along the train
route. This is part of our future work.
Other environments CrowdApp can be customized to other envi-
ronments, e.g., airports, that have similar facilities (e.g., elevators,
escalators, vending machines, lockers, security gates, and boarding-
pass printing machine).

10. Conclusion
We presented CrowdApp: a system that leverages the phone-

sensed data to gauge the congestion level in railway stations offering
a promising way to ease the congestion and improve the comfort
level of passengers. CrowdApp can estimate the congestion level
without much reliance on the number of participants or specialized
hardware which is more scalable and robust.
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