
Protein Fold Recognition with
Representation Learning and Long Short-Term Memory

Masashi Tsubaki1,a) Masashi Shimbo1,b) YujiMatsumoto1,c)

Abstract: Predicting the 3D structure of a protein from its amino acid sequence is an important challenge in bioinfor-
matics. Since directly predicting the 3D structure is hard to achieve, classifying a protein into one of the “folds”, which
are pre-defined structural labels in protein databases such as SCOP and CATH, is generally used as an intermediate
step to determine the 3D structure. This classification task is called protein fold recognition (PFR), and much research
has addressed the problem of either (i) feature extractions from amino acid sequences or (ii) classification methods
of the protein folds. In this paper, we propose a new approach for PFR with (i) learning feature representations with
unsupervised methods from a large protein database instead of manual feature selection and using external tools. (ii)
learning deep neural architectures, recurrent neural networks (RNNs) with long short-term memory (LSTM) units,
and re-training the representations instead of fixing the extracted features. On a benchmark dataset, our approach
outperforms existing methods that use various physicochemical features.

Keywords: Protein fold recognition, Deep learning, Representation learning, Recurrent neural network, Long short-
term memory

1. Introduction
Predicting the 3D structure of a protein from its amino acid se-

quence is an important challenge in bioinformatics. However,
directly predicting the 3D protein structure is a difficult task.
Therefore, classifying a protein into one of the “folds”, which are
pre-defined structural labels in protein databases such as SCOP
and CATH, is used as an intermediate step to determine the 3D
structure. This classification task is called protein fold recogni-
tion (PFR), and the process is divided into two steps: (i) extract-
ing features from amino acid sequences and (ii) classifying the
protein folds. The features are generally extracted by using syn-
tactical and physicochemical information of proteins such as hy-
drophobicity, polarity, and van der Waals volume [1], [2]. With
the extracted features, several classifiers have been applied such
as support vector machines and ensemble classifiers [3], [4].

In recent natural language processing (NLP), word representa-
tion learning methods have become popular [5], [6]. With these
methods, vector representations of words can be obtained from a
large corpus in an unsupervised fashion. These word represen-
tations have many applications, and notably, various deep neural
network architectures utilizes them for learning structures of sen-
tences [7]. Such architectures further allow for re-training the
word representations simultaneously. Thus, this approach does
not depend on feature extractions and consists of two steps: (i)
unsupervised learning of representations as pre-training, and (ii)

1 Graduate School of Information Science Nara Institute of Science and
Technology 8916-5, Takayama, Ikoma, Nara 630-0192, Japan

a) masashi-t@is.naist.jp
b) shimbo@is.naist.jp
c) matsu@is.naist.jp

supervised learning of deep neural architectures and re-training
of the pre-trained representations.

Inspired by the above NLP approach, this paper proposes a new
approach for PFR. Our PFR process is divided into two steps: (i)
We obtain features of amino acid sequences with unsupervised
representation learning [5], [6] instead of extracting features such
as physicochemical-based information. (ii) We design a classifier
for protein folds with recurrent neural networks (RNNs) using
long short-term memory (LSTM) units [8], train the LSTM, and
re-train the features instead of fixing the physicochemical fea-
tures. Fig 1 shows the overview of our approach.

In more details, our approach is as follows: (i) We first define
n-gram amino acids as words of proteins and make a large protein
corpus with CATH. To this corpus, we apply three word repre-
sentation learning methods: skip-gram (SG) and continuous bag-
of-words (CBOW) of word2vec [5] and global vectors (GloVe)
[6]. Then we obtain the word vectors as pre-trained representa-
tions (§see 3.1). (ii) As an input is the word vector sequence of a
protein, our LSTM reads the vectors one by one bi-directionally
(i.e., from left to right and from right to left) [9], obtain the hid-
den layers, and then sum the hidden layers as an input for softmax
classifier (§3.2). (iii) In addition to the learning of an LSTM clas-
sifier for protein folds, we re-train the pre-trained n-gram amino
acid representations simultaneously (§3.3).

Our contribution is three-fold: (i) To the best of our knowl-
edge, ours is the first work that combines word representations
and LSTMs for PFR. (ii) On a benchmark dataset, our approach
outperformed existing methods that use various physicochemi-
cal features. This suggests that the capturing of co-occurrence
information with word representations and long-term dependen-

1

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan

Vol.2016-BIO-47 No.3
2016/9/28

ENIKLGFGLGQGSALAHGIANANIIKKEN
ADQRAAEQYVIDEYNKLKTRL
・・・
HHHHHHQARWIGNFHVRTDSVLDTKQ
ARWNF

Protein corpus

Skip-gram, CBOW,
[Mikolov+ 13]

GloVe
[Pennington+ 14]

＋

Word representation learning

n-gram
 amino acid vectors

(i) Features with unsupervised representation learning

(ii) LSTM architectures for PFR

ARW

GLQ

HKD

・
・
・

・
・
・

sum

Classify the protein folds

 -GL GLS QS-・・・

・・・

・・・

sum

Classify the protein folds

 -GL GLS QS-・・・

・・・

・・・

Concatenated bi-directional LSTM Stacked bi-directional LSTM

Fig. 1 Our protein fold recognition (PFR) process is divided into two steps: (i) We obtain features of n-
gram amino acids with unsupervised representation learning. (ii) We design a classifier for protein
folds with RNNs using LSTM units. In this paper, we propose two architectures: concatenated
and stacked bi-directional LSTMs (§3.2).

cies with LSTMs is also effective for PFR. (iii) We analyzed
the differences of two deep neural architectures, concatenated bi-
directional LSTM [9] and stacked bi-directional LSTM [10] (see
Fig 1 and §3.2 for detail), in terms of the representational powers
and re-training feature representations.

2. Background
In this section, we provide a brief review of word representa-

tion learning methods (§2.1) and RNNs with LSTM units (§2.2).

2.1 Word Representing Learning Methods
2.1.1 Skip-gram and continuous bag-of-words of word2vec

The training objective of the skip-gram (SG) model of
word2vec [5] is to learn d-dimensional word representations that
are useful for predicting surrounding words of a target word in
a sentence. Specifically, given a sequence of training words
w1, w2, · · · , wL, the objective function J to maximize is the av-
erage log probability as follows:

J =
1
L

L∑
t=1

∑
−ℓ≤i≤ℓ

log p(ct+i | wt), (1)

where wt is the target word, ℓ is the window size of the context
which is the number of words to consider around of wt, and ci is
the i-th context word in the window. In the SG model, the proba-
bility in equation (1) is defined as follows:

p(ct+i|wt) =
exp(ct+i

⊤wt)∑V
j=1 exp(c j

⊤wt)
, (2)

where V is the number of words in the vocabulary, w ∈ Rd is the
d-dimensional vector representation of word w, and c ∈ Rd is the
d-dimensional vector representation of context word c. Note that
wi ∈ Rd is the i-th row vector of W ∈ RV×d and ci ∈ Rd is the i-th

column vector of C ∈ Rd×C , where C is the number of context
words.

However, the above function is impractical because its com-
putational cost is proportional to V . To reduce the cost, the
word2vec toolkit implements negative sampling. Negative sam-
pling approximates the probability in equation (2) by maximizing
the inner product of vectors for correct example pairs (w, c) that
occur in the corpus, and minimizing it for negative example pairs
(w, c′) that do not occur in the corpus as follows:

p(ct+i|wt) ≈ σ(c⊤t+iwt)
K∏

k=1

σ(−c′⊤k wt),

where σ is the sigmoid function, c′ is the word vector of nega-
tive example, and K is the number of negative sampling words.
In contrast to SG, the continuous bag-of-words (CBOW) model,
which is another implementation in word2vec, predicts the center
word based on the sum of the surrounding context vectors.
2.1.2 Global vectors

Global vectors (GloVe) [6] relies on a global log-bilinear re-
gression model that combines and leverages the advantages of
two ideas, (i) a local context window such as used in word2vec
and (ii) a global co-occurrence statistics in a corpus. Let wi be
the i-th word in the vocabulary, wi ∈ Rd be the d-dimensional
vector for the word wi, c j be the j-th context, and c j ∈ Rd be the
d-dimensional vector of context c j. The objective function J to
minimize is defined as follows:

J =
V∑

i, j=1

f (#(wi, c j))(w⊤i c j + bi + b j − log(#(wi, c j))2, (3)

where V is the number of words in the vocabulary, #(w, c) is the
number of times that word w occurs in context c, bi and b j are
word/context-specific bias terms that are also learning parame-
ters in addition to w and c, and f (x) is a weighting function. In

2

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan

Vol.2016-BIO-47 No.3
2016/9/28

[6], the authors use the weighting function

f (x) =

(x/xmax)α x < xmax

1 otherwise,

where xmax = 100 in all experiments and report that α = 3/4 gives
a modest improvement over α = 1. From Equation (3), we see
that GloVe is fit to minimize the weighted least square loss giving
more weight to frequent (w, c) with this weighting function f (x).

2.2 Long Short-Term Memory
In recent NLP, RNNs with LSTM units [8] have re-emerged

as a popular architecture for various tasks. In bioinformatics,
LSTMs have also been applied to problems such as secondary
structure prediction [11], prediction of the number of residue con-
tacts [12], and homology detection [13].

RNNs with LSTM units use memory cells that are in a hidden
layer and can store information for a long period of time. Specifi-
cally, the memory cells consist of three types of gates that control
a flow of information into and out of these cells: an input gate
it ∈ Rd, a forget gate ft ∈ Rd, and an output gate ot ∈ Rd. Given
an input vector xt ∈ Rd, the previous hidden state ht−1 ∈ Rd and
previous cell state ct−1 ∈ Rd, an LSTM computes the next ct and
ht as follows:

H =
 xt

ht−1

 , (4)

it = σ(WiH + bi), (5)

ft = σ(W f H + b f), (6)

ot = σ(WoH + bo), (7)

ct = ft ⊙ ct−1 + it ⊙ tanh(WcH + bc), (8)

ht = ot ⊙ tanh(ct), (9)

where Wi,W f ,Wo,Wc ∈ R2d×d are weight matrices to learn,
bi,b f ,bo,bc ∈ Rd are bias vectors to learn, σ is the element-
wise sigmoid function, tanh is the element-wise hyperbolic tan-
gent function, and ⊙ is the element-wise multiplication of two
vectors. In this paper, we represent a series of computation in
Equations (4)–(9) by

⟨ct,ht⟩ = lstm(xt,ht−1, ct−1). (10)

Finally, output yt ∈ Rk is produced at each time step t from ht by

yt =Wyht + by,

whereWy ∈ Rd×k is the weight matrix and by ∈ Rk is the bias
vector, with k being the output dimensionality.

3. Method
In this section, we first describe the definition of words in pro-

teins, creation of a large protein corpus for representation learn-
ing, and application of word2vec and GloVe to this corpus (§3.1).
We then present the bidirectional LSTM architecture (§3.2), fol-
lowed by the explanation of the training and re-training procedure
of our LSTMs and pre-trained word representations (§3.3).

3.1 Words of Proteins and Representation Learning
To apply word representation learning to proteins, we define a

word in amino acid sequences as an n-gram of amino acid, and we
split the sequences into overlapping of the n-gram amino acids.
Since there are 20 types of amino acids that make up proteins, the
total number of possible n-grams is 20n. In this paper, to keep the
vocabulary size tractable and to avoid low-frequcency words in
learning representations, we set a moderate small n-gram length
of n = 3. For example, we can split a sequence of protein
into an overlapping 3-gram amino acid sequence as follows:
GLSAA · · ·LQS → “-GL”, “GLS”, “LSA”, · · · , “LQS”, “QS-”.
With this word definition and splitting, we create a large protein
corpus from CATH that is a large protein database. Then, to this
corpus, we apply SG, CBOW, and GloVe described in §2.1.

Why word representations? In NLP, word representa-
tions can capture the meaning and its similarity using the co-
occurrence information of words in a corpus. Similarly, it has
been pointed out that the co-occurrence information of amino
acids in proteins is also important for capturing protein structures
[3], [4], [14]. In addition, in most existing methods for PFR,
feature vectors of amino acids typically include physicochemical
information such as hydrophobicity, polarity, and van der Waals
volume. While these features are widely used, the feature vec-
tors themselves are fixed during learning process [1], [2], [15]. In
contrast, our feature vectors of n-gram amino acids are re-trained
with deep neural architectures described in the following subsec-
tion.

3.2 Protein Fold Recognition with LSTMs
Given a protein P = w1, w2, · · · , wL represented as a word se-

quence (i.e., an overlapping split sequence with n-gram amino
acids), where wi is the i-th word and L is the length of the word se-
quence, we first translate all words in the sequence to pre-trained
word vectors. Let the obtained word vector sequence be

x1, x2, x3, · · · , xL−1, xL,

where xi ∈ Rd is the d-dimensional vector of i-th word. Alter-
natively, we can also consider a vector sequence whose elements
consist of concatenated word vectors. For example, the vector
sequence composed of concatenation of three contiguous word
vectors is as follows:

[x1; x2; x3], [x2; x3; x4], · · · , [xL−2; xL−1; xL],

where [xi; x j; xk] is the concatenation of xi, x j, and xk. This se-
quence allows us to additionally take into account surrounding
features when processing the target word. In our approach, such
vector sequence is the input sequence for LSTMs.

Why LSTMs? It has been pointed out that long-term de-
pendencies of amino acids in the sequence is crucial in protein
structure prediction [13]. Indeed, LSTMs can find long-term de-
pendencies in the sequence and remember them for a long pe-
riod of time [8]. However, since vanilla LSTMs use only the
past subsequence and ignore the future subsequence, we need an
architecture that considers both past and future sequence in pro-
teins. We therefore use bi-directional architectures to overcome
this limitation. The original bi-directional architecture proposed
by [9] computes two hidden layers, one that processes the input

3

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan

Vol.2016-BIO-47 No.3
2016/9/28

sequence in a forward direction, and the other that processes the
sequence backwards, and concatenates their outputs (Fig 1). In
addition the concatenated architecture, we attempt to improve
the representational power of bi-directional LSTM with stacked
architectures that assume a hidden layer as an input of the next
layer [10]. In later experiments, we compare the performance of
the two architectures in PFR.

These two architectures can be formulated as follows. Given
a word vector sequence x1, x2, · · · xL as an input, we apply two
layers of the LSTM function given by Equation (10) to obtain
a hidden layer sequence h1,h2, · · · hL, where hi ∈ Rd is the d-
dimensional hidden layer of i-th word. Let lstm f be a forward
LSTM function and lstmb be a backward LSTM function that are
given by Equation (10). We distinguish these two functions by
subscripts, f orward and backward, because they do not share pa-
rameters (Wi, Wo, etc.). Then, the forward and backward com-
putation of concatenated bi-directional LSTM can be stated as
follows:

⟨−→ci ,
−→
hi⟩ = lstm f orward(xi,

−−→
hi−1,

−−→ci−1),

⟨←−ci ,
←−
hi⟩ = lstmbackward(xi,

←−−
hi+1,

←−−ci+1),

hi = [
−→
hi;
←−
hi],

where ci is the i-th cell layer and [
−→
hi;
←−
hi] is the concatenation

of
−→
hi and

←−
hi. On the other hand, we represent the stacked bi-

directional LSTM, which consider a hidden layer as an input of
the next layer, as follows:

⟨−→ci ,
−→
hi⟩ = lstm f orward(xi,

−−→
hi−1,

−−→ci−1),

⟨ci,hi⟩ = lstmbackward(
−→
hi,
←−−
hi+1,

←−−ci+1).

With the obtained hidden layer sequence h1,h2, · · · hL, we com-
pute the output layer y ∈ Rk using the summation of all hidden
layers as follows:

y =Wy

L∑
i=1

hi + by,

where Wy ∈ R2d×k (when concatenated bi-directional LSTM) or
Wy ∈ Rd×k (when stacked bi-directional LSTM) is the weight
matrix to learn, by ∈ Rk is the bias vector to learn, and k is the
dimensionality of output layer (i.e., the number of protein fold la-
bels to classify). Finally, a softmax layer is added on the top of the
output layer y for modeling multi-class probabilities as follows:

pt = softmax(y, t) =
exp(yt)∑k

i=1 exp(yi)
,

where t is the index of correct class label and yi is the i-th element
of output layer y.

3.3 Training Procedure
When a training dataset {(Pi, ti)}Ni=1 is given, where P is the

amino acid sequence of protein, t is the fold (i.e., label) of pro-
tein, and N is the number of training samples, the objective is to
minimize the cross-entropy loss plus a L2-regularization term as
follows:

L(Θ) = −
N∑

i=1

log pti +
λ

2
||Θ||22,

where pti is the probability for the correct class label t of the i-th
protein in the training dataset. Standard backpropagation tech-
niques are used to train the set of all parameters Θ. These pa-
rameters include the weight matrices and bias vectors of LSTM
(§2.2) and pre-trained word representations.

4. Related Work
Many feature extraction techniques have been proposed, and

the features are generally extracted by using physicochemical and
syntactical information of amino acids. Dubchak et al., 1997
[16] suggested the combination of syntactical and physicochem-
ical features. These features consist of amino acid composition
(AAC) as syntactical information and physicochemical informa-
tion which is extracted from following five attributes: hydropho-
bicity (H), predicted secondary structure based on normalized fre-
quency of α-helix (X), polarity (P), polarizability (Z), and van der
Waals volume (V). The set of these five attributes is represented
as “HXPZV” and widely used in PFR as a basic physicochem-
ical feature set [1], [2], [15]. On the other hand, Taguchi and
Gromiha, 2007 [14] proposed features that are based on the amino
acid occurrence, and argued that only syntactical features should
be considered because physicochemical features have no impor-
tant information for predicting protein structures. In addition,
Ghanty and Pal, 2009 [3] introduced features that are based on
the pairwise frequency of amino acids separated by one residue
(called PF1) and pairwise frequency of adjacent residues (called
PF2). Furthermore, Yang et al., 2011 [4] used features that are
concatenation of PF1 and PF2 (called PF). While these syntactical
features have also been shown useful in PFR, further research has
been required in order to explore the potential of physicochemical
features. In addition to HXPZV, other various physicochemical
attributes have been proposed [2], [15]. With the above extracted
features, several classifiers have been developed and employed
such as linear discriminant analysis (LDA) [17], neural networks
(NNs) [18], and support vector machines (SVMs) [1]. SVMs and
ensemble strategy with SVMs exhibit promising results [3], [4].

5. Experiments
5.1 Training Corpus and Evaluation Dataset

Corpus: In order to learn word representations of proteins,
we use the CATH database. This database contains 86670 pro-
teins, and we split the all proteins into overlapping 3-gram amino
acid sequences.

Dataset: In order to evaluate our method, we use the DD-
dataset of Ding and Dubachak, 2001 [1], which contains a train-
ing set of 311 proteins, a test set of 384 proteins, and any two
proteins have 35–40 % of sequence identity for aligned subse-
quence longer than 80 residues. This dataset has 27 protein fold
labels and the training and test sets are merged to perform 10-fold
cross-validation.

5.2 Training Details of Word Representations and LSTMs
Word representations: We set vector dimensionality d =

100, window size ℓ = 10, the number of iterations over a corpus
is 10 in CBOW and 100 in SG and GloVe, the number of nega-
tive sampling words K = 5 (in SG and CBOW), and other hyper-

4

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan

Vol.2016-BIO-47 No.3
2016/9/28

Existing methods (feature & classifier) Accuracy (%)

Ding and Dubachak, 2001 [1] (AAC & SVM) 45.1
Ding and Dubachak, 2001 [1] (AAC + HXPZV & SVM) 47.2
Taguchi and Gromiha, 2007 [14] (co-occurrence & SVM) 51.0
Ghanty and Pal, 2009 [3] (PF1 & SVM) 50.6
Ghanty and Pal, 2009 (PF2 & SVM) 48.2
Yang et al., 2011 [4] (PF & SVM) 53.4
Sharma et al., 2013 [2] (HXPZV & SVM) 29.5
Sharma et al., 2013 [2] (HXPZV & NB) 32.8
Sharma et al., 2013 [2] (15 physicochemical attributes & SVM) 40.2
Sharma et al., 2013 [2] (15 physicochemical attributes & NB) 45.3
Sharma et al., 2013 [2] (30 physicochemical attributes & SVM) 43.6
Sharma et al., 2013 [2] (30 physicochemical attributes & NB) 50.9

Our methods Accuracy (%)

Concatenated bi-directional LSTM (GloVe, 7 word concat, not re-training of word rep) 53.1
Stacked bi-directional LSTM (GloVe, 7 word concat, re-training of word rep) 56.9

Table 1 Accuracies of existing methods and our LSTM architectures.

0

10

20

30

40

50

SG CBOW GloVe
Concat LSTM
Stacked LSTM

0

10

20

30

40

50

60

1 3 5 7
0

10

20

30

40

50

Concat LSTM Stacked LSTM

Not re-train Re-train
Word concatenation

A
cc

ur
ac

y

Fig. 2 Effects of model components: initialization of word representations, the number of word concate-
nations, and re-training of word representations. If not otherwise specified, we show the result of
model using GloVe, stacked bi-directional LSTM, one word concatenation (i.e., an input is a word
vector), and re-training of word representations.

parameters are set to default values in the toolkits of word2vec*1

and GloVe*2. These word representations are used to initialize
our LSTMs but not fixed, they are later re-trained during learn-
ing process of LSTMs. We discuss the impact of pre-training and
re-training of word representations.

LSTMs: The complete training details of our LSTMs are
given as follows:
• Word concatenation (i.e., input words): 1, 3, 5, and 7.
• Optimization method: ADAM [19] with a first momentum

coefficient of 0.9 and a second momentum coefficient of
0.999 which are recommended configuration in [19].

• Batch size: 50 sequences for the gradient.
• Dropout ratio: [0.0, 0.1, 0.3, 0.5, 0.7].
• L2-regularization strength: [0.0, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5,

1e-6].
Subsequently, we take the best configuration on the validation set
and evaluate only that configuration on the test set. We imple-
mented our LSTMs using Chainer*3.

5.3 Experimental Results and Discussion
5.3.1 Main Results

Table 1 shows the accuracies of existing methods and our
LSTM architectures. The best result is obtained with stacked
bi-directional LSTM using 100-dimensional GloVe, 7 word con-

*1 https://code.google.com/archive/p/word2vec/
*2 http://nlp.stanford.edu/projects/glove/
*3 http://chainer.org/

catenations (i.e., 700-dimensional vectors), and the strategy of
re-training of word representations. The accuracy is 56.9 % for
the classification task of 27 labels. While the concatenated bi-
directional LSTM (the accuracy is 53.1 %) does not outperform
the existing methods, it is the first result of representation learn-
ing and deep neural architectures achieved the competitive results
on the benchmark dataset of PFR, in which no two proteins have
sequence identity higher than 35–40%.

Taguchi and Gromiha [14] have argued that features from
physicochemical attributes can be ignored due to having insuffi-
cient information and only syntactical features should be consid-
ered. Our experimental results support the argument. The reason
is that our all word representations, SG, CBOW, and GloVe also
have the co-occurrence and frequency information of amino acids
in proteins.
5.3.2 Effects of PFR Components

Initialization of word representations: In Fig 2, we found
that the PFR performance does not depend on initialization of
word representations such as SG, CBOW, and GloVe. The rea-
son is that these representations are similar in terms of having the
co-occurrence information of amino acids in proteins.

Word concatenation: In contrast, the number of word con-
catenations is more important factor for improving the perfor-
mance of PFR. This suggests that surrounding features of the tar-
get word are crucial in PFR rather than feature representation of
the target word.

Re-training of word representations: We also found that

5

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan

Vol.2016-BIO-47 No.3
2016/9/28

Fig. 3 Learning curve of concatenated bi-directional LSTM (left) and stacked bi-directional LSTM
(right).

re-training of word representations does not always give an im-
provement. While stacked bi-directional LSTM shows the im-
proved accuracy with the help of re-training representations, any
substantial improvement was not observed when concatenated bi-
directional LSTM is used. In the following subsection, we pro-
vide a model analysis of these two LSTM architectures.
5.3.3 Model Analysis

Fig 3 shows the learning curve of concatenated bi-directional
LSTM and stacked bi-directional LSTM

Re-training of word representations in two architectures:
Fig 3 shows the learning curve. As seen in this Fig, while the
learning curve of concatenated bi-directional LSTM is stable, any
substantial improvement was not observed with the help of re-
training word representations. On the other hand, while stacked
bi-directional LSTM can correctly re-train word representations,
the learning curve tends to be unstable and overfit the data. This
suggests that, in contrast to concatenated architectures that the
hidden layer has double (i.e., 2d) dimensionality, stacked archi-
tectures that only assume a hidden layer as the input of the next
layer can improve the representational power of bi-directional
LSTM.

Random initialization of word representations: Interest-
ingly, Fig 3 shows that even if we use random initialized vec-
tors for word representations, we achieved about 30 % accu-
racy when the representations are retrained with the stacked bi-
directional LSTM. This result shows that stacked architecture can
achieve comparable accuracy to existing methods that use basic
five physicochemical features without the help of pre-trained rep-
resentations. This suggests that obtained features, with learn-
ing of long-term dependencies of amino acids in the sequence
of protein, can cover the information of basic physicochemical
attributes.

6. Conclusion
In this paper, we proposed a new approach for PFR and out-

performed existing methods on a benchmark dataset. To the best
of our knowledge, ours is the first work that combines word rep-
resentations and LSTMs for PFR.

References
[1] Ding, C. H. and Dubchak, I.: Multi-class protein fold recognition

using support vector machines and neural networks, Bioinformatics,
Vol. 17, No. 4, pp. 349–358 (2001).

[2] Sharma, A., Paliwal, K. K., Dehzangi, A., Lyons, J., Imoto, S. and
Miyano, S.: A strategy to select suitable physicochemical attributes of
amino acids for protein fold recognition, BMC bioinformatics, Vol. 14,
No. 1, p. 1 (2013).

[3] Ghanty, P. and Pal, N. R.: Prediction of protein folds: extraction of
new features, dimensionality reduction, and fusion of heterogeneous
classifiers, NanoBioscience, IEEE Transactions on, Vol. 8, No. 1, pp.
100–110 (2009).

[4] Yang, T., Kecman, V., Cao, L., Zhang, C. and Huang, J. Z.: Margin-
based ensemble classifier for protein fold recognition, Expert Systems
with Applications, Vol. 38, No. 10, pp. 12348–12355 (2011).

[5] Mikolov, T., Chen, K., Corrado, G. and Dean, J.: Efficient es-
timation of word representations in vector space, arXiv preprint
arXiv:1301.3781 (2013).

[6] Pennington, J., Socher, R. and Manning, C. D.: Glove: Global vec-
tors for word representation, Empirical Methods on Natural Language
Processing (EMNLP) (2014).

[7] Socher, R., Huval, B., Manning, C. D. and Ng, A. Y.: Semantic
Compositionality through Recursive Matrix-Vector Spaces, Empirical
Methods on Natural Language Processing (EMNLP) (2012).

[8] Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural
computation, Vol. 9, No. 8, pp. 1735–1780 (1997).

[9] Graves, A., Jaitly, N. and Mohamed, A.-R.: Hybrid speech recog-
nition with deep bidirectional LSTM, Automatic Speech Recognition
and Understanding (ASRU) (2013).

[10] Pascanu, R., Gulcehre, C., Cho, K. and Bengio, Y.: How to con-
struct deep recurrent neural networks, arXiv preprint arXiv:1312.6026
(2013).

[11] Sønderby, S. K. and Winther, O.: Protein secondary structure
prediction with long short term memory networks, arXiv preprint
arXiv:1412.7828 (2014).

[12] Jacobsson, A. and Gustavsson, C.: Prediction of the number of residue
contacts in proteins using LSTM neural networks, Halmstad Univer-
sity, p. 9 (2003).

[13] Hochreiter, S., Heusel, M. and Obermayer, K.: Fast model-based pro-
tein homology detection without alignment, Bioinformatics, Vol. 23,
No. 14, pp. 1728–1736 (2007).

[14] Taguchi, Y. and Gromiha, M. M.: Application of amino acid occur-
rence for discriminating different folding types of globular proteins,
BMC bioinformatics, Vol. 8, No. 1, p. 1 (2007).

[15] Dehzangi, A., Sharma, A., Lyons, J., Paliwal, K. K. and Sattar, A.: A
mixture of physicochemical and evolutionary–based feature extraction
approaches for protein fold recognition, International journal of data
mining and bioinformatics, Vol. 11, No. 1, pp. 115–138 (2014).

[16] Dubchak, I., Muchnik, I. B. and Kim, S.-H.: Protein folding class pre-
dictor for SCOP: approach based on global descriptors., Ismb (1997).

[17] Klein, P.: Prediction of protein structural class by discriminant anal-
ysis, Biochimica et Biophysica Acta (BBA)-Protein Structure and
Molecular Enzymology, Vol. 874, No. 2, pp. 205–215 (1986).

[18] Ying, Y., Huang, K. and Campbell, C.: Enhanced protein fold recog-
nition through a novel data integration approach, BMC bioinformatics,
Vol. 10, No. 1, p. 1 (2009).

[19] Kingma, D. and Ba, J.: Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014).

6

IPSJ SIG Technical Report

ⓒ 2016 Information Processing Society of Japan

Vol.2016-BIO-47 No.3
2016/9/28

