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Scaled Tucker manifold and
its application to large-scale machine learning

笠井 裕之1,a) Bamdev Mishra2

概要：本稿では，低ランク・テンソル Tucker分解のための新しい幾何空間 “Scaled Tucker Manifold”を提
案する．一般的なテンソル回帰問題に対して，Scaled Tucker Manifoldにより，効率的な解法を確立する
ことが可能となる．Scaled Tucker Manifolの導出にあたっては，Tucker分解の対称構造と回帰問題の最
小自乗構造に着目した新しいリーマン計量を提案し，幾何空間を定義する数々の構成要素を導出する．最
後に，回帰問題の一形態である “テンソル補完問題”を例に取り挙げ，シミューレション実験から，Scaled
Tucker Manifoldに基づき導出した非線形共役勾配法アルゴリズムが，従来の最先端手法と比較してより
良い性能を与えることを示す．

Scaled Tucker manifold and
its application to large-scale machine learning

Hiroyuki Kasai1,a) Bamdev Mishra2

Abstract: We propose a novel geometry for dealing with low-rank Tucker decomposition of tensors. The
geometry of the scaled Tucker manifold readily allows to develop algorithms for a number of regression
problems. Specifically, we propose a novel scaled Riemannian metric (an inner product) that suits well to
least-squares cost. The simulation experiments on the tensor completion problem show that our proposed
nonlinear conjugate gradient algorithm outperforms state-of-the-art algorithms.

1. Introduction

We address the optimization problem

min
W∈Rn1×···×nd

f(W) :=
1

n

n∑
i=1

∥yi − ⟨W ,Xi⟩∥2 , (1)

where W and X are d-order tensors of size Rn1×...×nd ,
and yi is a scalar. ⟨A,B⟩ is the sum of element-wise mul-
tiplications of A and B, i.e., ⟨A,B⟩ = vec(A)T vec(B),
where vec(·) is the vectorization of a tensor.
The problem formulation (1) has a number of appli-

cations. For example, if yp,q,r(= yi) ∈ Ω is each known
observation, where the set Ω is a subset of the complete set
of entries, and Xp,q,r(= Xi) = ep ◦eq ◦er, where ep ∈ Rn1 ,
eq ∈ Rn2 , and er ∈ Rn3 are canonical basis vectors, this
casts into a tensor completion problem [1], where n = |Ω|
is the number of known entries. If Ω is the complete set,
i.e., n = |Ω| = n1n2n3, the problem is a tensor decom-
position problem. The problem (1) is a tensor regression
problem when W is a regression coefficient tensor and Xi

and yi are i-th sample pair, where n is the total number
of samples [2].
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For large nd and d, the problem (1) is computation-
ally challenging. Consequently, W is assumed to have a
low-rank structure. Equivalently, we impose a new con-
straint rank(W) = R, where R is a smaller number [3].
The fixed-rank tensors belong to a smooth matrix mani-
fold and we exploit the versatile framework of Riemannian
optimization to develop efficient optimization algorithms
[4]. This problem of interest is then

min
W∈M

f(W) :=
1

n

n∑
i=1

∥yi − ⟨W ,Xi⟩∥2 , (2)

where M := {W ∈ Rn1×...×nd : rank(W) = R}.
In this paper, we address fixed multilinear rank of

Tucker decomposition of tensors [5]. Without loss of gen-
erality, we focus 3-order tensors. It should be noted the
multilinear rank constraint forms a smooth manifold [1].
Specifically, we propose a scaled quotient geometry of the
Tucker manifold by exploiting intrinsic symmetries of the
Tucker format. This proposed geometry builds upon the
recent work [6] that suggests to use manifold precondi-
tioning with a tailored metric (inner product) in the Rie-
mannian optimization framework on quotient manifolds
[4]. More concretely, a novel scaled Riemannian metric
or inner product is proposed that exploits approximate
second-order information of the problems of the type (2),
i.e., least-squares cost, as well as the intrinsic structured
symmetry in the Tucker format. Concrete matrix formulas
are derived which allow the use of the manifold optimiza-
tion toolbox [7].
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The differences with respect to the works of [1], [8],
which also propose the manifold structure of the Tucker
format, are twofold. (i) They exploit the search space as
an embedded submanifold of the Euclidean space, whereas
we view it as a product of simpler search spaces with
symmetries. Consequently, certain computations have
straightforward interpretation. (ii) They work with the
standard Euclidean metric, whereas we use a metric that
is tuned to least-squares cost thereby inducing a precon-
ditioning effect. This novel idea of using a scaled Rie-
mannian metric leads to a scaled geometry of the Tucker
manifold, which is the set of fixed multilinear rank tensors.
The effectiveness of the proposed geometry of the scaled

Tucker manifold is shown on the tensor completion prob-
lem. We list all the optimization-related ingredient to
develop a novel Riemannian nonlinear conjugate gradient
algorithm. Our numerical experiments show that our pro-
posed algorithm outperforms state-of-the-art algorithms.
The full description the proposed geometry, the various
derivations, the algorithm, and the experiments are in [9].

2. Tucker decomposition and a scaled
Riemannian metric

We focus on two elements of the problem (2): the sym-
metry structure of the Tucker decomposition and approx-
imate second-order information of the cost function.
The symmetry structure in Tucker decompo-

sition. The Tucker decomposition of a tensor W ∈
Rn1×n2×n3 of multilinear rank R (=(r1, r2, r3)) is

W = G×1U1×2U2×3U3, (3)

where Ud ∈ St(rd, nd) for d ∈ {1, 2, 3} belongs to the
Stiefel manifold of matrices of size nd × rd with orthog-
onal columns and G ∈ Rr1×r2×r3 [5]. Here, W ×d V ∈
Rn1×...nd−1×m×nd+1×...nD computes the d-mode product of
a tensor W ∈ Rn1×...×nD and a matrix V ∈ Rm×nd .
Tucker decomposition (3) is not unique as W remains
unchanged under the transformation

(U1,U2,U3,G) 7→
(U1O1,U2O2,U3O3,G×1O

T
1 ×2O

T
2 ×3O

T
3 )

(4)

for all Od ∈ O(rd), which is the set of orthogonal matri-
ces of size of rd × rd. The classical remedy to remove this
indeterminacy is to have additional structures on G like
sparsity or restricted orthogonal rotations [5], Section 4.3.
In contrast, we encode the transformation (4) in an ab-
stract search space of equivalence classes, defined as,

[(U1,U2,U3,G)] := {(U1O1,U2O2,U3O3,
G×1O

T
1 ×2O

T
2 ×3O

T
3 ) : Od ∈ O(rd)}.

(5)

The set of equivalence classes is the quotient manifold
[10]

M/∼ := M/(O(r1)×O(r2)×O(r3)), (6)

where M is called the total space (computational space)
that is the product space

M := St(r1, n1)× St(r2, n2)× St(r3, n3)× Rr1×r2×r3 .
(7)

Due to the invariance (4), the local minima of (2) in
M are not isolated, but they become isolated on M/∼.
Consequently, the problem (2) is an optimization problem
on a quotient manifold for which systematic procedures
are proposed in [4]. A requirement is to endow M/ ∼
with a Riemannian structure, which conceptually trans-
lates (2) into an unconstrained optimization problem over

the search space M/∼.
Least-squares structure of the cost function. In

unconstrained optimization, the Newton method is inter-
preted as a scaled steepest descent method, where the
search space is endowed with a metric (inner product) in-
duced by the Hessian of the cost function. This induced
metric (or its approximation) resolves convergence issues
of first order optimization algorithms. Analogously, find-
ing a good inner product for (2) is of profound conse-
quence. Specifically for the case of quadratic optimization
with rank constraint (matrix case), Mishra and Sepulchre
[6] propose a family of Riemannian metrics from the Hes-
sian of the cost function. Applying the metric tuning ap-
proach of [6] to the cost function (2) leads to a family of
Riemannian metrics. To this end, we consider a simplified
cost function of (2) by assuming Xi = I, so that the new
geometry of scaled Tucker manifold is independent of a
particular cost function. A good trade-off between com-
putational cost and simplicity is by considering only the
block diagonal elements of the Hessian of (2) with Xi = I.
It should be noted that the cost function (2) is convex and
quadratic in W . Consequently, it is also (strictly) convex
and quadratic in the arguments (U1,U2,U3,G) individu-
ally. The block diagonal approximation of the Hessian of
(2) with respect to (U1,U2,U3,G) is

((G1G
T
1 )⊗ In1 , (G2G

T
2 )⊗ In2 , (G3G

T
3 )⊗ In3 , Ir1r2r3),

(8)
where Gd is the mode-d unfolding of G and is assumed
to be full rank. ⊗ is the Kronecker product. The
terms GdG

T
d for d ∈ {1, 2, 3} are positive definite when

r1 ≤ r2r3, r2 ≤ r1r3, and r3 ≤ r1r2.
A scaled Riemannian metric. An element x

in the total space M has the matrix representation
(U1,U2,U3,G). Consequently, the tangent space TxM
is the Cartesian product of the tangent spaces of the in-
dividual manifolds of (7), i.e., TxM has the matrix char-
acterization

TxM = {(ZU1
,ZU2

,ZU3
,ZG)

∈ Rn1×r1 × Rn2×r2 × Rn3×r3 × Rr1×r2×r3 :
UT

d ZUd
+ ZT

Ud
Ud = 0, for d ∈ {1, 2, 3}}.

(9)
From the earlier discussion on symmetry and least-

squares structure, we propose the novel metric or inner
product gx : TxM× TxM → R

gx(ξx, ηx) = ⟨ξU1
, ηU1

(G1G
T
1 )⟩+ ⟨ξU2

, ηU2
(G2G

T
2 )⟩

+⟨ξU3
, ηU3

(G3G
T
3 )⟩+ ⟨ξG , ηG⟩,

(10)
where ξx, ηx ∈ TxM are tangent vectors with matrix char-
acterizations (ξU1

, ξU2
, ξU3

, ξG) and (ηU1
, ηU2

, ηU3
, ηG),

respectively, , shown in (9). ⟨·, ·⟩ is the Euclidean inner
product. It should be emphasized that the proposed met-
ric (10) is induced from (8).
We call M/∼, defined in (6), the scaled Tucker mani-

fold as it results from Tucker decomposition endowed with
the particular metric (10).

3. Geometry of scaled Tucker manifold

Each point on a quotient manifold represents an entire
equivalence class of matrices in the total space. Abstract
geometric objects on the quotient manifold M/∼ call for
matrix representatives in the total space M. Similarly,
algorithms are run in the total space M, but under appro-
priate compatibility between the Riemannian structure of
M and the Riemannian structure of the quotient manifold
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TxM = Hx ⊕ VxM

[x] T[x](M/ ∼)

ξ[x]

[x+] [Rx(ξx)]
M/∼

ξx

Rx(ξx)

図 1 Riemannian optimization framework: geometric objects,
shown in dotted lines, on quotient manifold M/∼ call for
matrix representatives, shown in solid lines, in the total
space M [9].

M/∼, they define algorithms on the quotient manifold.
The key is endowing M/∼ with a Riemannian structure.
Once this is the case, a constraint optimization problem,
for example (2), is conceptually transformed into an un-
constrained optimization over the Riemannian quotient
manifold (6). Below we briefly show the development of
various geometric objects that are required to optimize a
smooth cost function on the quotient manifold (6) with
first order methods, e.g., conjugate gradients.
Figure 1 illustrates a schematic view of optimization

with equivalence classes, where the points x and y in M
belong to the same equivalence class (shown in solid blue
color) and they represent a single point [x] := {y ∈ M :
y ∼ x} on the quotient manifold M/ ∼. The abstract
tangent space T[x](M/∼) at [x] ∈ M/∼ has the matrix
representation in TxM, but restricted to the directions
that do not induce a displacement along the equivalence
class [x]. This is realized by decomposing TxM into two
complementary subspaces, the vertical and horizontal sub-
spaces. The vertical space Vx is the tangent space of the
equivalence class [x]. On the other hand, the horizontal
space Hx is the orthogonal subspace to Vx in the sense of
the metric (10). Equivalently, TxM = Vx ⊕Hx.
The horizontal subspaceHx provides a valid matrix rep-

resentation to the abstract tangent space T[x](M/∼). An
abstract tangent vector ξ[x] ∈ T[x](M/ ∼) at [x] has a
unique element ξx ∈ Hx that is called its horizontal lift.
From [4], endowed with the Riemannian metric (10),

the quotient manifold M/∼ is a Riemannian submersion
of M. The submersion principle allows to work out con-
crete matrix representations of abstract object on M/∼,
e.g., the gradient of a smooth cost function [4]. A key
requirement for the Riemannian submersion to be valid is
that the metric (10) should satisfy invariance properties.
This holds true for the proposed metric (10) as shown

in the following proposition.
Proposition1 Let (ξU1

, ξU2
, ξU3

, ξG) and
(ηU1

, ηU2
, ηU3

, ηG) be tangent vectors to the
quotient manifold (6) at (U1,U2,U3,G), and
(ξU1O1

, ξU2O2
, ξU3O3

, ξG×1OT
1 ×2OT

2 ×3OT
3
) and

(ηU1O1
, ηU2O2

, ηU3O3
, ηG×1OT

1 ×2OT
2 ×3OT

3
) be tan-

gent vectors to the quotient manifold (6) at

(U1O1,U2O2,U3O3,G×1O
T
1 ×2O

T
2 ×3O

T
3 ). The metric

(10) is invariant along the equivalence class (5), i.e.,

g(U1,U2,U3,G)((ξU1
, ξU2

, ξU3
, ξG), (ηU1

, ηU2
, ηU3

, ηG))
= g(U1O1,U2O2,U3O3,G×1OT

1 ×2OT
2 ×3OT

3 )

((ξU1O1
, ξU2O2

, ξU3O3
, ξG×1OT

1 ×2OT
2 ×3OT

3
),

(ηU1O1
, ηU2O2

, ηU3O3
, ηG×1OT

1 ×2OT
2 ×3OT

3
)).

(11)
Consequently, the Riemannian submersion principle al-

lows to derive the optimization-related ingredients sys-
tematically. Table 1 lists the required ingredients.

4. Numerical comparisons on tensor
completion

In this section, we focus on the problem of low-rank ten-
sor completion when the rank is a priori known. We tackle
the problem efficiently by exploiting the new geometry of
Tucker manifold developed in Section 3.
We propose a Riemannian nonlinear conjugate gradient

algorithm for the tensor completion problem that scales
well to large-scale instances. Specifically, we use the con-
jugate gradient implementation of Manopt [7] with the in-
gredients described in Table 1. The convergence analysis
of this method follows from [4], [11], [12]. The total com-
putational cost per iteration of our proposed algorithm is
O(|Ω|r1r2r3), where |Ω| is the number of known entries.
We show numerical comparisons of our proposed algo-

rithm with state-of-the-art algorithms that include TOpt
[13] and geomCG [1], for comparisons with Tucker decom-
position based algorithms, and HaLRTC [14], Latent [15],
and Hard [16] as nuclear norm minimization algorithms.
All simulations are performed in Matlab on a 2.6 GHz
Intel Core i7 machine with 16 GB RAM. For specific op-
erations with tensor unfoldings, we use the mex interfaces
that are provided in geomCG. For large-scale instances,
our algorithm is only compared with geomCG as other
algorithms cannot handle these instances.
Since the dimension of the space of a tensor ∈

Rn1×n2×n3 of rank R = (r1, r2, r3) is dim(M/ ∼) =∑3
d=1(ndrd − r2d) + r1r2r3, we randomly and uniformly

select known entries based on a multiple of the dimen-
sion, called the over-sampling (OS) ratio, to create the
training set Ω. Algorithms (and problem instances) are
initialized randomly, as in [1], and are stopped when ei-
ther the mean square error (MSE) on the training set Ω is
below 10−12 or the number of iterations exceeds 250. We
also evaluate the MSE on a test set Γ, which is different
from Ω. Five runs are performed in each scenario.
Case 1 considers synthetic small-scale tensors of size

100× 100× 100, 150× 150× 150, and 200× 200× 200 and
rank R = (10, 10, 10) are considered. OS is {10, 20, 30}.
Figure 2(a) shows that the convergence behavior of our
proposed algorithm is either competitive or faster than
the others.
Case 2 considers large-scale tensors of size 3000×3000×

3000, 5000× 5000× 5000, and 10000× 10000× 10000 and
ranks R = (5, 5, 5) and (10, 10, 10). OS is 10. Our pro-
posed algorithm outperforms geomCG in Figure 2(b).
Case 3 considers instances where the dimensions and

ranks along certain modes are different than others. Two
cases are considered. Case (3.a) considers tensors size
20000 × 7000 × 7000, 30000 × 6000 × 6000, and 40000 ×
5000 × 5000 with rank r = (5, 5, 5). Case (3.b) considers
a tensor of size 10000×10000×10000 with ranks (7, 6, 6),
(10, 5, 5), and (15, 4, 4). In all the cases, the proposed al-
gorithm converges faster than geomCG as in Figure 2(c).

5. Conclusion and future work

We proposed a geometry of Tucker manifold of tensor
with a scaled Riemannian metric. The proposed metric
exploits the symmetry structure of the Tucker decompo-
sition and least-squares cost. The concrete matrix formu-
las for optimization were derived. Numerical comparisons
on the tensor completion problem suggest that our pro-
posed algorithm has a superior performance on different
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表 1 Tucker manifold related optimization ingredients for (2) [9].

Matrix representation x = (U1,U2,U3,G)

Computational space M St(r1, n1) × St(r2, n2) × St(r3, n3) × Rr1×r2×r3

Group action {(U1O1,U2O2,U3O3,G×1O
T
1 ×2O

T
2 ×3O

T
3 ) : Od ∈ O(rd), for d ∈ {1, 2, 3}}

Quotient space M/∼ St(r1, n1) × St(r2, n2) × St(r3, n3) × Rr1×r2×r3 /(O(r1) × O(r2) × O(r3))

Ambient space Rn1×r1 × Rn2×r2 × Rn3×r3 × Rr1×r2×r3

Tangent vectors in TxM {(ZU1
,ZU2

,ZU3
,ZG) ∈ Rn1×r1 × Rn2×r2 × Rn3×r3 × Rr1×r2×r3

: UT
d ZUd

+ ZT
Ud

Ud = 0, for d ∈ {1, 2, 3}}
Metric gx(ξx, ηx) for any ξx, ηx ∈ TxM ⟨ξU1

, ηU1
(G1G

T
1 )⟩+⟨ξU2

, ηU2
(G2G

T
2 )⟩+⟨ξU3

, ηU3
(G3G

T
3 )⟩+⟨ξG, ηG⟩

Vertical tangent vectors in Vx {(U1Ω1,U2Ω2,U3Ω3,−(G×1Ω1 + G×2Ω2 + G×3Ω3)) : Ωd ∈ Rrd×rd ,ΩT
d = −Ωd

for d ∈ {1, 2, 3}}
Horizontal tangent vectors in Hx {(ζU1

, ζU2
, ζU3

, ζG) ∈ TxM : (GdG
T
d )ζT

Ud
Ud + ζGd

GT
d is symmetric, for d ∈ {1, 2, 3}}

Ψ(·) projects an ambient (YU1
− U1SU1

(G1G
T
1 )−1,YU2

− U2SU2
(G2G

T
2 )−1,YU3

− U3SU3
(G3G

T
3 )−1,YG),

vector (YU1
,YU2

,YU3
,YG) onto TxM where SUd

for d ∈ {1, 2, 3} are computed by solving Lyapunov equations.

Π(·) projects a tangent vector ξ onto Hx (ξU1
− U1Ω1, ξU2

− U2Ω2, ξU3
− U3Ω3, ξG − (−(G×1Ω1 + G×2Ω2 + G×3Ω3))), Ωd.

First order derivative of f(x) (S1(U3 ⊗ U2)G
T
1 ,S2(U3 ⊗ U1)G

T
2 ,S3(U2 ⊗ U1)G

T
3 ),S ×1 UT

1 ×2 UT
2 ×3 UT

3 ),
where S = 2

|Ω| (PΩ(G×1U1×2U2×3U3) − PΩ(X⋆)).

Retraction Rx(ξx) (uf(U1 + ξU1
), uf(U2 + ξU2

), uf(U3 + ξU3
),G + ξG)

Horizontal lift of vector transport Tη[x]
ξ[x] ΠRx(ηx)(ΨRx(ηx)(ξx))
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図 2 Experiments on synthetic datasets [9].

benchmarks. As future work, we would experiment the
developed tool on other regression problems.
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