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We model the relationships between the message formats of a business system and their se-
mantics in a machine-processable knowledge base. We describe a message-mapping technique
that extracts the relationships between the message formats of several systems semiautomat-
ically by using the class characteristics of the semantics and stores these relationships as past
system design knowledge. In addition, we propose process-mapping, which is a technique that
discovers suitable software components for system cooperation. We evaluate these methods
using the interface specifications of actual service management systems and show that the
frequency of interface adjustment can be reduced.

1. Introduction

Many companies have tried to introduce the
concept of a service oriented architecture (SOA)
in order to develop services agilely and operate
them efficiently. In SOA, new services are con-
structed by incorporating services constructed
in the past into the business process of new ser-
vices. We consider this SOA concept to be im-
portant because it enables companies to pro-
vide new services agilely with an effective op-
erating environment by combining the business
processes of distributed services.

However, existing systems for executing vari-
ous services, such as systems for customer rela-
tionship management (CRM), are designed in-
dividually for their own purposes in each oper-
ating division. Even if all services are developed
using a common communication protocol such
as Web Services or socket-type communication,
it is difficult to reuse services by applying SOA
concepts in such environments for two reasons.
• Message formats for defining the addresses

and types of definitions of message ele-
ments are frequently different even if they
are used for the same meaning.

• Processes that define service execution pro-
cedures are designed individually based on
the strategies of each division in a dynamic
business environment.

In this paper, we define system cooperation
as a method of developing systems by extract-
ing reusable interface specifications of existing
systems from the viewpoint of semantics and
incorporating the extracted specifications into
the business processes of newly constructed sys-
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tems. We then try to provide an environment
that enables system designers to develop new
systems according to their own purposes by
reusing distributed information within the pro-
cesses of distributed services in a dynamic busi-
ness environment.

To achieve these purposes, we express the in-
terface specifications of systems semantically as
a hierarchy of classes. Then, we present in-
terface mapping 8),9),11), which calculates the
relationships between messages and processes
of several systems by using semantic mapping
of the interface specifications between different
systems. Interface mapping presents these rela-
tionships to the designers of newly cooperating
systems, so they can extract systems for incor-
poration into newly coordinated systems and
design the interface specifications of newly co-
ordinated systems by referring to and reusing
these relationships.

The specific contributions of this paper are as
follows.
• We describe an interface modeling of

the relationships between message formats
and the semantics of those formats in
a machine-processable way using OWL
(web ontology language) Description Logic
(OWL DL) 7) for systems developed by
socket-type communication. Using OWL
DL, we describe the characteristics of in-
terface specifications from the viewpoints
of how to exchange messages between
systems. Service management systems
(SMSs), especially ones that have to man-
age a lot of message transactions submit-
ted by several service systems on a net-
work, will continue to be developed us-
ing the socket-type communication tech-
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Fig. 1 Semantic schemas lacking information in message formats.

nique, even though system coordination
techniques based on web services have been
proposed in many research studies. Thus,
providing semantics to message formats of
socket-type communication is important.

• We introduce message-mapping, which
automatically calculates the correspon-
dences of message elements of different
systems based on semantic mapping re-
sults. Message-mapping stores the map-
ping results in a knowledge base of rela-
tionships about interface specifications of
different systems (KBR) as past system-
design knowledge. By referring to these
relationships in the KBR, system design-
ers can adjust the interface specifications
of newly constructed systems effectively.
In addition, we propose process-mapping,
which extracts the interface specifications
of existing systems in order to incorporate
those systems into existing system speci-
fications. Process-mapping manages mes-
sage parameters that have a low probability
of being reused in a KBR. This improves
the accuracy of process-mapping consider-
ing that services that commonly have these
low-probability parameters treat similar in-
formation and are relevant to each other.

• We describe a comprehensive set of experi-
ments performed using actual system inter-
face specifications. In previous experiments
on system coordination, such as Seman-
tic Web Services (SWS) 3),4),6),12),14),15),
semantic mapping of the interface spec-
ifications for system coordination mainly
used ontology mapping techniques 2),5),16).
However, those ontology mapping tech-
niques used only test data provided for re-
search purposes on the web 10) and did not
focus on the mapping of real system inter-

face specifications. We applied our tech-
nique to the adjustment of interface spec-
ifications of real SMSs. Furthermore, we
compared our technique with the previous
experiments from the viewpoint of system
cooperation.

This paper is organized as follows. Section 2
discusses the problems of existing system co-
operation and introduces related work. Sec-
tion 3 provides the semantics of message for-
mats. Section 4 describes message mapping,
and Section 5 introduces our process mapping.
Section 6 shows how system designers can ex-
tract interface conversion rules from mapping
results. Section 7 describes our experimental
study. Section 8 concludes with a short sum-
mary of the main points.

2. Related Work

In systems that cooperate using existing tech-
nologies such as socket-type communication
and Web Services, we must manually adjust
the message formats of different systems before-
hand.

For instance, as shown in Fig. 1, in the mes-
sage formats defined in operations support sys-
tems (OSSs), message elements are identified
at the storage memory position in the message
formats, and each data type is shown sepa-
rately according to the data type definition in
each memory position. However, the relation-
ships between the schemas of the semantics and
message format are not written in a machine-
processable way. Therefore, in cooperating sys-
tems, we should refer to information described
in interface specifications and manually adjust
the message formats by comparing the seman-
tics of the formats.

To resolve such problems, researchers of Se-
mantic Web Services (SWS) 3),4),6),12),14),15) use
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Semantic Web technologies 1), which use var-
ious types of software to process their tasks
automatically by describing the background
knowledge of web resources as computer-
interpretable metadata and using that meta-
data as semantics. For example, to achieve au-
tomatic service discovery, selection, and com-
position, some researchers built OWL-S 6) (for-
merly DAML-S 4)) which is a semantic markup
language for Web Services. By using OWL-S,
they gave semantics to Web Service interfaces,
such as I/O (input/output) messages, precondi-
tions required by the services, and effects that
result from the execution of the services. On
the other hand, some researchers tried to es-
tablish WSMO (Web Services Modeling Ontol-
ogy) 3), which models a semantic mediator be-
tween services by using ontology language, and
enables automatic interoperation of distributed
services.

As described above, SWS provides an envi-
ronment for describing the semantics of Web
Services. For example, OWL-S grounding 6)

provides semantics to the message formats of
Web Services. Thus, we can use OWL-S
grounding to model the relationships between
the semantics and message formats of Web Ser-
vices. However, SWS does not consider systems
built using socket-type communication though
systems will continue to be developed using
socket-type communication, especially in situ-
ations where they must manage a lot of mes-
sage transactions like SMS in a telecom net-
work. Furthermore, most SWS research stud-
ies rely on semantic mapping to adjust mes-
sages and processes necessary for system coordi-
nation in ontology mapping techniques 2),5),16).
They usually do not create semantic ontologies
that are extracted from system interface speci-
fications of real SMSs and do not evaluate sys-
tem coordination based on the system interface
specifications of real SMSs.

In this study, we utilize the concept of SWS to
coordinate actual systems considering the fol-
lowing two points. (1) We utilize an interface-
modeling technique that provides semantics to
the message elements in message parameters,
especially for socket-type communication. (2)
We propose an ontology mapping technique
suitable for system coordination by storing the
relationships between interface specifications of
different systems in a KBR as past system de-
sign knowledge. System designers semiauto-
matically extract the correspondences of mes-

sage elements and reusable processes between
different systems for system cooperation based
on semantic mapping results. We evaluated our
technique based on the semantics of the inter-
face specifications of real SMSs that use socket-
type communication.

However, our technique does not provide im-
plementational techniques such as converting
interface specifications of the systems based
on socket-type communication to those of Web
Services. Readers should note that such imple-
mentations in cooperating systems are tasks for
the system designers.

Serin, et al. 15) proposed SDG, which con-
tains the relationships between services based
on the relationships between input and output
messages of different systems. System design-
ers can find reusable services by referring to
the relationships in SDG. However, this se-
mantic mapping technique 15) is a simple one
that only uses the relationships between terms
in a free thesaurus/dictionary such as Wordnet.
If the relationships among words used in the
interface specifications of various systems are
not included in Wordnet, this technique can-
not extract the relationships between interface
specifications of different systems. In our tech-
nique, users can create new relationships be-
tween words used in the semantic descriptions
of interface specifications in various systems by
interactively constructing the relationships be-
tween the name attribute values of classes or
instances based on our semantic mapping re-
sults. Therefore, the KBR in our technique
stores a much larger amount of past system de-
sign knowledge than SDG does.

In a research study on ontology mapping and
schema matching 2),5),16), Glue tried to improve
the accuracy of the mapping results by making
use of the name, instances, and properties of the
class. Furthermore, a corpus that stores the di-
rect relationship between one schema and other
schemas is introduced in Ref. 5). By using this
corpus, Madhaven, et al. 5) tried to improve the
accuracy of schema matching. There are two
main differences between our message-mapping
and their schema-matching 5). (1) Our KBR is
a description of the set of relationships between
the messages of two or more systems. There-
fore, our message-mapping enables system de-
signers to find the direct relationships between
systems and also indirect relationships. The use
of these indirect relationships, gives our tech-
nique much greater potential to present the cor-
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Fig. 2 Overview of knowledge base.

respondences between interface specifications of
different systems. (2) We can improve the ac-
curacy of process mapping by making use of the
reuse counts of mapping results managed in the
KBR.

In Ref. 17), we also applied our interface-
mapping to the coordination of systems de-
veloped using Web Services, though we focus
on the coordination of systems developed using
socket-type communication in this study.

3. Interface Modeling

First, we explain the interface modeling that
gives semantics to the message formats. For
automatically cooperating systems, we model
the relationship between semantics and inter-
face specifications considering the following two
points.
( 1 ) System designers need to confirm the re-

lationships between message elements in
system message parameters when design-
ing the interface specifications of a new
system that is being developed through
the cooperation of existing systems. We
provide the relationships between mes-
sage formats and semantics (Fig. 2 (a))
based on interface modeling. Thus,
our technique can automatically calcu-
late the relationships between message
elements in message parameters of sys-
tems based on semantic mapping re-
sults of message formats between systems
(Fig. 2 (b)).

( 2 ) System designers need to understand
how the message elements will be ex-
changed between systems. Thus, we de-
scribe the semantics of message elements
as characteristics of the interfaces. For
example, the characteristic that only one
of the instances of a class is exchanged
between systems at the same time is de-
scribed by the owl:oneOf component.

To satisfy the above points, we chose to use
OWL DL, which can define the characteristics

Table 1 OWL Description Logic.

of a semantic class appropriately in a machine-
processable way.

Parts of the OWL DL are shown in Table 1.
The class in the OWL DL makes a group of
similar individuals and offers functions to ex-
press their characteristics logically. The class
axiom defines the characteristics of the class by
using class expressions such as the enumeration
of instances. In addition, by using the axiom
concerning the instances, system designers can
describe that two instances are the same using
owl:sameAs.

To satisfy point (1) above, we model the re-
lationships between message parameters and
their semantics in a machine-processable way.
We define the correspondences between mes-
sage parameters and semantic classes by us-
ing owl:equivalentClass and those between mes-
sage elements and semantic instances by using
owl:sameAs. This is important for applying on-
tology mapping to system cooperation because
system designers need to adjust not only mes-
sage parameters but also message elements in
cooperating systems. In Fig. 3, the semantic
class “File update” is given to “Parameter A”,
and semantic instance “repair in progress” is
given to message element “1”.

To satisfy point (2), we express the character-
istics of exchanging message elements between
systems by using class axioms in OWL DL. In
Fig. 3, only one message element among all the
enumerated elements of the class “File update”
is exchanged in one transmission between sys-
tems. We define this characteristic of a class
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Fig. 3 Overview of interface modeling.

by using the owl:oneOf description. Moreover,
we define class characteristics such as informa-
tion about data types and systems to which the
class belongs by using the property restrictions
of a class.

4. Message Mapping

First, we apply an existing ontology map-
ping technique such as Glue to message map-
ping 5),9),11) to semiautomatically adjust the
message formats of different systems based on
semantics. Then, we introduce the KBR to im-
prove the accuracy of mappings by reusing past
mapping results.

4.1 Introducing Ontology Mapping to
Message Mapping

First, we define some terminology. We pro-
vide a source system, which is the component of
the system that the designer wants to develop,
and a target system, which is the component
of the system that may be incorporated into
the source system. We define source classes Cis
as classes in semantic schema about the mes-
sage formats of the source system and target
classes Cjs as classes in semantic schema about
the message formats of the target system.

4.1.1 Measuring Similarity of Name
Attributes

Message mapping calculates the similarity
S(N)CiCj

between name attribute values of Ci

and Cj . First, message mapping divides name
attribute values of classes into a morphologi-
cal analysis tool such as Sen ☆. Then, applying
the vector space model to the frequency of each
morpheme in name attributes, message map-
ping evaluates the score of the name attribute.

4.1.2 Measuring Similarity of Instances
Message mapping also calculates the similar-

☆ http://ultimania.org/sen/

ity S(N)IiIj
between name attribute values of

instance Ii in Ci and instance Ij in Cj based
on frequency of morphemes. If Ii and Ij sat-
isfy equation S(N)IiIj

> θ, message mapping
considers that they have the same meaning.
The threshold value θ in the above equation
is heuristically determined. Finally, by using
Ui, which is an instance set of class Ci, and
Uj , which is an instance set of class Cj , mes-
sage mapping expresses the score of instance
set attribute S(U)CiCj

as equation S(U)CiCj
=

|Ui∩Uj |
|Ui∪Uj | .

4.1.3 Measuring Similarity of Compo-
nent Attributes

Message mapping evaluates the score of com-
ponent attribute S(O)CiCj

from Ci to Cj . In
this paper, the feature that only one of the in-
stances in the class is exchanged between sys-
tems at the same time is described by the
owl:oneOf component. Therefore, when both
Ci and Cj have or do not have the owl:oneOf
component, S(O)CiCj

= 1. When only one of
them, either Ci or Cj , has it, S(O)CiCj

= 0.
Then, message mapping evaluates the score

S(Cij) from source class Ci to target class Cj

by using the similarity of class attributes such
as that of name, instance set , and component
description 5),9),11). Then, message mapping
ranks the target classes on the basis of the score
S(Cij) with instances and properties. This
ranking enables a system interface designer to
determine the mappings between classes and
between instances.

4.2 Knowledge Base of Relationships
about Interface Specifications be-
tween Different Systems

We need a support tool for semiautomatically
adjusting the interface of newly constructed
systems by reusing existing systems as compo-



52 IPSJ Transactions on Databases Sep. 2007

Fig. 4 Overview of KBR.

nents according to the SOA idea. Therefore, we
store the past mapping results in the KBR to
improve the reusability based on the following
ideas.
( 1 ) Adjusting message formats of two or

more systems by one mapping
( 2 ) Improving the accuracy of mapping re-

sults by using past mapping knowledge
4.2.1 Design Policies for Constructing

KBR
An overview of a KBR is shown in Fig. 4. To

be applicable to the purposes of each system de-
signer in a dynamic business environment, the
KBR stores mapping results even if they are
not guaranteed to be consistent in all systems.
In other words, from the viewpoint of a certain
system designer, the message format of his/her
system has a relationship to the message format
of another system. However, this relationship is
not always applicable to other system designers.
Thus, the designer needs to check the proposed
mapping when reusing past mapping results for
current system coordination.

Therefore, relationships between classes in
different systems are described in the language
RDF (Resource Description Framework) 13),
which does not guarantee the processability of
the relationships consistently. Specifically, to
reuse the past mapping results, our message
mapping describes the relationships between
classes even if some instances do not correspond
between classes, so we introduce the related-
Class description. For the same reason, mes-
sage mapping describes the relationship of in-

stances even if they are equivalent between only
some of the systems in the KBR, so we intro-
duce the relatedInstance description 9),11).

4.2.2 Storing Mapping Results in
KBR

Message mapping stores the mapping results
in the KBR after the system designer has con-
firmed that they are correct results. In this
storing process, message mapping gives the sys-
tem and message information as class proper-
ties. Thus, system designers can search the
KBR for reusable mappings for future system
coordination tasks.

4.2.3 Reusing Mapping Results
We describe the algorithm for reusing past

mapping results from the KBR as follows. In
searching the KBR, message mapping checks
the relationship of the relatedClass description.
We define a hop as the movement from one class
to the next class following the relationships of
the relatedClass description. We set the max-
imum number of hops so that the accuracy of
the mapping results is not decreased by hav-
ing a lot of indirect relationships. We also con-
sider the duplication of mapping results by us-
ing class properties for the information about
systems and messages.

We explain the algorithm when system de-
signers coordinate source system A with target
system B by using Fig. 4. Message a of A has
a class “NW node” (network node) with an in-
stance “number”, and message b of B has a class
“node” with an instance “ID” (identification).

(1) Message mapping searches the KBR for
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classes that have the same name attribute value
as the classes in the source system (source
classes). We call these the starting classes. In
Fig. 4, message mapping finds the starting class
“NW node” in system C.

(2) If the KBR has starting classes, then mes-
sage mapping searches for candidate classes by
following the relatedClass description obtained
from the starting classes. It finds “node” and
“NE” (network element) as candidate classes
for the source class “NW node”, as shown in
Fig. 4.

(3) When message mapping finds starting or
candidate classes, it checks instances of those
classes to see if they have the same name at-
tribute values as instances in source classes
(source instances). If it finds any such in-
stances, it stores them as candidate instances
by following the relatedInstance description. In
Fig. 4, message mapping can store candidate in-
stances “Identifier” and “ID”, which are used in
different systems.

(4) When the number of hops is equal to the
maximum number of hops, message mapping
stops checking the relatedClass description fur-
ther and searches for classes with instances in
the target system that have the same name at-
tribute value as those of candidates. If such
classes exist, message mapping provides them
to system designers as mapping results. In
Fig. 4, the convertible candidate with the (class,
instance) relationship (NW node, number) of
message a is (node, ID) of message b.

(5) The designers judge the mapping results.
If they consider them to be true, the reuse
counts R that shows how many times design-
ers have reused the mapping results is incre-
mented. Message mapping uses R as a parame-
ter that indicates the reliability of the mapping.
In judging the mapping results, the designers
can create new relationships between instances
in candidate classes and those in source classes.

The KBR enables message mapping to find
candidate mapping results of two or more mes-
sages at once. For example, message map-
ping can extract candidate classes from mes-
sages c, d, and e at once. Furthermore, message
mapping can help system designers to extract
the corresponding message parameters of the
source and target systems automatically.

5. Process Mapping

To design new systems by incorporating ex-
isting systems into them, we should consider

the following points.
• Extract software components (SCs) with

interface specifications that meet the pur-
pose of a newly constructed system.

• Adjust message formats of a newly con-
structed system and existing SCs to reuse
these SCs.

First, we model the SC as a process that
has I/O messages, following the idea of OWL-
S. Then, we extract reusable SCs based on the
results of message mapping and show those ex-
tracted SCs to system designers with message
mapping results including semantic information
about messages. In our method, we consider
the following ideas.
• Extract SCs with message parameters that

are mutually related to each other based on
message mapping. (process mapping algo-
rithm 1: PMA1).

• When message parameters with low re-
usability in the KBR correspond between
SCs, we consider that these SCs are related
because they have low-probability parame-
ters that reflect the characteristics of sys-
tems. Reusability is calculated by check-
ing the reuse counts R in the KBR, as de-
scribed in Section 4.2.3. (process mapping
algorithm 2: PMA2)

5.1 PMA1
In Fig. 5, system A’s SCs are CAi (1 ≤ i ≤

m) and system B’s SCs are CBj (1 ≤ j ≤ n).
We define MIAi as an input message of CAi and
define MOAi as an output message of CAi.
( 1 ) PMA1 extracts the correspondences of

message parameters based on message
mapping for incorporating system A into
system B.

( 2 ) Then, PMA1 calculates the number of
correspondence classes N between MIAi

and MIBj and the number of classes U
in MIAi. We express the agreement score
of input message S(I)AiBj as |N|

|U| .

( 3 ) PMA1 also calculates the number of cor-
respondence classes N between MOAk

and MOBl and the number U of message
classes in MOAk. We express the agree-
ment score of output message S(O)AkBl

as |N|
|U| .

( 4 ) PMA1 evaluate the similarity score
S(PAikBjl

) between processes as
T (S(I)AiBj) + T (S(O)AkBl)α. The sys-
tem designer checks the results based on
the score of S(P ) and decides whether
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Fig. 5 Process mapping procedure.

Fig. 6 Overview of extraction of interface conversion rules.

to incorporate the corresponding system
into the newly constructed system. Here,
we define a function T that gives the bal-
ance of the score for the mapping results
by using average x and dispersion σx

2.
We use constant α for a user to decide
whether the input or output is impor-
tant.

5.2 PMA2
In calculating the number of corresponding

classes N in procedures (2) and (3) of PMA1,
PMA2 checks the reuse counts R in the KBR,
as described in Section 4.2.3, for each corre-
sponding class. If R satisfies the equation R ≤
β, PMA2 considers that these corresponding
classes are actually related because they cor-
respond via low-probability parameters that re-
flect the characteristics of systems. The thresh-
old value β in the above equation is determined
heuristically.

For example, the message element about
“node ID in a network” is expected to appear
in a lot of messages in various SMSs. Thus, R
for this message has a high value. However, the
message elements reflecting the characteristics

of each SC such as “alarm status of node ID”
are expected to appear a few messages in SMSs,
and R for these message have low values.

6. Supporting the Extraction of In-
terface Conversion Rules Based on
Mapping Results

Here, we explain the extraction of interface
conversion rules for system cooperation. In
Fig. 6, we assume for example that system de-
signers try to develop a new system that man-
ages all the alarm information of all the dis-
tributed systems.

Applying the message mapping, system de-
signers acquire the mapping relationship be-
tween semantic classes. In Fig. 6, “Traffic alarm
status” is assumed to have a relationship to
“Total alarm rank”. Moreover, reusing map-
ping results in the KBR, the instance “emer-
gency level 2” of the class “Traffic alarm sta-
tus” is assumed to have a relationship to the
instance “MJ2” of “Total alarm rank”. From
these mapping results, system designers can ex-
tract interface conversion rules and implement
these rules in cooperating systems. For exam-
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Fig. 7 System cooperation in our experiment.

Table 2 Data sets in our experiments.

ple, they could implement a interface conver-
sion rule that changes message element “01000”
in system A to “1010” in system B in their in-
terface adjustment programs.

However, interface mapping technique only
supports system designers to design interface
specification of a newly cooperated system ef-
fectively by referring the relationships between
interface specifications of past systems in KBR.
The extraction and implementation of inter-
face conversion rules in cooperating systems are
tasks for the system designers.

7. Experimental Results

We now present experimental results that
demonstrate the performance of message and
process mapping.

7.1 Datasets and Methodology
We evaluated our interface mapping method

using the interface specifications of actual ser-
vice management systems (SMSs). These SMSs
manage various kinds of information such as
the status of nodes or links of several networks
like IMT or PDC wireless networks and those of
fixed telephony networks. In Fig. 7, SMSs A,
B, and C are composed of a lot of SCs, as shown
in Table 2. For example, SMS A has SCs devel-
oped for purposes such as confirming the alarm
status of network links, executing important file
updates of network nodes, and checking infor-
mation about customers using these network
nodes.

Moreover, these systems were constructed in
different company divisions and at different
times for different purposes. Thus, it is difficult
to adjust the messages and processes in order
to coordinate the systems.

By adjusting the interface specifications be-
tween the coordinated system (SMS A & sys-
tem D) and SMSs B and C, we tried to incorpo-
rate systems B and C into the inference system
D that infers restoration scenarios for respond-
ing to trouble caused by two or more problems
in various networks. The procedure of our ex-
periments was as follows.

(1) We constructed a knowledge base of SCs
in SMSs by giving semantics to the SC message
formats based on IF (interface) modeling. As
shown in Table 2, we applied IF modeling to
3 SMSs of 19 software components among 267
software components. The interface specifica-
tion documents describe semantic information
such as status information of managed objects
and procedures for messages. Therefore, we ex-
tracted semantics from these documents.

(2) We evaluated message mapping between
the interface specifications of (SMS A & system
D), SMS B, and SMS C.

(3) We evaluated the process mapping based
on the message mapping results.

To improve the practicality, we implemented
our mapping technique as a user-interactive
tool. The system designer can confirm map-
ping results and delete mapping mistakes. The
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Table 3 Example of useless word list used by
experiment.

mapping results help system designers to gen-
erate interface conversion rules.

To evaluate the accuracy, we defined two
kinds of correct answers: positive and negative
correct answer.

(1) Positive correct answers agree between
classes and between instances. For example,
when message parameters with the meaning
of “alarm status” agree and message instances
with the meaning of “normal alarm level” also
agree, we call this mapping a positive correct
answer. We can perform system cooperation
by considering the value of status information
by using positive correct answers.

(2) Negative correct answers are agreements
between only classes. For example, when mes-
sage parameters with the meaning of “node ob-
jective” agree, but message instances with the
meaning of “node number 5” do not agree, we
call this mapping a negative correct answer. We
can perform system cooperation by integrating
the status information of different services by
using negative corrects.

We evaluated the accuracy of mapping results
by checking the rate of correct answers in map-
ping results among all correct answers (recall)
and the rate of correct answers in mapping re-
sults (precision).

In setting the parameters in our message
mapping and in Glue, as described in Section 4,
we prepared test data having the same type but
half the size of the one used in our evaluation.
For this test data, we deleted useless words (a
partial list is shown in Table 3) as prepara-
tion. The words shown in Table 3 are English
translations of the useless words that were orig-
inally in Japanese. Furthermore, we set the
parameter θ to 0.7. We also applied almost
the same weights to the approximation level of
the class name, instances, and properties. The
reason for choosing these values is that we ex-
tract correct answers selected not only by class
name attributes but also by class instance set
and class property attributes through the ex-
periment. The difference between our message
mapping and Glue is that our message mapping
uses the KBR for calculating mapping results.
System designers only set the appropriate value
for the maximum number of hops for KBR, as

Fig. 8 Comparison of recall and precision.

mentioned in Section 4.2.3. We set the maxi-
mum number of hops to three in the evaluation
and achieved mapping results with high accu-
racy in our evaluation in Section 7.2. Thus, we
consider that the system designers should set a
maximum value with a low value such as two or
three when beginning to use message mapping
and heuristically increase it in their mapping
tasks.

7.2 Evaluating Message Mapping
We compared 1) Glue mapping based on our

IF modeling and 2) our IF mapping with our IF
modeling. We used our IF modeling to create
the relationships between message formats and
the semantics of these formats. By using our IF
modeling, both Glue and our IF mapping could
calculate the relationships between the seman-
tics of message formats of different systems.

The average of results of 120 (= 7 × 6 +
7 × 6 + 6 × 6) combinations of SCs in Table 2
are depicted in Fig. 8. In this evaluation, we
checked the mapping results using the top six
scores. The evaluation results show that our
IF mapping improved the precision by about
14% compared with IF modeling + Glue and
reduced the frequency of adjusting mapping re-
sults. This is because IF mapping reduced the
number of mapping mistakes by reusing correct
mappings of past coordination work from the
KBR. We also improved the recall because the
similarity in the instance set between classes
was improved through the increase in instance-
mapping knowledge in the KBR (see Fig. 10).

Then, we evaluated the reuse counts of the
mapping results through the following three-
step procedure. Previous techniques used these
three steps, but our technique adds the new
steps (1’) and (2’) of storing results from the
first two steps.

Step (1) We evaluated message mapping
when we set system A as the source system and
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Fig. 9 An automation result by reusing mapping
results.

Fig. 10 Increase in correct answers in instance
mapping results.

system B as the target system.
Step (1’) IF mapping stored mapping results

from steps (1) in the KBR.
Step (2) Then, we evaluated message map-

ping when we set system A as source system
and system C as target system. We can reuse
direct mapping results stored in step (1’) for the
message mapping in step (2).

Step (2’) IF mapping stored 518 mapping re-
sults from steps (1) and (2) in the KBR.

Step (3) Next, we evaluated message map-
ping when we set system B as the source sys-
tem and system C as the target system. We can
reuse direct mapping and indirect mapping re-
sults stored in step (1’) and (2’) for the message
mapping in step (3).

Graphs of the precision and recall of class
mapping results are shown in Fig. 9. In step
(3), we automatically extracted about 45% of
the mapping results by reusing the indirect
mapping results in the KBR. From these re-
sults, we conclude that we satisfied the two
ideas for introducing the KBR described in Sec-
tion 4.2.

The comparison between instance mappings
of the previous technique (IF modeling + Glue)
and our IF mapping is shown in Fig. 10. In
step (2), our technique could reuse direct map-
ping results stored in KBR in step (1’). We

show the result in step (2) in Fig. 10 (B). Our
technique automatically extracted about 100
more correct mappings (about 9.5%) than the
previous techniques. In step (3), our technique
could reuse direct and indirect mapping results
stored after step (2). We show the result in
step (3) in Fig. 10 (C). Our technique extracted
about 132 correct mappings (about 13.8%) in
step (3), though the result of (3) include some
mapping mistakes. This is because IF mapping
reused past instance-mapping results that were
confirmed as correct answers by the user in pre-
vious coordination work.

7.3 Evaluation of Process Mapping
We evaluated the process mapping. In the

evaluation, we defined 22 correct mappings se-
lected by an SMS designer out of 120 patterns in
Table 2. We also evaluated the accuracy of the
mapping results by using recall and precision.
The system designer checked the results with
the highest scores in the ranking and selected
SCs with an interface specification applicable
to the coordinated system.

In this evaluation, we set parameter α in Sec-
tion 5.1 to 1 because this enabled us to get good
results by using the correspondence of both in-
put and output messages. Thus, we set this
parameter to 1 to achieve good results on aver-
age.

We compared the recall between PMA1 and
PMA2 by changing the number of results in
the ranking that the user checks, as shown in
Fig. 11. These results indicate that the recall
of PMA2 is higher than that of PMA1 when
the user checks the results with high scores. We
also observed the recall when changing param-
eter β in Section 5.2. We found that, when the
reuse frequency R was larger, the recall was
higher: the recall was about 95%, as seen in
the results for the 30 highest results, and was
100%, as seen in the results for the 35 high-
est results. Furthermore, the precision was also
high because we could extract a lot of correct
answers in the results with high scores. From
this result, we also understand that the accu-
racy is higher when the reuse frequency R is
somewhat large than when the reuse frequency
R is too small. Thus, our process mapping is ef-
fective for extracting SCs for incorporation into
a coordinated system.

8. Conclusion

We described IF modeling, which models the
relationship between semantics and message
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Fig. 11 Change in recall in process mapping.

formats in a machine-processable way. We pro-
posed message mapping that executes the map-
ping between message formats by using seman-
tic mapping results and extracted interface con-
version rules. Then, we devised process map-
ping, which extracts software components with
an interface specification applicable to a coordi-
nated system. We confirmed the effectiveness of
the interface mapping by using interface speci-
fications of actual service management systems.

We will evaluate our interface-mapping tech-
nique in business environments that are more
dynamic based on cooperation among a larger
number of distributed software components.
Furthermore, we will improve the adaptation of
our technique to the cooperation of actual sys-
tems and help system designers adjust interface
specifications of coordinated systems.
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