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Regular Paper

On the Properties of Evaluation Metrics for

Finding One Highly Relevant Document

Tetsuya Sakai†

Traditional information retrieval evaluation relies on both precision and recall. However,
modern search environments such as the Web, in which recall is either unimportant or im-
measurable, require precision-oriented evaluation. In particular, finding one highly relevant
document is very important for practical tasks such as known-item search and suspected-item
search. This paper compares the properties of five evaluation metrics that are applicable to
the task of finding one highly relevant document in terms of the underlying assumptions, how
the system rankings produced resemble each other, and discriminative power. We employ
two existing methods for comparing the discriminative power of these metrics: The Swap
Method proposed by Voorhees and Buckley at ACM SIGIR 2002, and the Bootstrap Sensi-
tivity Method proposed by Sakai at SIGIR 2006. We use four data sets from NTCIR to show
that, while P(+)-measure, O-measure and NWRR (Normalised Weighted Reciprocal Rank)
are reasonably highly correlated to one another, P(+)-measure and O-measure are more dis-
criminative than NWRR, which in turn is more discriminative than Reciprocal Rank. We
therefore conclude that P(+)-measure and O-measure, each modelling a different user be-
haviour, are the most useful evaluation metrics for the task of finding one highly relevant
document.

1. Introduction

Different Information Retrieval (IR) tasks re-
quire different evaluation metrics. For exam-
ple, a patent survey task may require a recall-
oriented metric, while a known-item search
task 20) may require a precision-oriented met-
ric. When we search the Web, for example, we
often stop going through the ranked list after
finding one good Web page even though the
list may contain some more relevant pages, ei-
ther knowing or assuming that the rest of the
retrieved pages lack novelty, or additional infor-
mation that may be of use to him. Thus, finding
exactly one relevant document with high preci-
sion is an important IR task.

Reciprocal Rank (RR) 3),20) is commonly
used for the task of finding one relevant doc-
ument: RR = 0 if the ranked output does
not contain a relevant document; otherwise,
RR = 1/r1, where r1 is the rank of the re-
trieved relevant document that is nearest to the
top of the list. However, RR is based on binary
relevance and therefore cannot distinguish be-
tween a retrieved highly relevant document and
a retrieved partially relevant document. Thus,
as long as RR is used for evaluation, it is diffi-
cult for researchers to develop a system that can
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rank a highly relevant document above partially
relevant ones. In light of this, Sakai 15) pro-
posed a metric called O-measure for the task
of finding one highly relevant document. O-
measure is a variant of Q-measure 10),18) which
is very highly correlated with Average Preci-
sion (AveP) but can handle graded relevance.
O-measure can also be regarded as a generali-
sation of RR (See Section 3).

Eguchi, et al. 5), who ran the currently-
discontinued NTCIR Web track, also proposed
a metric for the task of finding one highly rel-
evant document, namely, Weighted Reciprocal
Rank (WRR). WRR assumes that ranking a
partially relevant document at (say) Rank 1
is more important than ranking a highly rele-
vant document at Rank 2. It was never actu-
ally used for ranking the systems at NTCIR
(See Section 3) and its discriminative power
has not been reported. We point out in Sec-
tion 3 that, if WRR must be used, then it
should be normalised before averaging across
topics: We call the normalised version Nor-
malised Weighted Reciprocal Rank (NWRR).

Just like RR, both O-measure and NWRR
rely on r1, the rank of the first relevant docu-
ment in the list. This means that all of these
metrics assume that the user stops examining
the ranked list as soon as he finds one relevant
document, even if it is only partially relevant.
This assumption may be valid in some retrieval
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Fig. 1 Categories of IR metrics, with some examples.

situations, but not always, as we shall discuss
in Section 3. In contrast, P-measure, proposed
at the ACM SIGIR 2006 poster session 14), as-
sumes that the user looks for a highly relevant
document even if it is ranked below partially rel-
evant documents. We shall also discuss its vari-
ant called P+(pee-plus)-measure in Section 3.

Thus we have at least five evaluation met-
rics for the task of finding one relevant doc-
ument: P+-measure, P-measure, O-measure,
NWRR and RR. All of them except for RR
can handle graded relevance, as illustrated in
Fig. 1. (Section 2 will touch upon all of the
metrics shown in this figure.) This paper ☆
compares the properties of these five metrics
that are applicable to the task of finding one
highly relevant document, in terms of the un-
derlying assumptions, how the system rankings
produced resemble each other, and discrimina-
tive power. We employ two existing methods
for comparing the discriminative power of these
metrics: The Swap Method proposed at ACM
SIGIR 2002 24), and the Bootstrap Sensitivity
Method proposed at SIGIR 2006 12),16). We use
four data sets from NTCIR to show that, while
P(+)-measure, O-measure and NWRR are rea-
sonably highly correlated to one another, P(+)-
measure and O-measure are more discrimina-
tive than NWRR, which in turn is more dis-
criminative than RR. We therefore conclude
that P(+)-measure and O-measure, each mod-
elling a different user behaviour, are the most
useful evaluation metrics for the task of finding
one highly relevant document.

The remainder of this paper is organised as
follows. Section 2 discusses previous work on
evaluating IR metrics or IR evaluation envi-
☆ This paper extends one presented at the Asia In-

formation Retrieval Symposium (AIRS) 2006, by
including additional experiments using the Swap
Method 24) and Kendall’s rank correlation.

ronments to clarify the contribution of this
study. Section 3 formally defines and char-
acterises the metrics we examine. Section 4
describes the methods we use for comparing
the metrics, namely, Kendall’s rank correlation
for examining the resemblance between met-
rics, and the Swap Method and the Bootstrap
Sensitivity Method for assessing the discrim-
inative power of each metric. Section 5 de-
scribes our experiments for comparing P(+)-
measure, O-measure, NWRR and RR, and Sec-
tion 6 concludes this paper. The Appendix pro-
vides some statistics on the actual ranks exam-
ined by P(+)-measure and O-measure for the
NTCIR data.

2. Related Work

This section discusses previous work on evalu-
ating IR metrics or IR evaluation environments,
with an emphasis on those based on graded
relevance. IR metrics are often evaluated in
terms of how they resemble each other in system
ranking, and in terms of discriminative power
and/or stability 1) with respect to change in the
test collection topic set.

At ACM SIGIR 2001, Voorhees 22) used
Kendall’s rank correlation to compare sys-
tem rankings produced by binary-relevance
IR metrics such as Average Precision (AveP)
and a graded-relevance IR metric known
as Discounted Cumulative Gain (DCG) 7).
Kekäläinen 9) conducted a similar study, but
compared normalised (Discounted) Cumulative
Gain (n(D)CG) with Precision at a fixed doc-
ument cutoff (PDoc). These studies examined
the resemblance among different metrics, but
did not discuss the discriminative power of each
metric. Moreover, these studies considered IR
metrics for the task of handling as many rele-
vant documents as possible, in contrast to the
present study which concerns metrics for find-
ing one relevant document only.

At SIGIR 2002, Voorhees and Buckley 24)

proposed the Swap Method for assessing the
discriminative power of IR metrics, and for es-
timating the overall performance difference be-
tween two systems for guaranteeing that one
system is better than another with a given “con-
fidence”. The original Swap Method samples
topics without replacement from the original
topic set Q to generate B pairs of topic sets Qi

and Q′
i such that Qi ∩Q′

i = φ (1 ≤ i ≤ B), and
establishes an empirical relationship between
the overall performance difference between two
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systems and the swap rate, which represents the
probability of the event that two experiments
(each using a different topic set) are contradic-
tory. (We let B = 1000 throughout this paper.)
For example, if the original topic set contains
50 topics, new topic sets Qi and Q′

i of size up
to 25 are created, while ensuring that Qi and
Q′

i are disjoint. The Swap Method can estimate
how much difference is required to guarantee a
small swap rate, and also what percentage of
system pairs actually satisfy the difference cri-
terion. The latter quantity represents the dis-
criminative power of a given metric with a given
number of topics.

Several studies followed that used the Swap
Method for assessing different IR metrics:
Buckley and Voorhees 2) assessed their bpref
(binary preference) metric to deal with in-
complete relevance judgments; Voorhees 23) as-
sessed the area measure and Geometric Mean
AveP (G AveP) to emphasise the effect of
worst-performing topics. Soboroff 20) assessed
RR for the TREC Web known-item search
task. Sakai 18) assessed graded-relevance met-
rics Q-measure, R-measure and normalised
(Discounted) Cumulative Gain (n(D)CG) and
binary-relevance ones such as Average Preci-
sion (AveP) and Precision at a fixed document
cut-off (PDoc). Moreover, Sanderson and Zo-
bel 19) and Sakai 11) explored some variants of
the Swap Method, and the latter showed that
topic sampling with and without replacement
for the Swap Method yield very similar results
for the purpose of comparing different metrics.
This implies that it is no longer necessary to
take (say) 25 topics from 50 in order to en-
sure that Qi and Q′

i are disjoint 12),16): One
can resample 50 topics from the original set of
50 topics, by sampling with replacement, to di-
rectly estimate the overall performance differ-
ence required given 50 topics, instead of doing
the original Swap Method experiments with 25
topics and then extrapolating to 50 topics 19),24).
This paper therefore uses the sampling-with-
replacement version of the Swap Method.

Most of the abovementioned work that ex-
amined the discriminative power of metrics fo-
cussed on IR metrics for finding as many rel-
evant documents as possible. An exception is
the aforementioned study by Soboroff 20), which
examined RR. However, as mentioned earlier,
RR ignores the difference between a retrieved
highly relevant document and a retrieved par-
tially relevant document. In light of this,

Sakai 15) proposed O-measure, which is a metric
for the task of finding one relevant document
and is based on graded relevance. He exam-
ined the rank correlation between O-measure
and RR, and also showed that O-measure is
more discriminative than RR according to the
original Swap Method. Subsequently, Sakai 14)

showed that a new metric called P-measure is
at least as discriminative as O-measure accord-
ing to the sampling-with-replacement version of
the Swap Method ☆.

While the aforementioned studies demon-
strated the usefulness of the Swap Method for
comparing the discriminative power of differ-
ent IR metrics, the method lacks a theoretical
foundation, and is not highly correlated with
statistical significance tests 18). In light of this,
Sakai 12),16) proposed the Bootstrap Sensitivity
Method for assessing the discriminative power of
IR metrics, which relies on the time-honoured
Bootstrap Hypothesis Tests 4). This method ob-
tains B bootstrap samples Q∗b (1 ≤ b ≤ B =
1000) by sampling with replacement from the
original topic set Q, such that |Q∗b| = |Q|, con-
ducts a Bootstrap Hypothesis Test for every
system pair, and estimates an absolute differ-
ence required to guarantee a given significance
level α.

However, Sakai’s work 12),16) only dealt
with IR metrics for finding as many rele-
vant documents as possible, including AveP,
Q-measure and Geometric Mean Q-measure
(G Q-measure). This paper focusses on
the task of finding one relevant document,
and compares P-measure, P+-measure 14), O-
measure 15), NWRR and RR, using both the
Swap Method and the Bootstrap Sensitivity
Method for comparing discriminative power, as
well as Kendall’s rank correlation for examin-
ing the resemblance among metrics. In short,
previous work paid relatively little attention to
the evaluation metrics for the task of finding
one relevant document, but this is exactly the
focus of this study.

3. IR Effectiveness Metrics

This section formally defines and charac-
terises P(+)-measure, O-measure and NWRR.
(We have already defined RR in Section 1.)

☆ Sakai’s SIGIR poster 14) used the NTCIR-5 data
only: The Swap Method experiments reported in
this paper extends his work by (a) using the NTCIR-
3 data as well; and (b) examining additional metrics,
namely, NWRR and P+-measure.



32 IPSJ Transactions on Databases Sep. 2007

Prior to this, we also define AveP and Q-
measure since we include them in our exper-
iments just for comparison. Our experimen-
tal results of AveP and Q-measure have been
copied from Refs. 12), 16), and are not part of
this paper’s contribution.

3.1 AveP and Q-measure
Let R denote the number of relevant docu-

ments for a topic, and let L (≤ 1000) denote
the size of a ranked output. For each Rank
r (≤ L), let isrel(r) be 1 if the document at
Rank r is relevant and 0 otherwise, and let
count(r) =

∑
1≤i≤r isrel(i). Clearly, Precision

at Rank r is given by P (r) = count(r)/r. Then,
AveP is defined as:

AveP =
1
R

∑
1≤r≤L

isrel(r)P (r) . (1)

Next, we define Q-measure 10),18), which is
very highly correlated with AveP but can
handle graded relevance. Let R(L) denote
the number of L-relevant documents so that∑

L R(L) = R, and let gain(L) denote the
gain value for retrieving an L-relevant doc-
ument. In the case of NTCIR, L = S
(highly relevant), L = A (relevant) or L =
B (partially relevant), and we use gain(S) =
3, gain(A) = 2, gain(B) = 1 by default. Let
cg(r) =

∑
1≤i≤r g(i) denote the cumulative

gain at Rank r for a system output 9), where
g(i) = gain(L) if the document at Rank i is L-
relevant and g(i) = 0 otherwise. Similarly, let
cgI(r) denote the cumulative gain at Rank r for
an ideal ranked output: For NTCIR, an ideal
ranked output lists up all S-, A- and B-relevant
documents in this order. Then, Q-measure is
defined as:

Q-measure =
1
R

∑
1≤r≤L

isrel(r)BR(r)

where

BR(r) =
cg(r) + count(r)

cgI(r) + r
. (2)

BR(r) is called the blended ratio, which mea-
sures how a system output deviates from the
ideal ranked output and penalises “late ar-
rival” of relevant documents. (Unlike the
blended ratio, it is known that weighted preci-
sion WP (r) = cg(r)/cgI(r) cannot properly pe-
nalise late arrival of relevant documents and is
therefore not suitable for IR evaluation 15),18).)

3.2 O-measure and NWRR
Traditional IR assumes that recall is impor-

tant: Systems are expected to return as many
relevant documents as possible. AveP and Q-
measure, both of which are recall-oriented, are
suitable for such tasks. (Note that the number
of relevant documents R appear in their defini-
tions.) However, as was discussed in Section 1,
some IR situations do not necessarily require
recall. More specifically, some IR situations re-
quire one relevant document only. Although
RR is commonly used in such a case, it cannot
reflect the fact that users prefer highly relevant
documents to partially relevant ones. Below, we
describe O-measure and Normalised Weighted
Reciprocal Rank (NWRR), both of which can
be regarded as graded-relevance versions of RR.

O-measure 15) is defined to be zero if the
ranked output does not contain a relevant doc-
ument. Otherwise:

O-measure=BR(r1)=
g(r1)+1

cgI(r1)+r1
. (3)

That is, O-measure is the blended ratio at
Rank r1. (Since the document at r1 is the
first relevant one, note that cg(r1) = g(r1)
and count(r1) = 1 hold.) In a binary rele-
vance environment, O-measure = RR holds iff
r1 ≤ R, and O-measure > RR holds other-
wise. Moreover, if small gain values are used
with O-measure, then it behaves like RR 15).

Next, we define Weighted Reciprocal Rank
(WRR) proposed by Eguchi, et al. 5). Our
definition looks slightly different from their
original one, but it is easy to show that
the two are equivalent 13). In contrast to
cumulative-gain-based metrics (including Q-
measure and O-measure) which require the gain
values (gain(L)) as parameters, WRR requires
“penalty” values β(L) (> 1) for each relevance
level L. We let β(S) = 2, β(A) = 3, β(B) = 4
throughout this paper: note that the smallest
penalty value must be assigned to highly rele-
vant documents. WRR is defined to be zero if
the ranked output does not contain a relevant
document. Otherwise:

WRR =
1

r1 − 1/β(L1)
(4)

where L1 denotes the relevance level of the rel-
evant document at Rank r1.

WRR was designed for the NTCIR Web
track, but the track organisers always used
β(L) = ∞ for all L, so that WRR is reduced to
binary RR. That is, the graded relevance capa-
bility of WRR has never actually been used.

WRR is not bounded by one: If the highest
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Fig. 2 O-measure vs NWRR: Topics 1 and 2.

relevance level for a given topic is denoted by
M, WRR is bounded above by 1/(1−1/β(M)).
This is undesirable for two reasons: Firstly, a
different set of penalty values yields a different
range of WRR values, which is inconvenient for
comparisons; Secondly, the highest relevance
level M may not necessarily be the same across
topics, so the upperbound of WRR may differ
across topics. This means that WRR is not
suitable for averaging across topics if M differs
across the topic set of the test collection.

This paper therefore considers Normalised
WRR (NWRR) instead. NWRR is defined to
be zero if the ranked output does not contain a
relevant document. Otherwise:

NWRR =
1 − 1/β(M)
r1 − 1/β(L1)

. (5)

The upperbound of NWRR is one for any topic
and is therefore averageable.

There are two important differences between
NWRR and O-measure.
(a) Just like RR, NWRR disregards whether

there are many relevant documents or
not. In contrast, O-measure takes the
number of relevant documents into ac-
count by comparing the system output
with an ideal output.

(b) NWRR assumes that the rank of the
first retrieved document is more impor-
tant than the relevance levels. Whereas,
O-measure is free from this assumption.

We first discuss (a). From Eq. (5), it is clear
that NWRR depends only on the rank and
the relevance level of the first retrieved rele-
vant document. For example, consider a system
output shown in the middle of Fig. 2, which
has an S-relevant document at Rank 3. The
NWRR for this system is (1 − 1/β(S))/(3 −
1/β(S)) = (1 − 1/2)/(3 − 1/2) = 1/5 for any
topic. Whereas, the value of O-measure for this

Fig. 3 O-measure vs NWRR: Topic 3.

system depends on how many L-relevant doc-
uments there are. For example, if the system
output was produced in response to Topic 1
which has only one S-relevant document (and
no other relevant documents), then, as shown
on the left hand side of Fig. 2, O-measure =
(g(3) + 1)/(cgI(3) + 3) = (3 + 1)/(3 + 3) =
2/3. On the other hand, if the system out-
put was produced in response to Topic 3 which
has at least three S-relevant documents, then,
as shown in the right hand side of the figure,
O-measure = (3 + 1)/(9 + 3) = 1/3. Thus, O-
measure assumes that it is relatively easy to re-
trieve an L-relevant document if there are many
L-relevant documents in the database. If the
user has no idea as to whether a document rel-
evant to his request exists or not, then one could
argue that NWRR may be a better model. On
the other hand, if the user has some idea about
the number of relevant documents he might
find, then O-measure may be more suitable.
Put another way, O-measure is more system-
oriented than NWRR.

Next, we discuss (b) using Topic 3 shown
in Fig. 3, which has one S-relevant, one A-
relevant and one B-relevant document. Sys-
tem X has a B-relevant document at Rank 1,
while System Y has an S-relevant document at
Rank 2. Regardless of the choice of penalty
values (β(L)), X always outperforms Y accord-
ing to NWRR. Thus, NWRR is unsuitable for
IR situations in which retrieving a highly rele-
vant document is more important than retriev-
ing any relevant document in the top ranks. In
contrast, O-measure is free from the assump-
tion underlying NWRR: Fig. 3 shows that, with
default gain values, Y outperforms X. But if
X should be preferred, then a different gain
value assignment (e.g. gain(S) = 2, gain(A) =
1.5, gain(B) = 1) can be used. In this respect,
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O-measure is more flexible than NWRR.
3.3 P-measure and P+-measure
Despite the abovementioned differences, both

NWRR and O-measure rely on r1, the rank of
the first retrieved relevant document. Thus,
both NWRR and O-measure assume that the
user stops examining the ranked list as soon as
he finds one relevant document, even if it is
only a partially relevant one. This assumption
may be counterintuitive in some cases: Con-
sider System Z in Fig. 3, which has a B-relevant
document at Rank 1 and an S-relevant docu-
ment at Rank 2. According to both NWRR
and O-measure, System Z and System X are
always equal in performance regardless of the
parameter values, because only the B-relevant
document at Rank r1 = 1 is taken into account
for Z. In short, both NWRR and O-measure
ignore the fact that there is a better document
at Rank 2.

This is not necessarily a flaw. NWRR and O-
measure may be acceptable models for IR sit-
uations in which it is difficult for the user to
spot a highly relevant document in the ranked
list. For example, the user may be looking at
a plain list of document IDs, or a list of vague
titles and poor-quality text snippets of the re-
trieved documents. Or perhaps, he may be ex-
amining the content of each document one-by-
one without ever looking at a ranked list, so
that he has no idea what the next document
will be like. However, if the system can show
a high-quality ranked list that contain informa-
tive titles and abstracts, then perhaps it is fair
to assess System Z by considering the fact that
it has an S-relevant document at Rank 2, since
a real-world user can probably spot this docu-
ment. Similarly, in known-item search 20), the
user probably knows that there exists a highly
relevant document, so he may continue to ex-
amine the ranked list even after finding some
partially relevant documents. (A “narrow” def-
inition of known-item search would involve only
one relevant document per topic. That is, the
target document is defined to be the one that
the user has seen before, and it is always highly
relevant. However, we adopt a broader defini-
tion: In addition to the known highly relevant
document, there may be unvisited documents
which are in fact relevant to the topic. It is
possible to treat these documents as partially
relevant in evaluation. Moreover, there is a re-
lated task called suspected-item search 6), which
does not require that the user has actually seen

a relevant document. It is clear that more than
one relevant document may exist in such cases
too, possibly with different relevance levels.)

We now define P-measure 14) for the task of
finding one highly relevant document, under the
assumption that the user continues to examine
the ranked list until he finds a document with
a satisfactory relevance level. P-measure is de-
fined to be zero if the system output does not
contain a relevant document. Otherwise, let Lp

be the highest relevance level observed within
the system output, and let the preferred rank rp

be the rank of the first Lp-relevant document
found in it. Then:

P -measure = BR(rp)

=
cg(rp) + count(rp)

cgI(rp) + rp
. (6)

That is, P-measure is simply the blended ratio
at Rank rp. For System Z in Fig. 3, rp = 2.
Therefore, P -measure = BR(2) = (cg(2) +
2)/(cgI(2) + 2) = (4 + 2)/(5 + 2) = 0.86.
Whereas, since rp = r1 holds for systems X
and Y , P -measure = O-measure = 0.50 for
X and P -measure = O-measure = 0.57 for
Y . Thus, only Z is handsomely rewarded, for
retrieving both B- and S-relevant documents.

Because P-measure looks for a most highly
relevant document in the ranked output and
then evaluates by considering all (partially) rel-
evant documents ranked above it, it is possi-
ble that P-measure may be more discriminative
than O-measure, as we shall see later. More-
over, it is clear that P-measure inherits some
properties of O-measure: It is a system-oriented
metric, and is free from the assumption under-
lying NWRR, namely, that ranks are more im-
portant than relevance levels.

However, just like R-measure 18), P-measure
is “forgiving”, in that it can be one for a sub-
optimal ranked output. For example, in Fig. 3,
supppose that there is a fourth system output,
which is a perfect inverse of the ideal output.
For this system output, rp = 3 and therefore
P -measure = BR(3) = (6 + 3)/(6 + 3) = 1.
One could argue that this is counterintuitive.
We therefore examine P+(pee-plus)-measure in
addition, which does not have this problem:

P+-measure

=
1

count(rp)

∑
1≤r≤rp

isrel(r)BR(r) . (7)

For example, for the above perfect inverse out-
put, BR(1) = (1 + 1)/(3 + 1), BR(2) = (3 +
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2)/(5 + 2) and BR(3) = P -measure = 1. Thus
P+-measure = (2/4 + 5/7 + 1)/3 = 0.74.
Note also that P+-measure = P -measure =
O-measure holds if there is no relevant docu-
ment above Rank rp, i.e., if rp = r1.

In practice, a document cut-off may be used
with P(+)-measure, since these metrics assume
that the user is willing to examine an “unlim-
ited” number of documents. That is, in theory,
rp can be arbitrarily large. However, a small
cut-off makes IR evaluation unstable, and re-
quires a larger topic set 1),18). The Appendix
examines the actual values of rp for the NTCIR
data.

4. Methods for Assessing Evaluation
Metrics

This section describes three methods for
comparing IR metrics. The first method is
Kendall’s Rank Correlation, which measures
the resemblance of system rankings according
to two different IR metrics. The other two
methods, namely, the Swap Method and the
Bootstrap Sensitivity Method, examine the dis-
criminative power of individual metrics in a
given IR evaluation environment.

4.1 Kendall’s Rank Correlation
Following previous work 9),10),22) we examine

the resemblance between a pair of metrics us-
ing Kendall’s rank correlation between two sys-
tem rankings, which computes the minimum
number of adjacent swaps to turn one ranking
into another. Kendall’s rank correlation lies be-
tween 1 (identical rankings) and −1 (completely
reversed rankings), and its expected value is
zero for two rankings that are in fact not corre-
lated with each other. Let ns denote the num-
ber of systems that are to be ranked. Let ai

(1 ≤ i ≤ ns) denote the rank of the i-th system
as measured by a metric, and let bi denote the
rank of the same system as measured by an-
other. Then, clearly, there are ns(ns − 1)/2
combinations of (ai, bi) and (aj , bj) (i �= j)
in total. Among these combinations, let pos
denote the number of combinations such that
ai < aj and bi < bj , or ai > aj and bi > bj (i.e.,
the number of agreements between two metrics
regarding the i-th and the j-th systems). Like-
wise, let neg denote the number of combina-
tions such that ai < aj and bi > bj , or ai > aj

and bi < bj (i.e., the number of disagreements).
Then, Kendall’s rank correlation (τ ) can be ex-
pressed as:

τ =
2(pos − neg)
ns(ns − 1)

. (8)

There is a standard significance test available
for Kendall’s τ : Given the number of systems
ns, it is known that

Z0 =
|τ |

((4ns + 10)/(9ns(ns − 1)))
1
2

(9)

obeys a normal distribution. Thus, a normal
test can be applied. Note that the test statistic
Z0 is proportional to |τ | given ns: In terms of
a two-tailed test with ns = 30 runs, the rank
correlation is significant at α = 0.01 if it is over
0.34.

4.2 Voorhees/Buckley Swap Method
The essence of the swap method is to estimate

the swap rate, which represents the probabil-
ity of the event that two experiments (each us-
ing a different topic set) are contradictory given
an overall performance difference. Our version
works as follows: First, we create pairs of boot-
strap samples Q∗b and Q′∗b (1 ≤ b ≤ B = 1000)
by sampling with replacement from the original
topic set Q. Thus, |Q∗b| = |Q′∗b| = |Q|. Let D
denote the performance difference between two
systems as measured by M based on a topic
set; we prepare 21 performance difference bins,
where the first bin represents performance dif-
ferences such that 0 ≤ D < 0.01, the second bin
represents those such that 0.01 ≤ D < 0.02,
and so on, and the last bin represents those
such that 0.20 ≤ D 24). Let BIN(D) denote
the mapping from a difference D to one of the
21 bins where it belongs. The algorithm shown
in Fig. 4 calculates a swap rate for each bin: It
compares systems X and Y using the first topic
set Q∗b and records the overall performance dif-
ference according to Q∗b; It then compares the
same system pair using the second topic set
Q′∗b, and if this topic set disagrees with the

for each system pair (X, Y ) ∈ C
for b = 1 to B

D∗b = M(X, Q∗b) − M(Y, Q∗b);
D′∗b = M(X, Q′∗b) − M(Y, Q′∗b);
count(BIN(D∗b)) + +;
if( D∗b ∗ D′∗b > 0 ) then

continue
else

swap count(BIN(D∗b)) + +;
for each bin i

swap rate(i) = swap count(i)/count(i);

Fig. 4 Algorithm for computing the swap rates.
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for b = 1 to B
create topic set Q∗b of size n = |Q| by
randomly sampling with replacement from Q;
for i = 1 to n

q = i-th topic from Q∗b;
w∗b

i = observed value in w for topic q;

Fig. 5 Algorithm for creating Bootstrap samples Q∗b and
w∗b = (w∗b

1 , . . . , w∗b
n ) for the Paired Test.

first one, the swap count for the aforementioned
performance difference is incremented.

We can thus plot swap rates against per-
formance difference bins. By looking for bins
whose swap rates do not exceed (say) 5%, we
can estimate how much absolute difference is
required in order to conclude that System X
is better than Y with 95% “confidence”: How-
ever, it should be noted that the swap method
is not directly related to statistical significance
tests: the “confidence” in this context is to do
with the probability of observing a discrepancy
between two experiments, whereas confidence
in statistical significance tests is derived from
the probability of Type I error 12),16). The next
section describes a less ad hoc method for as-
sessing the discriminative power of IR metrics,
which relies on Bootstrap Hypothesis Tests.

4.3 Sakai’s Bootstrap Sensitivity
Method

This section briefly describes Sakai’s Boot-
strap Sensitivity Method for assessing the dis-
criminative power of IR metrics ☆.

First, we describe the paired Bootstrap Hy-
pothesis Test, which, unlike traditional signifi-
cance tests, is free from the normality and sym-
metry assumptions and yet has high power 4).
The strength of the Bootstrap lies in its re-
liance on the computer for directly estimating
any data distribution through resampling from
observed data. Let Q be the set of topics pro-
vided in the test collection, and let |Q| = n. Let
x = (x1, . . . , xn) and y = (y1, . . . , yn) denote
the per-topic performance values of systems X
and Y as measured by some performance metric
M . A standard method for comparing X and
Y is to measure the difference between sample
means x̄ =

∑
i xi/n and ȳ =

∑
i yi/n such as

Mean Average Precision values. But what we

☆ This paper uses the Paired-Test version of the Boot-
strap Sensitivity Method. The Unpaired-Test ver-
sion is also available for non-arithmetic-mean sum-
mary metrics such as Geometric Mean Average Pre-
cision and the “area” measure 12),16).

really want to know is whether the population
means for X and Y (μX and μY ), computed
based on the population P of topics, are any
different. Since we can regard x and y as paired
data, we let z = (z1, . . . , zn) where zi = xi −yi,
let μ = μX − μY and set up the following hy-
potheses for a two-tailed test:

H0 : μ = 0 vs H1 : μ �= 0 .
Thus the problem has been reduced to a one-
sample problem 4). As with standard signifi-
cance tests, we assume that z is an independent
and identically distributed sample drawn from
an unknown distribution.

In order to conduct a Hypothesis Test, we
need a test statistic t and a null hypothesis dis-
tribution. Here, let us consider a Studentised
statistic:

t(z) =
z̄

σ̄/
√

n
where σ̄ is the standard deviation of z, given by

σ̄ =

(∑
i

(zi − z̄)2/(n − 1)

) 1
2

.

Moreover, let w = (w1, . . . , wn) where wi =
zi − z̄, in order to create bootstrap samples
of per-topic performance differences w∗b that
obey H0. Figure 5 shows the algorithm for
obtaining B bootstrap samples of topics (Q∗b)
and the corresponding values of w∗b. (We let
B = 1000 throughout this paper.) For ex-
ample, let us assume that we only have five
topics Q = (001, 002, 003, 004, 005) and
that w = (0.2, 0.0, 0.1, 0.4, 0.0). Suppose that,
for trial b, sampling with replacement from Q
yields Q∗b = (001, 003, 001, 002, 005). Then,
w∗b = (0.2, 0.1, 0.2, 0.0, 0.0).

For each b, let w̄∗b and σ̄∗b denote the mean
and the standard deviation of w∗b. Figure 6
shows how to compute the Achieved Signifi-
cance Level (ASL) using w∗b. In essence, we
examine how rare the observed difference would
be under H0. If ASL < α, where typically
α = 0.01 (very strong evidence against H0) or
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Table 1 Statistics of the NTCIR CLIR data.

|Q| R/topic R(S)/topic R(A)/topic R(B)/topic runs used

NTCIR-3 Chinese 42 78.2 21.0 24.9 32.3 30
NTCIR-3 Japanese 42 60.4 7.9 31.5 21.0 30
NTCIR-5 Chinese 50 61.0 7.0 30.7 23.3 30
NTCIR-5 Japanese 47 89.1 3.2 41.8 44.2 30

count = 0;
for b = 1 to B

t(w∗b) = w̄∗b/(σ̄∗b/
√

n);
if( |t(w∗b)| ≥ |t(z)| ) then count++;

ASL = count/B;

Fig. 6 Algorithm for estimating the Achieved
Significance Level based on the Paired Test.

DIFF = φ;
for each system pair (X, Y ) ∈ C

sort |t(w∗1
X,Y )|, . . . , |t(w∗B

X,Y )|;
if |t(w∗b′

X,Y )| is the Bα-th largest value,
then add |w̄∗b′

X,Y | to DIFF ;
estimated diff = max{diff ∈ DIFF}
(rounded to two significant figures);

Fig. 7 Algorithm for estimating the performance dif-
ference required for achieving a given signifi-
cance level with the Paired Test.

α = 0.05 (reasonably strong evidence against
H0), then we reject H0. That is, we have
enough evidence to state that μX and μY are
probably different.

We now describe Sakai’s Bootstrap Sensi-
tivity Method for assessing the discriminative
power of IR metrics. Let C denote the set of
all possible combinations of two systems. First,
perform a Bootstrap Hypothesis Test for every
system pair in C and count how many of the
pairs satisfy ASL < α: The result represents
the discriminative power of a given IR metric.
We can thus compare different IR metrics while
holding the probability of Type I error (α) con-
stant. We thereby obtain the values of w̄∗b and
t(w∗b) for each system pair (X, Y ), which we
shall denote explicitly by w̄∗b

X,Y and t(w∗b
X,Y ).

Since each w̄∗b
X,Y is a performance difference

computed based on |w∗b
X,Y | = |Q| = n topics,

we can use the algorithm shown in Fig. 7 to
obtain a natural estimate of the minimum per-
formance difference required for guaranteeing
ASL < α, given the topic set size n. For exam-
ple, if α = 0.05 is chosen, the algorithm looks
for the Bα = 1000 ∗ 0.05 = 50-th largest value

among |t(w∗b
X,Y )| and takes the corresponding

value of |w̄∗b
X,Y | for each (X, Y ). Among the |C|

values thus obtained, the algorithm takes the
maximum value just to be conservative.

Note that the estimated differences them-
selves are not necessarily suitable for comparing
metrics, since some metrics tend to take small
values while others tend to take large values.
The discriminative power of metrics should pri-
marily be compared in terms of how many sys-
tem pairs satisfy ASL < α, that is, how many
pairs show a statistically significant difference.

5. Experiments

This section describes our experiments for
comparing P(+)-measure, O-measure, NWRR
and RR using Kendall’s rank correlation, the
Swap Method and the Bootstrap Sensitivity
Method. Section 5.1 describes the data sets we
used. Section 5.2 reports on our Kendall’s rank
correlation results to discuss how the metrics re-
semble one another. Sections 5.3 and 5.4 report
on our Swap Method and Bootstrap Sensitivity
Method results to discuss which are the most
useful metrics from the viewpoint of discrim-
inative power. Finally, Section 5.5 discusses
the effect of changing the gain values for P+-
measure and O-measure on Kendall’s rank cor-
relation and Bootstrap Sensitivity, since we find
these metrics to be the most discriminative.

As mentioned earlier, our experiments in-
clude AveP and Q-measure, which are metrics
for the task of finding as many relevant docu-
ments as possible, not for the task of finding one
relevant document, just for comparison. The
AveP and Q-measure results have been copied
from Refs. 12), 16), and are not part of this pa-
per’s contribution.

5.1 Data
Our experiments use four different data sets

(i.e., test collections and submitted runs) from
the NTCIR CLIR track series 8). Table 1
provides some statistics of the data. From
each data set, only the top 30 runs as mea-
sured by Mean relaxed AveP (i.e., AveP that
treats S-, A- and B-relevant documents just
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Fig. 8 Distribution of Mean AveP values for the runs used in this study.

Table 2 Kendall’s rank correlations based on the top 30 runs from each data set.

NTCIR-3 metric (b) (c) (d) (e) (f) (g)
Chinese (a)RR .8575 .7977 .7425 .7747 .5264 .5494

(b)NWRR - .9126 .8575 .8989 .5494 .5632
(c)O-measure - - .8621 .9310 .5264 .5402
(d)P-measure - - - .9126 .5540 .5678
(e)P+-measure - - - - .5126 .5356
(f)AveP - - - - - .9678
(g)Q-measure - - - - - -

NTCIR-3 metric (b) (c) (d) (e) (f) (g)
Japanese (a)RR .8759 .8207 .8253 .7977 .7701 .7701

(b)NWRR - .9356 .9126 .9126 .7011 .7287
(c)O-measure - - .9218 .9310 .6920 .7011
(d)P-measure - - - .9540 .7333 .7517
(e)P+-measure - - - - .7149 .7425
(f)AveP - - - - - .9540
(g)Q-measure - - - - - -

NTCIR-5 metric (b) (c) (d) (e) (f) (g)
Chinese (a)RR .8805 .8391 .7793 .7977 .5172 .5540

(b)NWRR - .9034 .8253 .8529 .4713 .5080
(c)O-measure - - .8391 .8851 .4851 .5126
(d)P-measure - - - .9080 .5632 .6000
(e)P+-measure - - - - .5356 .5724
(f)AveP - - - - - .9172
(g)Q-measure - - - - - -

NTCIR-5 metric (b) (c) (d) (e) (f) (g)
Japanese (a)RR .7839 .6506 .6138 .7057 .4667 .4529

(b)NWRR - .8391 .7103 .8207 .4069 .4115
(c)O-measure - - .6874 .7885 .3563 .3793
(d)P-measure - - - .8437 .5310 .5632
(e)P+-measure - - - - .4667 .4989
(f)AveP - - - - - .8851
(g)Q-measure - - - - - -
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as “relevant”) were used in our experiments,
since “near-zero” runs are unlikely to be use-
ful for discussing the discriminative power of
metrics. Thus, for each data set, we have a
set of 30 ∗ 29/2 = 435 system combinations,
which we shall denote by C. The distribution
of Mean AveP values for each data set is shown
in Fig. 8: It can be observed, for example, that
the top 30 NTCIR-5 Japanese runs are quite
similar to one another in terms of Mean AveP.

5.2 Rank Correlation Results
Table 2 shows the Kendall’s rank correla-

tion values between two IR metrics when the
aforementioned 30 runs from each data set are
ranked. For example, the table shows that the
rank correlation between RR and NWRR is
.8575 for the NTCIR-3 Chinese data. All the
correlation values exceed 0.34, and therefore are
statistically significant (See Section 4.1). For
convenience, values higher than 0.8 are shown
in bold, although the choice of this threshold is
arbitrary.

In terms of rank correlations, our main ob-
servations are:
• P(+)-measure, O-measure and NWRR are

relatively highly correlated with one an-
other, reflecting the fact that they were
all designed for the task of finding one
highly relevant document. In particular,
O-measure and NWRR are consistently
highly correlated with each other, reflect-
ing the fact that they both rely on r1, the
rank of the first relevant document found
in the ranked output. On the other hand,
the rank correlations between O-measure
and P(+)-measure are below 0.8 for the
NTCIR-5 Japanese data, reflecting the fact
that P(+)-measure rely on rp, the preferred
rank (See Section 3.3). This example sug-
gests that different user models sometimes
lead to different system rankings.

• P(+)-measure, O-measure and NWRR are
not very highly correlated with RR. For
example, the correlation between RR and
the other four metrics lie between .6138
and .7839 for the NTCIR-5 Japanese data.
These results demonstrate that the task of
finding one highly relevant document is not
the same as that of finding any one rele-
vant document. This generalises a finding
by Sakai 15) who compared the rank corre-
lation between O-measure and RR only.

• P(+)-measure, O-measure, NWRR and RR
are not very highly correlated with AveP

Table 3 Swap Method results (swap rate ≤ 5%;
NTCIR-3 and NTCIR-5 CLIR Chinese and
Japanese data).

(i) metric (ii) abs. (iii) max. (ii)/(iii) %pairs
diff. satisfying

(ii)
(a) NTCIR-3 Chinese (42 topics)
Q-measure 0.07 .5374 13% 43%
AveP 0.08 .5295 15% 40%
P-measure 0.15 .8636 17% 31%
P+-measure 0.15 .8632 17% 30%
O-measure 0.17 .8674 20% 24%
NWRR 0.18 .8633 21% 22%
RR 0.19 .9524 20% 20%
(b) NTCIR-3 Japanese (42 topics)
Q-measure 0.07 .6433 11% 67%
AveP 0.07 .6449 11% 66%
P+-measure 0.13 .8703 15% 59%
P-measure 0.13 .8759 15% 59%
O-measure 0.14 .8690 16% 56%
NWRR 0.16 .8757 18% 51%
RR 0.17 .9524 18% 47%
(c) NTCIR-5 Chinese (50 topics)
Q-measure 0.07 .6757 10% 26%
AveP 0.07 .6480 11% 26%
P+-measure 0.13 .9012 14% 17%
O-measure 0.14 .8901 16% 17%
P-measure 0.13 .9220 14% 16%
NWRR 0.15 .9075 17% 15%
RR 0.15 .9900 15% 13%
(d) NTCIR-5 Japanese (47 topics)
Q-measure 0.07 .6652 11% 16%
AveP 0.08 .6438 12% 11%
P-measure 0.15 .8925 17% 5.6%
P+-measure 0.15 .8874 17% 5.5%
O-measure 0.16 .8819 18% 5.3%
NWRR 0.17 .8899 19% 5.1%
RR 0.18 1.0000 18% 4.5%

and Q-measure. For example, note that the
rank correlation between O-measure and
AveP is as low as .3563 for the NTCIR-5
Japanese data, which is statistically barely
significant. These results demonstrate that
the task of finding one relevant document is
not the same as that of finding as many rel-
evant documents as possible. This also gen-
eralises one of Sakai’s findings 15), as well
as earlier findings which only considered
binary-relevance metrics such as AveP and
RR 3).

5.3 Swap Results
Table 3 summarises the results of our Swap

Method experiments using the aforementioned
four data sets, each with 30 runs. For exam-
ple, Table 3 (a) shows that, with the 42 top-
ics and the 30 runs of the NTCIR-3 Chinese
data, P-measure can guarantee that the swap
rate is no greater than 5% if the overall abso-
lute difference between two systems is at least
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Fig. 9 Summary of the Swap Method results.

0.15. Since the maximum overall absolute dif-
ference observed among the 2,000 values (1,000
trials, each with two topic sets Q∗b and Q′∗b)
is .8636, this translates to a relative difference
of 17%. Moreover, the percentage of compar-
isons that actually satisfied this absolute differ-
ence requirement among all comparisons (435
run pairs times 1,000 trials) is 31%. Fig. 9 vi-
sualises this last column, which represents the
discriminative power of each metric, showing
clearly that the results are consistent across our
four data sets.

Our main observations based on the Swap
Method are:
• P(+)-measure and O-measure are consis-

tently more discriminative than NWRR,
which in turn is consistently more discrimi-
native than RR. Moreover, with the excep-
tion of the NTCIR-5 Chinese results, P+-
measure and P-measure are more discrim-
inative than O-measure. This difference
arises from the fact that P+-measure and
P-measure consider all relevant documents
ranked above rp, in contrast to O-measure
which only considers the first retrieved rel-
evant document. The difference in dis-
criminative power between O-measure and
NWRR arises from the fact that O-measure
compares the system output with an ideal
ranked output. Finally, the difference in
discriminative power between NWRR and
RR arises from the use of graded relevance.
In short, P(+)-measure and O-measure are
the best metrics in terms of discriminative
power.

• Even P+-measure and P-measure are not
as discriminative as Q-measure and AveP.
This is because the metrics that rely on

one or a small number of relevant docu-
ments are inherently less stable than those
that rely on all relevant documents, since
they are based on a smaller number of ob-
servations. Therefore, one should prepare
a larger topic set if metrics such as P(+)-
measure and O-measure are to be used in-
stead of more discriminative metrics such
as Q-measure and AveP.

5.4 Bootstrap Sensitivity Results
Table 4 summarises the results of our Boot-

strap Sensitivity experiments. It shows, for ex-
ample, that if P-measure is used for assessing
30 systems that were submitted to the NTCIR-
3 Chinese document retrieval subtask, it can
detect a statistically significant difference at
α = 0.05 for 39% of the system pairs; The esti-
mated overall performance difference required
for detecting a statistical significance is 0.18.
Figure 10, which visualises the sensitivity col-
umn of this table, clearly shows that the results
are consistent across the four data sets, and
that they agree very well with the Swap Method
results (Compare Fig. 9 and Fig. 10). Thus, our
Bootstrap Sensitivity results show that:
• P(+)-measure and O-measure are consis-

tently more discriminative than NWRR,
which in turn is consistently more discrim-
inative than RR.

• But even P(+)-measure and O-measure are
not as discriminative as the best metrics for
the task of finding as many relevant docu-
ments as possible, namely, Q-measure and
AveP.

It can be observed that the absolute discrimi-
native power values depend heavily on the set of
runs: For example, P-measure can detect a sig-
nificant difference for 62% of the system pairs
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Fig. 10 Summary of the Bootstrap Sensitivity results.

Table 4 Bootstrap Sensitivity results (α = 0.05).

metric sensitivity estimated
(ASL < α) diff.

(a) NTCIR-3 Chinese (42 topics)
Q-measure 242/435=56% 0.10
AveP 240/435=55% 0.11
P-measure 170/435=39% 0.18
P+-measure 167/435=38% 0.18
O-measure 165/435=38% 0.19
NWRR 136/435=31% 0.20
RR 126/435=29% 0.22
(b) NTCIR-3 Japanese (42 topics)
Q-measure 305/435=70% 0.13
AveP 296/435=68% 0.11
P+-measure 272/435=63% 0.18
P-measure 271/435=62% 0.20
O-measure 255/435=59% 0.22
NWRR 247/435=57% 0.19
RR 246/435=57% 0.23
(c) NTCIR-5 Chinese (50 topics)
Q-measure 174/435=40% 0.11
AveP 159/435=37% 0.11
P+-measure 134/435=31% 0.15
O-measure 125/435=29% 0.15
P-measure 123/435=28% 0.16
NWRR 114/435=26% 0.16
RR 94/435=22% 0.16
(d) NTCIR-5 Japanese (47 topics)
Q-measure 136/435=31% 0.09
AveP 113/435=26% 0.10
P+-measure 77/435=18% 0.14
P-measure 73/435=17% 0.15
O-measure 63/435=14% 0.16
NWRR 63/435=14% 0.16
RR 54/435=12% 0.17

for the NTCIR-3 Japanese data, but for only
17% for the NTCIR-5 Japanese data. That is,
the NTCIR-5 Japanese runs are much harder to
distinguish from one another because a larger
number of teams performed equally well at
NTCIR-5 than at NTCIR-3. (For both NTCIR-
3 and NTCIR-5, the top 30 Japanese runs we

used came from 10 different teams; but the two
sets of teams are quite different.) However, it
can be observed that the ranking of metrics ac-
cording to discriminative power is quite consis-
tent across data sets.

We also note that the overall absolute differ-
ences required according to the Bootstrap Sen-
sitivity Method are generally higher than those
according to the Swap Method. That is, the
Bootstrap Sensitivity Method is more demand-
ing 12),16). For example, while Table 3 (c) sug-
gests that, if we have 50 topics, the overall dif-
ference required in terms of P(+)-measure or
O-measure would be around 0.13-0.14 in order
to ensure that the swap rate does not exceed
5%, Table 4 (c) suggests that, under the same
circumstance, the overall difference required
would be around 0.15-0.16 in order to detect
a significant difference at α = 0.05. This arises
from the different definitions of “confidence”:
the Swap Method concerns the probability of
observing consistent results across two experi-
ments given an overall performance difference;
the Bootstrap Sensitivity Method concerns the
probability of correctly concluding that two sys-
tems are equivalent, i.e., 1 − α, in a statistical
significance test.

5.5 Changing Gain Values
We finally focus on P(+)-measure and O-

measure, which we have shown to be the three
most discriminative metrics for the task of find-
ing one relevant document, and study the effect
of changing gain values (See Section 3) on both
rank correlation and the Bootstrap Sensitivity.

Table 5 shows the Kendall’s rank correla-
tion values between the “default” metric and
those with different gain values. Recall that
the default gain values we use are gain(S) =
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Table 5 Kendall’s rank correlations: default gain
values (3:2:1) versus others.

30:20:10 0.3:0.2:0.1 1:1:1 10:5:1
(a) NTCIR-3 Chinese
P+-measure .9586 .8805 .8621 .9126
P-measure .8989 .8713 .8667 .9126
O-measure .8115 .8943 .8023 .8621
(b) NTCIR-3 Japanese
P+-measure .9724 .9402 .8943 .9448
P-measure .9862 .9632 .9402 .9632
O-measure .9678 .8943 .8207 .9172
(c) NTCIR-5 Chinese
P+-measure .9632 .9034 .8713 .9172
P-measure .9448 .9264 .8759 .9218
O-measure .9862 .8897 .8345 .9448
(d) NTCIR-5 Japanese
P+-measure .8943 .8023 .7655 .7517
P-measure .8713 .9126 .8575 .8621
O-measure .8529 .7471 .6506 .7195

3, gain(A) = 2, gain(B) = 1. The column
labelled with “30:20:10” represents the gain
value assignment gain(S) = 30, gain(A) =
20, gain(B) = 10, and so on ☆. Using small gain
values such as “0.3:0.2:0.1” implies high penalty
on late arrival of relevant documents 17); “1:1:1”
represents binary relevance; and “10:5:1” rep-
resents a strong emphasis of relevance levels.
It can be observed that the system rankings
according to P(+)-measure and O-measure are
relatively robust to the choice of gain values,
although O-measure may be less robust than
P(+)-measure.

In practice, we encourage researchers to try
out several choices of gain values, since there
is no theoretical justification for pre-setting the
gain values. It is always useful to examine IR
results from several different angles: For ex-
ample, one could discuss the trends that are
consistent across (several variations of) P(+)-
measure and O-measure; and phenomena that
are observed with only one of the metrics.

Table 6 summarises the effect of chan-
ing gain values on the discriminative power,
based on the Bootstrap Sensitivity Method
(with the NTCIR-5 data only). For ex-
ample, “P10:5:1” represents P-measure with
gain(S) = 10, gain(A) = 5, gain(B) = 1.
(Hence the default gain value results, la-
belled with “3:2:1”, have been copied from Ta-
ble 4.) Recall that: (a) Using small gain

☆ It should be noted that the Blended Ratio (Eq. (2))
is affected not only by the gain value ratio but also
by the absolute gain values. To express this feature
more explicitly, the Blended Ratio can be rewritten
as BR(r) = (βcg(r) + count(r))/(βcgI(r) + r) 17).

Table 6 The effect of changing gain values on the
Bootstrap Sensitivity (α = 0.05). The de-
fault results have been copied from Table 4.

metric sensitivity estimated
(ASL < α) diff.

(a) NTCIR-5 Chinese (50 topics)
P+3:2:1 (default) 134/435=31% 0.15
P+0.3:0.2:0.1 132/435=30% 0.15
P+30:20:10 128/435=29% 0.16
P+10:5:1 125/435=29% 0.14
P+1:1:1 124/435=29% 0.15
P10:5:1 125/435=29% 0.14
P3:2:1 (default) 123/435=28% 0.16
P30:20:10 121/435=28% 0.15
P0.3:0.2:0.1 120/435=28% 0.14
P1:1:1 113/435=26% 0.15
O3:2:1 (default) 125/435=29% 0.15
O30:20:10 123/435=28% 0.15
O10:5:1 118/435=27% 0.16
O0.3:0.2:0.1 107/435=25% 0.17
O1:1:1 94/435=22% 0.16
(b) NTCIR-5 Japanese (47 topics)
P+3:2:1 (default) 77/435=18% 0.14
P+30:20:10 73/435=17% 0.15
P+0.3:0.2:0.1 69/435=16% 0.17
P+1:1:1 67/435=15% 0.14
P+10:5:1 67/435=15% 0.15
P10:5:1 85/435=20% 0.14
P30:20:10 81/435=19% 0.15
P3:2:1 (default) 73/435=17% 0.15
P0.3:0.2:0.1 64/435=15% 0.16
P1:1:1 59/435=14% 0.15
O30:20:10 65/435=15% 0.16
O3:2:1 (default) 63/435=14% 0.16
O10:5:1 62/435=14% 0.17
O0.3:0.2:0.1 59/435=14% 0.16
O1:1:1 54/435=12% 0.18

values makes O-measure resemble RR (See
Eq. (3)); (b) Given that the gain values are
all one, O-measure = RR holds iff r1 ≤ R;
(c) P (+)-measure = O-measure holds if there
is no relevant document above Rank rp. Thus,
we can expect “flat” and small gain values to
reduce the discriminative power of these met-
rics. Indeed, Table 6 shows that the gain
value assignments gain(S) = 1, gain(A) =
1, gain(B) = 1 and gain(S) = 0.3, gain(A) =
0.2, gain(B) = 0.1 tend to hurt discriminative
power, especially the former. On the other
hand, using large gain values (which implies
less penalty on late arrival of relevant docu-
ments) and using “steeper” gain values (which
emphasises the relevance levels) generally do
not seem to have a substantial impact on dis-
criminative power. In summary, P(+)-measure
and O-measure are fairly robust to the choice of
gain values as long as graded relevance is prop-
erly utilised.
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6. Conclusions and Future Work

This paper compared the properties of five
evaluation metrics that are applicable to the
task of finding one highly relevant document, in
terms of the underlying assumptions, how the
system rankings produced resemble each other,
and discriminative power. Our extensitve ex-
periments using four different data sets from
NTCIR showed that:
• P(+)-measure, O-measure and NWRR are

relatively highly correlated to one another,
since they were all designed for the task
of finding one highly relevant document.
They are not necessarily highly correlated
with RR, which is a metric for the task of
finding any one relevant document. More-
over, these metrics for the task of finding
one (highly) relevant document are not nec-
essarily highly correlated with those for the
task of finding as many relevant documents
as possible, namely, Q-measure and AveP.

• P(+)-measure and O-measure are more dis-
criminative than NWRR, which in turn
is more discriminative than RR. More-
over, P+-measure and P-measure tend to
be more discriminative than O-measure,
as they examine all relevant documents
ranked above the preferred rank rp. How-
ever, even P+-measure and P-measure are
not as discriminative as Q-measure and
AveP, as they generally examine only the
very top of a ranked output.

• P(+)-measure and O-measure are fairly ro-
bust to the choice of gain values in terms
of both rank correlation and discriminative
power.

Based on our discussions on the underly-
ing assumptions of each metric as well as ex-
perimental evidence, we conclude that P(+)-
measure and O-measure are the most flexible
and useful metrics for the task of finding one
highly relevant document. Just like RR and
NWRR, O-measure assumes that the user stops
scanning the ranked list as soon as he finds any
one relevant document, even if it is only par-
tially relevant. Whereas, P+-measure and P-
measure mimic the user who continues to scan
the ranked list until he finds a “satisfactory”
document. Such user behaviours probably de-
pend on the IR interface (whether a ranked list
is shown at all to the user; and if it is, whether
the list is informative enough for the user to
spot highly relevant documents, and so on) and

the kind of information need. Whether recent
criticisms of Average Precision from the view-
point of user satisfaction 21) applies to different
IR environments and different metrics such as
P(+)-measure and O-measure is an open ques-
tion, and an important one too.
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Appendix

As we have mentioned in Section 3.3, P-
measure and P+-measure assume that the user
is willing to examine an “unlimited” number of
documents. This appendix therefore examines
the actual range of the preferred rank rp us-
ing the NTCIR-3 and 5 Chinese and Japanese
data. Recall that rp is the rank of the first Lp-
relevant document in the system output, where
Lp is the highest relevance level observed within
the output.

Table 7 show the results for the NTCIR-3
Chinese and Japanese data. For each topic, we
first selected a run that has the largest value
of rp among all runs that contain at least one
relevant document, which we denote as maxrp.
Then, for this particular run, we counted the
number of S-, A- and B-relevant documents at

or above this rank. The total number of S-,
A- and B-relevant documents are shown in ad-
dition. For example, for NTCIR-3 Chinese
Topic 020, maxrp is as large as 913, and the
document at Rank 913 in the ranked output
examined is S-relevant. There are no A- and B-
relevant documents above this rank, so rp =
r1 holds in this case. Since there are 10 S-
relevant, 6 A-relevant and 36 B-relevant doc-
uments for this topic, the ideal cumulative gain
is cgI(r) = 3 ∗ 10 + 2 ∗ 6 + 1 ∗ 36 = 48 for
r ≥ 52(= 10 + 6 + 36). Thus P+-measure =
P -measure = O-measure = BR(913) = (3 +
1)/(48 + 913) = 0.004.

Table 8 and Table 9 provides similar statis-
tics for the NTCIR-5 Chinese and Japanese
data. For example, for NTCIR-5 Japanese
Topic 034, maxrp is as large as 424, and the
document at Rank 424 in the ranked output
examined is S-relevant. Unlike the example
mentioned above, this ranked output has as
many as 137 A-relevant documents and 29 B-
relevant documents above this rank. Hence
cg(424) = 3 ∗ 1 + 2 ∗ 137 + 1 ∗ 29 = 306, and
count(424) = 1 + 137 + 29 = 167. Whereas,
since there are 5 S-relevant, 288 A-relevant and
61 B-relevant documents for this topic, cgI(r) =
3 ∗ 5 + 2 ∗ 288 + 1 ∗ 61 = 652 for r ≥ 354(= 5 +
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Table 9 The maximum preferred rank among the 30 runs and the number of
relevant documents above the preferred rank (NTCIR-5 data: Part
II).

NTCIR-5 Chinese NTCIR-5 Japanese
Topic ID maxrp S A B Topic ID maxrp S A B
026 880 1(7) 4(27) 5(32) 028 7 1(2) 0(5) 0(5)
027 779 0(0) 1(80) 0(14) 029 217 1(7) 0(22) 1(44)
028 16 0(0) 1(12) 3(34) 030 4 1(4) 0(25) 3(30)
029 20 1(22) 4(165) 0(9) 031 375 1(1) 1(4) 4(15)
030 30 1(4) 23(50) 3(6) 032 633 1(1) 10(13) 6(6)
031 701 0(0) 1(7) 0(47) 033 94 1(1) 2(31) 11(86)
032 202 1(2) 0(9) 0(16) 034 424 1(5) 137(288) 29(61)
033 328 1(9) 5(9) 1(8) 035 9 1(5) 2(3) 2(5)
034 72 1(18) 1(33) 2(3) 036 2 0(0) 1(23) 0(0)
035 167 1(5) 2(8) 0(3) 037 16 1(7) 1(10) 1(24)
036 853 1(4) 14(21) 0(9) 038 200 1(8) 25(43) 20(43)
037 13 1(3) 0(3) 0(2) 040 93 1(2) 4(6) 0(0)
038 50 1(1) 0(2) 0(4) 041 203 1(2) 2(11) 41(168)
039 93 1(3) 2(10) 1(1) 042 70 1(1) 1(8) 56(157)
040 59 1(5) 3(10) 4(5) 043 45 1(1) 3(4) 17(34)
041 3 1(3) 0(3) 0(1) 044 47 0(0) 1(23) 2(21)
042 81 1(7) 6(24) 0(2) 045 3 0(0) 1(7) 2(4)
043 346 1(2) 0(1) 0(2) 046 10 1(3) 7(26) 1(34)
044 54 1(5) 0(2) 3(5) 047 8 1(4) 2(11) 1(20)
045 930 1(3) 0(0) 1(1) 048 78 1(3) 37(116) 11(77)
046 4 1(4) 0(4) 0(0) 049 15 0(0) 1(136) 6(46)
047 497 1(4) 0(1) 0(2) 050 45 1(3) 19(112) 13(90)
048 8 1(43) 0(19) 3(22) - - - - -
049 107 1(2) 5(23) 6(15) - - - - -
050 10 1(14) 1(52) 0(44) - - - - -

288+61). Therefore, P -measure = BR(424) =
(306 + 167)/(652 + 424) = 0.440. Similarly, it
turns out that P+-measure = 0.454. In con-
trast, although not shown in the table, r1 = 2
for the same ranked output, and the docu-
ment at this rank is only B-relevant. Therefore,
O-measure = BR(2) = (1 + 1)/(3 ∗ 2 + 2) =
0.250. If the real user is unwilling to exam-
ine documents down to Rank 424, P-measure
and P+-measure may be counterintuitive for
this particular case. As we have mentioned in
Section 3.3, however, it is possible to compute
these metrics based on a smaller number of re-
trieved documents only, provided that a large
number of topics is used to ensure evaluation
stability.
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