
IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008)

Regular Paper

An Incremental Maintenance Scheme of

Data Cubes and Its Evaluation

Dong Jin,†1 Tatsuo Tsuji†1 and Ken Higuchi†1

Data cube construction is a commonly used operation in data warehouses.
Since both the volume of data stored and analyzed in a data warehouse and
the amount of computation involved in data cube construction are very large,
incremental maintenance of data cube is really effective. In this paper, we
employ an extendible multidimensional array model to maintain data cubes.
Such an array enables incremental cube maintenance without relocating any
data dumped at an earlier time, while computing the data cube efficiently
by utilizing the fast random accessing capability of arrays. In this paper, we
first present our data cube scheme and related maintenance methods, and then
present the corresponding physical implementation scheme. We developed a
prototype system based on the physical implementation scheme and performed
evaluation experiments based on the prototype system.

1. Introduction

Analysis on large datasets is increasingly guiding business decisions. Retail
chains, insurance companies, and telecommunication companies are some of the
examples of organizations that have created very large datasets for their decision
support systems. A system storing and managing such datasets is typically re-
ferred to as a data warehouse and the analysis performed is referred to as On
Line Analytical Processing (OLAP). At the heart of all OLAP applications is the
ability to simultaneously aggregate across many sets of dimensions. Jim Gray
has proposed the cube operator for data cube 7). Data cube provides users with
aggregated results that are group-bys for all possible combinations of dimen-
sion attributes. When the number of dimension attributes is n, the data cube
computes 2n group-bys, each of which is called a cuboid.

As the computation of a data cube typically incurs a considerable query pro-

†1 Graduate School of Engineering, University of Fukui

cessing cost, it is usually precomputed and stored as materialized views in data
warehouses. A data cube needs updating when the corresponding source relation
changes. We can reflect changes in the source relation to the data cube by either
recomputation or incremental maintenance. Here, the incremental maintenance
of a data cube means the propagation of changes to the data cube. When the
amount of changes during the specified time period are much smaller than the
size of the source relation, computing only the changes of the source relation and
reflecting to the original data cube is usually much cheaper than recomputing
from scratch. Consequently, several methods that allow the incremental mainte-
nance of a data cube have been proposed in the past. The most recent one we
are aware of is Ref. 8). However, until now these methods are all for relational
model, i.e., there seems no satisfactory papers for MOLAP (Multidimensional
OLAP) as far as we know.

In MOLAP systems, a snapshot of a relational table in a front-end OLTP
database is taken and dumped into a fixed size multidimensional array periodi-
cally, for example, every week or month. At every dumping, a new empty fixed
size array has to be prepared and the relational table is dumped again from
scratch. If the array dumped previously is intended to be used, all of the ele-
ments in it must be relocated by using the corresponding address function of the
new empty array, incurring a huge cost.

In this paper, we use the extendible multidimensional array model described in
Ref. 20) as a basis for incremental data cube maintenance in MOLAP. The array
size can be extended dynamically in any direction during execution time 1),2),4).
When a dynamic array is newly allocated when required at the execution time,
all the existing elements of an extendible array are used as they are without
any relocation; only the extended part is dynamically allocated. For each record
inserted after the latest dumping, its column values are inspected and the fact
data are stored in the corresponding extendible array element. If a new column
value is found, the corresponding dimension of the extendible array is extended
by one, and the column value is mapped to the new subscript of the dimension.
Thus incremental dumping is sufficient instead of entirely dumping a relational
table.

To maintain a data cube incrementally, existing methods compute a delta cube,

36 c© 2008 Information Processing Society of Japan

37 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

representing the changes to the original data cube. The incremental maintenance
of a data cube is divided into two stages: propagate and refresh 6). The propagate
stage computes the change of a data cube from the changes of the source relation,
i.e., constructing delta cube. Then, the refresh stage refreshes the original data
cube by applying the computed change (delta cube) to it. In this paper, we
address a number of data structure and algorithm issues for efficient incremental
data cube maintenance using the extendible multidimensional array. We use a
single extendible array to store a full data cube, called single-array data cube
scheme. The main contributions of this paper can be summarized as follows:
(a) To avoid huge overhead in the refresh stage, we propose shared dimension

method for incremental data cube maintenance using the single-array data
cube scheme.

(b) We propose to materialize only the base cuboid of delta cube, in propagate
stage. Therefore the cost of the propagate stage is significantly reduced by
using our method compared with the previous methods.

(c) By partitioning the data cube based on the single-array data cube scheme,
we present a subarray-based algorithm that refreshes the original data cube
by scanning the base cuboid of the delta cube only once with limited working
memory usage.

(d) We implement our approach by a prototype system. Through experiment
evaluation on the prototype system, we proved the effectiveness of our ap-
proach on incremental maintenance of data cubes.

2. Employing Extendible Array

The extendible multidimensional array used in this paper is presented in
Ref. 20). It is based upon the index array model presented in Ref. 4). An n

dimensional extendible array A has a history counter and three kinds of auxil-
iary table for each extendible dimension i (i = 1, . . . , n). Figure 1 is an example
of two dimensional extendible array. These tables are history table Hi, address
table Li, and coefficient table Ci. The history tables memorize extension his-
tory. If the size of A is [s1, s2, . . . , sn] and the extended dimension is i, for an
extension of A along dimension i, contiguous memory area that forms an n − 1
dimensional subarray S of size [s1, s2, . . . , si−1, si+1, . . . , sn−1, sn] is dynamically

Fig. 1 A two dimensional extendible array.

allocated. Then the current history counter value is incremented by one, and
it is memorized on Hi, also the first address of S is held on Li. Since history
value increases monotonously, Hi is an ordered set of history values. Note that
an extended subarray is one-to-one corresponding with its history value, so the
subarray is uniquely identified by its history value.

As is well known, element (i1, i2, . . . , in−1) in an n − 1 dimensional fixed size
array of size [s1, s2, . . . , sn−1] is allocated on memory using addressing function
like:

f(i1, . . . , in−1)=s2s3 . . . sn−1i1+s3s4 . . . sn−1i2+ . . . +sn−1in−2+in−1 (1)
We call 〈s2s3 . . . sn−1, s3s4 . . . sn−1, . . . , sn−1〉 a coefficient vector. If n is greater

than 2, such a coefficient vector is computed at array extension and is held in a
coefficient table of the corresponding dimension. Note that n is 2 in the array in
Fig. 1, so the coefficient table is void. Using these three kinds of auxiliary tables,
the address of array element (i1, i2, . . . , in) can be computed as follows.
(a) Compare H1[i1], H2[i2], . . . , Hn[in]. If the largest value is Hk[ik], the sub-

array corresponding to the history value Hk[ik], which was extended along
dimension k, is known to include the element.

(b) Using the coefficient vector memorized at Ck[ik], the offset of the element
(i1, . . . , ik−1, ik+1, . . . , in) in the subarray is computed according to its ad-
dressing function in (1).

(c) Lk[ik]+(the offset in (b)) is the address of the element.
For example, consider the element 〈3, 4〉 in Fig. 1. Since, H1[3] < H2[4], it can

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

38 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

be known that the element is involved in the extended subarray S of history value
H2[4] = 7. So the first address of S is known to be Li[4] = 60. Since the offset
of the element 〈3, 4〉 from the first address of S is 3, the address of the element
is determined as 63. Note that we can use such a simple computational scheme
to access an extendible array element only at the cost of small auxiliary tables.
The superiority of this scheme is shown in Ref. 4) compared with other schemes
such as hashing 2).

3. Our Approach

In our approach, we use a single multidimensional array to store a full data
cube 7). Each dimension of the data cube corresponds to a dimension of the array
with the same dimensionality as the data cube. Each dimension value of a cell
of the data cube is uniquely mapped to a subscript value of the array. Note that
special value All in each dimension of the data cube is always mapped to the first
subscript value 0 in each dimension of the array. For concreteness, consider a 2-
dimensional data cube, in which we have the dimensions product (p), store (s) and
the “measure value” (or fact data) sales (m). To get the cube we will compute
sales grouped by all subsets of these two dimensions. That is to say, we will have
sales by product and store; sales by product; sales by store; and overall sales.
We can denote these group-bys as cuboids ps, p, s, and Φ, where Φ denotes the
empty group-by. We call cuboid ps as base cuboid because other cuboids can be
aggregated from it. Let Fig. 2 (a) be the fact table of the data cube. Figure 2 (b)
shows the realization of the 2-dimensional data cube using a single 2-dimensional
array. Note that the dimension value tables are necessary to map the dimension
values of the data cube to the corresponding array subscript values.

Obviously, we can retrieve any cuboid as needed by simply specifying cor-
responding array subscript values. For the above 2-dimensional data cube,
see Fig. 2 (b). Cuboid ps can be obtained by retrieving array element set
{(xp, xs)|xp �= 0, xs �= 0}; Cuboid p by {(xp, 0)|xp �= 0}. Cuboid s by
{(0, xs)|xs �= 0}; Cuboid Φ by (0,0). xp and xs denote subscript values of dimen-
sion p, and dimension s respectively.

The data cube cells are a one-to-one correspondence to the array elements. So
we may also call a data cube cell an element of the data cube thereafter. For

(a) (b)

Fig. 2 A data cube using a single array.

Fig. 3 Single array data cube scheme.

example in Fig. 2 (b), cube cell 〈Yplaza, Pen〉 can be also referred to as cube
element (1, 1).

Now we implement the data cube with the extendible multidimensional array
model presented in Section 2. Consider the example in Fig. 2 (b). First, the array
is empty, and cell 〈All, All〉 which represents overall sales with the initial value
0 is added into the array. Then the fact data are loaded into the array one after
another to build the base cuboid ps into the array; this causes extensions of the
array. Then the cells in the cuboids other than the base cuboid are computed
from the base cuboid ps and added into the array. For example, we can compute
the value of 〈Yplaza, All〉 as the sum of the values of 〈Yplaza, Pen〉 and 〈Yplaza,
Glue〉 in the base cuboid. Refer to the result in Fig. 3. To simplify the figure,
the address tables and the coefficient tables of the extendible array explained in
Section 2 are omitted. We call such a data cube scheme as single-array data cube
scheme.

The cells in the cuboids that are other than the base cuboid are called dependent

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

39 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

cells 16) because these cells can be computed from the cells of the base cuboid.
For the same reason, we call the cuboids other than the base cuboid dependent
cuboids. Obviously, any dependent cell has at least one dimension value “All”.
Therefore in our single-array data cube scheme any array element having at least
one zero subscript value is a dependent cell. Note that a subarray generally
consists of base cuboid cell (s) and dependent cell (s). For example in Fig. 3, the
subarray with history value 4 consists of two base cuboid cells 〈Yplaza, Glue〉
and 〈Genky, Glue〉, and one dependent cell 〈All, Glue〉.

In the following we use the single-array data cube scheme to maintain a data
cube incrementally. The aggregate functions used in the data cube maintenance
need to be distributive 7). For simplicity, we only focus on the SUM function in
this paper. In addition, we assume that the change of the corresponding source
relation involves only insertion. However, our approach can be easily extended
to handle deletions and updates using the techniques provided in Ref. 6).

3.1 Shared Dimension Method
As we described in Section 1, the incremental maintenance of a data cube con-

sists of the propagate stage and the refresh stage. The propagate stage computes
the change of a data cube from the change of the source relation. Then, the
refresh stage refreshes the data cube by applying the computed change to it. Let
ΔF denote a set of newly inserted tuples into a fact table F . The propagate
stage computes ΔQ which denotes the change of a data cube Q from ΔF . Take
the 2-dimensional data cube Q in the above as an example, ΔQ can be computed
using the following query:

SELECT p, s, SUM (m)
FROM ΔF

CUBE BY p, s

We call ΔQ a delta cube. A delta cube represents the change of a data cube.
The definition of ΔQ is almost the same as Q except that it is defined over ΔF

instead of F . In this example, ΔQ computes four cuboids as Q. We call a cuboid
in a delta cube as a delta cuboid, and denote delta cuboids in ΔQ as Δps, Δp,
Δs and ΔΦ which represent the change of cuboid ps, p, s and Φ in the original

Fig. 4 Non-shared dimension method.

data cube Q respectively.
We can implement original data cube Q and delta data cube ΔQ as distinct

extendible arrays. As ΔF is usually much smaller than F , the dimension sizes
of the extendible array for ΔQ are supposed to be smaller than that for the
original data cube Q. For example, the original data cube Q has six distinct
values in a dimension, while the delta cube ΔQ has four distinct values in the
dimension. See Fig. 4. They all have fewer distinct values than the dimension
of the updated data cube Q′ which has seven distinct values (a new dimension
value ’F’ is appended from ΔQ). In such a method, we can keep the size of the
array for ΔQ as small as possible, but we need to keep another dimension value
table for ΔQ. Thus the same dimension value may have different subscript values
between the arrays. Assume the first subscript value is 0. The dimension value
’H’ in ΔQ has a different subscript value with the one in Q and Q′: 3 in ΔQ,
4 in Q and Q′. Therefore during the refresh stage, each dimension value table
should be checked to get the corresponding array elements updated. This will
lead to huge overhead for large datasets.

To avoid such a huge overhead, our approach uses the same dimension table
for the original data cube Q and delta cube ΔQ. For example in Fig. 4, only the
dimension value table for Q′ will be used. So in the refresh stage, the dimension
value tables need not to be checked because the corresponding array elements
have the same subscript values in every array. We call such a method shared
dimension method.

To apply the shared dimension method into the extendible array model, the
original and delta data cubes physically share one set of dimension value tables,

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

40 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

Fig. 5 Delta base cuboid building with shared dimension data updating.

history tables, and coefficient tables, while each data cube has independent set
of subarrays to store fact data. The shared dimension data (dimension value
tables, history tables, and coefficient tables) are updated together with building
the delta base cuboid caused by source relation change ΔF . The algorithm for
building a delta base cuboid with shared dimension data updating is shown in
Fig. 5.

For example, let the original fact table F consist of the first two tuples in
Fig. 2 (a), and the change of the source relation ΔF consist of the rest two tuples.
Figure 6 (a) shows the original data cube Q, Fig. 6 (b) shows the resulted delta
base cuboid in delta cube ΔQ along with the updated shared dimension data.
Note that the dimension data in Fig. 6 (a) and (b) are physically in the same
storage and are shared between Q and ΔQ. In other words, updating of the
shared dimension data in the delta base cuboid (Fig. 6 (b)) is reflected in the
shared dimension data in the original data cube (Fig. 6 (a)).

3.2 Subarray-Based Method
Our approach materializes only one delta cuboid, namely base cuboid in the

(a) (b)

Fig. 6 Original data cube and delta data cube with shared dimension data.

propagate stage by executing the algorithm in Fig. 5. Therefore the cost of the
propagate stage is significantly reduced. During the refresh stage, the delta
base cuboid is scanned by subarray to refresh the corresponding subarray in the
original data cube in one pass. This is why we name such a method as subarray-
based method.

3.2.1 Partitioning of a Data Cube
In the single-array data cube scheme, a subarray is allocated for each distinct

value of a dimension. Since a subarray is one-to-one corresponding with its
history value as we noted in Section 2, a distinct dimension value is also one-
to-one corresponding with the history value of its subarray. So, we can call the
history value corresponding to a distinct dimension value v as the history value of
v. Let e = (v1, v2, v3) be any base cuboid element in a 3-dimensional data cube,
so v1, v2, v3 �= 0. We denote hi as the history value of vi (i = 1, 2, 3). Without
loss of generality, we assume the history value hi satisfies 0 < h1 < h2 < h3. Note
that hereafter history value 0 will be often denoted as h0 for clarity. According
to the semantics of the CUBE operator, there are 23 − 1 = 7 dependent cells of e

in the data cube. Table 1 shows the list of the base cuboid element e and its 7
dependent elements implemented by our data cube scheme.

In Table 1, eight elements are partitioned into four groups according to the
subarrays to which they belong. Each group is one-to-one corresponding with
the history value of its corresponding subarray. Therefore we call the group
corresponding to history value h as group h. So (v1, v2, v3), (0, v2, v3), (v1, 0, v3),
and (0, 0, v3) is in group h3, (v1, v2, 0) and (0, v2, 0) is in group h2, (v1, 0, 0) is in

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

41 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

Table 1 A base cuboid element and its dependent elements in a 3-dimensional data cube.

related subarray can be aggre-
element history gated with

(group)
(v1,v2,v3) h3 -
(0, v2, v3) h3 (v1,v2,v3)
(v1, 0, v3) h3 (v1,v2,v3)
(0, 0, v3) h3 (v1,v2,v3)

(v1,v2,0) h2 (v1,v2,v3)
(0, v2, 0) h2 (v1,v2,0)
(v1,0,0) h1 (v1,v2,0)
(0,0,0) h0 (v1,0,0)

group h1, and (0, 0, 0) is in group h0. In each group there is one and only one
element with which the rest elements can be aggregated. Such element will be
called the base element of the group. Obviously (v1, v2, v3), (v1, v2, 0), (v1, 0, 0),
and (0, 0, 0) are the base elements of the group h3, h2, h1, and h0 respectively.
They are in bold typeface in Table 1. Furthermore, the base element of group
hi−1 can be aggregated with the base element of group hi along the extended
dimension i (i = 1, 2, 3). That is to say, (v1, v2, 0) is the base element of group
h2 and can be aggregated with (v1, v2, v3), the base element of group h3 along
the extended dimension 3; (v1, 0, 0) is the base element of group h1 and can be
aggregated with (v1, v2, 0); (0, 0, 0) is the base element of group h0 and can be
aggregated with (v1, 0, 0).

From the above 3-dimensional data cube, we can generalize our data cube
scheme for an n-dimensional data cube as follows. For any base cuboid ele-
ment e in an n-dimensional data cube, there are 2n − 1 dependent cells of e.
We can get these cells by substituting 0 for the n coordinate terms of e. The
obtained 2n elements (including e itself) can be partitioned into n + 1 groups
according to their history values of the subarrays to which they belong. So group
hi is the group of cells corresponding to history value hi (i = 0, . . . , n), where
0 = h0 < h1 < h2 < . . . < hn. We can arrange the dimension values of e as
(v1, v2, . . . , vn), where the corresponding history value of vi is hi (i = 1, . . . , n).
Then, all the elements in group hi can be presented as n dimensional coordinate
(∗, . . . , ∗, vi, 0, . . . , 0) where * represents either vj (j = 1, . . . , i− 1) or 0. Element
(v1, v2, . . . , vi, 0, . . . , 0) is the base element of group hi, and the rest elements in

the group can be aggregated with it. There are total of 2i−1 elements in group
hi (i > 0). In group h0 there is always only one element, (0, 0, . . . , 0). Further-
more, the base element of group hi−1 can be aggregated with the base element of
group hi along the extended dimension i (i = 1, . . . , n). We will show later that
we need to keep the intermediate result for the base element of group hi−1 by
aggregating it with the base element of group hi along the extended dimension i.

3.2.2 Refreshing Scheme
As our subarray-based method only materializes the delta base cuboid in the

propagate stage, for each element in the delta base cuboid we need to update
the corresponding 2n elements of the original cube during the refresh stage. We
can separate the updating of the 2n elements into n + 1 groups. The elements in
group hn are refreshed together with the base cuboid element as they are in the
same subarray. For the elements in the other n groups, we keep the intermediate
results for the base elements of the groups until we refresh the corresponding
subarrays whose history values are hi (i = 0, . . . , n − 1). As we mentioned, the
intermediate result for the base element of group hi−1 can be aggregated with
the base element of group hi along the extended dimension of i (i = 1, . . . , n).
See the example in Table 1; for any element e = (v1, v2, v3) in the subarray of the
delta data cube, its 23 = 8 corresponding elements are updated in the subarrays
corresponding to h3, h2, h1, and h0 of the original data cube. For the refreshment
of the subarray corresponding to h3, update (v1, v2, v3), (0, v2, v3), (v1, 0, v3), and
(0, 0, v3) and keep the intermediate result for (v1, v2, 0) by aggregating (v1, v2, v3)
along dimension 3; for the refreshment of the subarray corresponding to h2,
update (v1, v2, 0) and (0, v2, 0) and keep the intermediate result for (v1, 0, 0) by
aggregating (v1, v2, 0) along dimension 2; for the refreshment of the subarray
corresponding to h1, update (v1, 0, 0) and keep the intermediate result for (0,
0, 0) by aggregating (v1, 0, 0) along dimension 1; finally for the refreshment of
the subarray corresponding to h0 only update (0, 0, 0) without keeping further
intermediate result.

To describe generally, for all the delta base cuboid elements of a subarray
ΔS in the delta cube and all the intermediate result T for ΔS, our refreshing
scheme based on the subarray-based method performs two things to refresh the
corresponding subarray S in the original data cube; one is to update S with T and

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

42 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

Fig. 7 Refreshing algorithm for subarray-based method.

all the base cuboid elements in ΔS; the other is to keep the further intermediate
results by aggregating with T and all the base cuboid elements in ΔS along
the extended dimension of ΔS. See the detail of our subarray-based refreshing
algorithm in Fig. 7 and the example running result in Table 2.

In the algorithm shown in Fig. 7, S[h] denotes the subarray whose correspond-
ing history value is h. As the intermediate result data are always aggregated
along the subarray extended dimension, we can hold the intermediate result data
for dependent cells in n arrays of n − 1 dimensionality. We denote such data
as Td which holds the intermediate result by aggregating it with the subarrays
extended on dimension d. T ′

d denotes all the intermediate result arrays except
Td. Note that the intermediate results for the dependent cells in a subarray with
history value h always come from the subarrays whose corresponding history val-
ues are larger than h. Thus, to get all the intermediate results, we must start
refreshing from the subarray with the maximum history value.

Table 2 Result of the refresh algorithm against ΔF in Fig. 2 (a).

Assume the example in Fig. 2 (a) as ΔF . For simplicity, we assume the original
data cube Q is empty. See the running result in Table 2. The intermediate
result array Ts is generated on history value 5 and Tp on history value 4. Ts

consists of the intermediate result for 〈All, Pen〉 and 〈All, Glue〉; Tp consists of
the intermediate result for 〈Y plaza, All〉, 〈Genky, All〉, and 〈All, All〉. As there
are only two intermediate result arrays Ts and Tp in this example, Ts is equivalent
to T ′

p and Tp equivalent to T ′
s.

In order to avoid frequent accesses to the disks, the intermediate result arrays
must be kept in main memory. If array extension is in round-robin manner for
all dimensions just like the one shown in Fig. 3, it can be known that the total
memory requirement for the intermediate result arrays is

M =
n∑

i=1

⎛
⎝

n∏
j=1,j �=i

Ci

⎞
⎠ ,

where Ci is the cardinality of the i-th dimension in the base cuboid (1 ≤ i ≤ n).
Obviously M is much smaller than the size of the base cuboid if the dimension
cardinalities are large enough.

It can be further proved that the total storage requirement in any array exten-
sion manner is bounded by M . In the data cube maintenance for a real-world
dataset, it is common that the valid elements of the delta cube are not uniformly

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

43 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

distributed in the base cuboid. So the actual memory requirement can be much
smaller than M . Furthermore, we can refine our subarray-based algorithm to
deallocate the memory for those intermediate results which are not needed in
later computation.

4. Physical Implementation

In practice, it is common that most multidimensional arrays for data cube are
large but sparse. Multidimensional arrays are good containers to store dense data,
but for sparse data cubes huge memory will be wasted because a large number
of array cells are empty and thus are very hard to use in actual implementation.
In particular, the sparseness problem becomes serious for delta data cube whose
logical array size can be the same as that of the original data cube, but usually
much more sparse than it.

HOMD (History Offset implementation scheme for Multidimensional Datasets)
model presented in Ref. 20) seems to be one of the efficient storage schemes to
store such sparse data. It employs extendible multidimensional arrays as its
underlying logical data structure. In this section, we will extend the HOMD
model for physically implementing our single-array data cube scheme and shared
dimension method.

4.1 HOMD Implementation Model
The HOMD model is based on the extendible array explained in Section 2. Each

dimension of a data cube corresponds to a dimension of the extendible array and
each dimension value of the data cube is uniquely mapped to a subscript value of
the array dimension. A subarray is constructed for each distinct dimension value.
Figure 8 shows the HOMD implementation of the two dimensional data cube
in Fig. 3. For an n-dimensional data cube Q, the corresponding logical structure
of HOMD is the pair (M, A). A is an n dimensional extendible array created for
Q and M is a set of mappings which were mentioned in Section 3 as dimension
value tables. Each mi in M maps i-th dimension values of Q to subscript values
of the dimension i of A. A will be often called as a logical extendible array.

Each element of an n dimensional extendible array can be specified by its
n dimensional coordinate. In HOMD model, we have directed our attention
to that each element can be specified by using the pair of history value and

Fig. 8 Physical structure for a data cube implemented by HOMD.

offset value. Note that since each history value h is unique and has a one-to-
one correspondence with its corresponding subarray S, S is specified uniquely
by h. Moreover, the offset value of each element in S can be computed as in
Section 2 and this is also unique in the subarray. Therefore each element of
an n dimensional extendible array can be referenced by the pair (history value,
offsetvalue). In the HOMD logical structure (M, A), each mapping mi in M is
implemented using a single B+ tree called CV T (key subscript ConVersion Tree),
and the logical extendible array A is implemented using a single B+ tree called
RDT (Real Data Tree) and n HOMD tables.

Definition 1 CVT: CV Tk for the k-th dimension of an n dimensional data
cube is defined as a structure of B+ tree with each distinct dimension value v as
a key value and its associated data value is subscript i of the k-th dimension of
the logical extendible array A. So the entry in the sequence set of the B+ tree
is the pair (v, i). i references to the corresponding entry of the HOMD table in
the next definition.

Note that the special value All is unnecessary to be mapped in CVT as it is
always the first subscript value 0 in each array dimension.

Definition 2 HT: HT (HOMD Table) includes three kinds of sub-table for
each dimension; the history table and the coefficient table corresponding to the
ones in an extendible array described in Section 2, and the column value table.
Note that the address table of an extendible array in Section 2 can be void in

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

44 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

our HOMD physical implementation.
Elements in HT are arranged according to the insertion order. For example,

the column value “Genky” is mapped to the subscript 2 in the insertion order,
though in the sequence set of CVT, the key “Genky” is in position 1 due to the
property of B+ tree. At insertion of a record, each column value in it is searched
in the corresponding CVT. If a key value in the record does not exist, the logical
extendible array A is extended by one along the dimension, and a new slot in HT
is assigned and initialized.

Definition 3 RDT: The set of the pairs (history value, offset value) for all
of the effective elements in the extendible array are housed as the keys in a B+

tree called RDT. Therefore, the entry of the sequence set of the RDT is the pair
((history value, offset value), m), here, m denotes the measure value for fact data
in a data cube.

Note that the RDT together with the HTs implements the logical extendible
array on the physical storage. We assume that a key (history value, offset value)
occupies fixed size storage and the history value is arranged in front of the offset
value. Hence the keys are arranged in the order of their history values and keys
that have the same history value are arranged consecutively in the sequence set
of RDT. Note also that since the RDT stores only the keys corresponding to
the existing multidimensional data, it is highly compressed and does not contain
empty array elements.

We implement our data cube scheme by HOMD aiming compression of data
cubes while preserving the random accessing capability of multidimensional ar-
rays. For an n dimensional data cube in our data cube scheme, its HOMD
implementation is the set of n CVTs, n HTs and RDT. For our shared dimen-
sion method, HOMD implementation of original data cube Q and delta cube ΔQ

share one set of n CVTs and n HTs, while each data cube has independent RDT
to store fact data; RDT for Q and ΔRDT for ΔQ.

4.2 Refreshing of Data Cubes
We implement subarray-based method described in Section 3.2 by HOMD. We

will use a B+ tree called IRT (Intermediate Result Tree) in main memory to
contain the intermediate result for the dependent cells instead of n intermediate
result arrays. The data structure of IRT is the same as RDT. Note that we can

Fig. 9 Physical refreshing algorithm for subarray-based method.

easily delete those intermediate results which are not needed in later computation
by IRT. In Fig. 9, we describe the physical refreshing algorithm for subarray-
based method corresponding to the logical one described in Fig. 7. As we extend
HOMD with our shared dimension methond, note that the algorithm shown in
Fig. 9 is not CVT related.

5. Performance Evaluation

In this section, we present the results of performance experiments. In Ref. 22),
analytical performance evaluation is presented based on the number of tuple
accesses in constructing a data cube. Here, in order to do the evaluation using an

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

45 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

actual system, we developed a prototype system based on HOMD implementation
scheme described in the previous section.

In the experiments, we compared our subarray-based method with an incre-
mental cube maintenance method that uses all of 2n delta cuboids. The perfor-
mance of a maintenance method is measured by the time taken for maintaining
a data cube by that method. The prototype system runs on a Sun Blade 1000
with 750 MHz UltraSparc III CPU and 512 MB RAM. We implemented the two
maintenance methods used in the experiments in our prototype system. We also
constructed another prototype system for fixed-size sparse array data cube re-
computation based on the same B+ tree library and compared the results of the
two incremental maintenance methods.

5.1 Datasets
The synthetic datasets used in the experiments were generated mainly by the

following parameters:
n: Number of dimensions of a data cube
Ci: Number of dimension values (cardinality) of the i-th dimension in a base

cuboid (1 ≤ i ≤ n).
ρ: Density of valid elements in an original base cuboid, it reflects the sparseness

of the cuboid
Table 3 shows the parameters of three original data cubes, i.e., Q1, Q2 and

Q3, used in the experiments. Each cube has a different number of dimension
attributes. Table 4 shows the parameters of three datasets for new data cubes
Q′

1, Q
′
2 and Q′

3 corresponding to the original data cubes in Table 3. Note that

Table 3 Original cubes used in the experiments.

cube n cardinality of dimensions
Q1 3 1000*500*200
Q2 4 100*100*100*100
Q3 5 100*50*50*20*20

Table 4 New cubes generated in the experiments.

cube n cardinality of dimensions
Q′

1 3 1100*550*220
Q′

2 4 110*110*110*110
Q′

3 5 110*55*55*22*22

each dimension in the delta data cubes has 10% new dimension values than
corresponding dimension in the original data cubes, and it will cause the array
to be extended.

The records in the synthetic fact tables are uniformly distributed in random.
The fact tables have no index attached. In the experiments, we varied the size of
the changes to the fact table from 2% to 20% of its original size. We also varied
the size of the fact table from about 600,000 tuples to 3,000,000 tuples. We made
changes to the fact table by inserting new tuples to the fact table.

5.2 Experimental Evaluation
Figure 10 shows the result of performance experiment when we varied the size

of changes, for a fixed size (about 600,000 tuples) of the fact tables. Note that ρ

is also fixed at about 0.6% in this case. We compared our subarray-based method
SB with the conventional method CV that uses all of 2n delta cuboids. The same
experiment was performed on Q1, Q2 and Q3. In Fig. 10, SB (Total) and CV

(Total) represent the time taken for the whole process including propagate and
refresh stage in our SB method and CV method, respectively. Note that reading
cost from the source relation and updating cost to refresh the original cube are
included in the total cost shown in Fig. 10. In the analytical evaluation part of
Ref. 22), they are mentioned but excluded from the cost comparison because they
are same both for CV and SB method. As shown, the total maintenance time is
reduced in our SB method because it computes only a delta base cuboid. Also,
SB (Refresh) and CV (Refresh) represent the time taken for the refresh stage in
our SB method and CV method respectively. Note that the refresh time is also
slightly reduced in our SB method though it takes much more CPU computing
cost and IRT processing cost than that of CV method. This is because only
the number of tuples in the delta base cuboid need to be read from disk in our
SB method. Thus, we can confirm that our SB method does not increase the
refresh cost. Especially, we note that the benefit of our SB method increases
as the number of dimension attributes increases. This is because the number
of delta cuboids computed in CV method increases as the number of dimension
attributes increases.

Figure 11 shows the two methods’ storage costs by the total number of tuples
in delta cuboids that are actually generated in the experiment in Fig. 10. As

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

46 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

Fig. 10 Performance by varying the size of delta fact tables.

Fig. 11 Number of tuples in the delta cubes generated in the experiment in Fig. 10.

Fig. 12 Performance by varying the size of original fact tables.

shown, SB method has the storage cost advantage over CV method as the former
only materializes a single delta base cuboid in propagate stage. The number
of tuples generated also affects the performance and disk I/O overhead of a
maintenance method. As shown in Fig. 11, the number of tuples generated by our
SB method is always less than that by CV method. From Fig. 10 and Fig. 11, we
can see that the performance of a maintenance method improves as the number
of tuples generated decreases.

Figure 12 shows the result of the performance evaluation when we scaled the

size of the fact table from 100% (about 600,000 tuples) to 500% (about 3,000,000
tuples) for a fixed rate (10%) of the change. Note that ρ is also varied accordingly
from about 0.6% to 3.0%. Again in this case, our SB method outperforms the
CV method for Q1, Q2, and Q3. Furthermore, we can see that both CV and SB

methods are much more effective than cube recomputation using fixed-size array.
Hence, we can confirm that both SB and CV method can be effectively used for
fast incremental maintenance of data cubes.

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

47 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

6. Related Work

Since Jim Gray proposed the data cube operator, techniques for data cube
construction and maintenance have been extensively studied. As far as we know,
these papers include Refs. 8), 12), 13), 16), 18) mainly optimize the computation
on cuboid level. So they usually implement an n-dimensional data cube into 2n

nested relations or arrays corresponding to the 2n cuboids on data organization
for relational and multidimensional databases. In this paper, we propose to
organize all the 2n cuboids of a data cube into only a single extendible array.
Doing so provides opportunities to simplify the data cube management.

Reference 6) is the first paper that addressed the issue of efficiently maintaining
a data cube in a data warehouse. Reference 11) proposed the cubetree as a
storage abstraction of a data cube for efficient bulk increment updates. The
problem of maintaining data cubes under dimension updates was discussed in
Ref. 3). Reference 17) presented techniques for maintaining data cubes in the
IBM DB2/UDB database system. Reference 5) made some improvement based
on Ref. 6). All these methods build 2n delta cuboids to maintain a full cube with
2n cuboids. Recently, Ref. 8) proposes an incremental maintenance method for
data cubes that can maintain a full cube by building only nCn/2 delta cuboids.
In comparison, our subarray-based method only builds a single delta cuboid -
base cuboid to maintain a full cube.

References 3), 5), 6), 8), 11), 17) are all for ROLAP. There seems no satisfac-
tory papers for MOLAP (Multidimensional OLAP) as far as we know. But, the
method shown in Ref. 6) can also be effectively implemented in MOLAP as CV

method we showed in Section 5. In MOLAP papers 9),10),14),15), the notion of a
data cube is different from the terminology in our paper. In fact, data cubes de-
fined in these papers are the cuboids generated by CUBE operator in our paper.
Therefore, they actually addressed cuboid maintenance to improve range query
performance instead of the data cube maintenance in our context. So, they are
completely different from our work.

This paper is an extended version of the one presented in Ref. 22). Reference 22)
does not provide evaluation based on acutually implemented system, instead gives
an analytical evaluation based on the number of tuples to be accessed during

propagate stage and refresh stage. The works presented in Refs. 20), 21) are
based on HOMD, on which our implementation is also based on, but data cubing
is not discussed in these works. Reference 19) presents another storage scheme of
multi-dimensional database by employing extendible array of high density, but it
doesn’t discuss anything about data cube operations, either.

7. Conclusion

In this paper we presented data structure and algorithm for data cube in-
cremental maintenance based on the notion of an extendible array. By using
the single-array data cube scheme, we developed shared dimension method and
subarray-based algorithm to implement data cube incremental maintenance effi-
ciently. Through performance experiment on a prototype system our approach
shows effectiveness on fast incremental maintenance of data cubes.

References

1) Rosenberg, A.L: Allocating Storage for Extendible Arrays, JACM, Vol.21, pp.652–
670 (1974).

2) Rosenberg, A.L. and Stockmeyer, L.J.: Hashing Schemes for Extendible Arrays,
JACM, Vol.24, pp.199–221 (1977).

3) Hurtado, C.A., Mendelzon, A.O. and Vaisman, A.A.: Maintaining Data Cubes
under Dimension Updates, Proc. ICDE Conference, pp.346–355 (1999).

4) Otoo, E.J. and Merrett, T.H.: A Storage Scheme for Extendible Arrays, Comput-
ing, Vol.31, pp.1–9 (1983).

5) Li, H., Huang, H. and Lin, Y.: DSD: Maintain Data Cubes More Efficiently, Fun-
dam. Inform, Vol.59, No.2-3, pp.173–190 (2004).

6) Mumick, I.S., Quass, D. and Mumick, B.S.: Maintenance of Data Cubes and Sum-
mary Tables in a Warehouse, Proc. ACM SIGMOD Conference, pp.100–111 (1997).

7) Gray, J., Bosworth, A., Layman, A. and Pirahesh, H.: Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals, Proc.
ICDE Conference, pp.152–159 (1996).

8) Lee, K.Y. and Kim, M.H.: Efficient Incremental Maintenance of Data Cubes, Proc.
VLDB Conference, pp.823–833 (2006).

9) Riedewald, M., Agrawal, D. and Abbadi, A.E.: Flexible Data Cubes for Online
Aggregation, Proc. ICDT, pp.159–173 (2001).

10) Riedewald, M., Agrawal, D., Abbadi, A.E. and Pajarola, R.: Space-Efficient Data
Cubes for Dynamic Environments, Proc. DaWaK, pp.24–33 (2000).

11) Roussopoulos, N., Kotidis, Y. and Roussopoulos, M.: Cubetree: Organization of

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

48 An Incremental Maintenance Scheme of Data Cubes and Its Evaluation

and Bulk In-cremental Updates on the Data Cube, Proc. ACM SIGMOD Confer-
ence, pp.89–99 (1997).

12) Jin, R. Yang, G., Vaidyanathan G. and Agrawal, K.: Communication and Memory
Optimal Paral-lel Data Cube Construction, IEEE Transactions On Parallel and
Distributed Systems, Vol.16, No.12, pp.1105–1119 (2005).

13) Agrawal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakr-
ishnan, R. and Sarawagi, S.: On the Computation of Multidimensional Aggregates,
Proc. VLDB Conference, pp.506–521 (1996).

14) Geffner, S., Agrawal, D. and Abbadi, A.E.: The Dynamic Data Cube, Proc. EDBT
2000, pp.237–253 (2000).

15) Geffner, S., Riedewald, M., Agrawal, D. and Abbadi, A.E.: Data Cubes in Dynamic
Environments, IEEE Data Eng. Bull., Vol.22, No.4, pp.31–40 (1999).

16) Harinarayan, V., Rajaraman, A. and Ullman J.D.: Implementing Data Cubes Ef-
ficiently, Proc. ACM SIGMOD Conference, pp.205–216 (1996).

17) Lehner, W., Sidle, R., Pirahesh, H. and Cochrane, R.: Maintenance of Cube Au-
tomatic Sum-mary Tables, Proc. ACM SIGMOD Conference, pp.512–513 (2000).

18) Zhao, Y., Deshpande, P.M. and Naughton, J.F.: An array based algorithm for si-
multaneous multidimensional aggregate, Proc. ACM SIGMOD Conference, pp.159–
170 (1997).

19) Otto, E.J. and Rotem, D.: A storage scheme for multi-dimensional databases using
extendible array files, Proc. STDBM, pp.67–76 (2006).

20) Hasan, K.M.A., Kuroda M., Azuma N. and Tsuji T.: An Extendible Array
Based Implementation of Relational Tables for Multidimensional Databases, Proc.
DaWaK, pp.233–242 (2005).

21) Hasan, K.M.A., Tsuji, T. and Higuchi, K.: An Efficient Implementation for MO-
LAP Basic Data Structure and Its Evaluation, Proc. DASFAA, pp.288–299 (2007).

22) Jin, D., Tsuji, T., Tsuchida, T. and Higuchi, K.: An Incremental Maintenance
Scheme of Data Cubes, Proc. DASFAA, pp.172–187 (2008).

(Received June 20, 2008)
(Accepted August 10, 2008)

(Editor in Charge: Makoto Onizuka)

Dong Jin is now a candidate of Ph.D. at Graduate School of
Engineering, University of Fukui. He received his B.E. degree
from Qingdao Institute of Chemical Technology, China in 1992,
and MBA degree from Xi’an Jiaotong University, China in 2004.
He was mainly engaged in MIS related work since graduation in
1992. His current research interests include data warehousing and
management information systems.

Tatsuo Tsuji received his Ph.D. degree in Information and
Computer Science from Osaka University in 1978. In the same
year, he joined the Faculty of Engineering at University of Fukui
in Japan. Since 1992, he has been a professor in the Information
Science Department of the faculty. His current research inter-
ests include database implementation schemes and data warehous-
ing systems. He is the author of the book, “Optimizing Schemes

for Structured Programming Language Processors” published by Ellis Horwood
(1990).

Ken Higuchi received his B.E., M.E. and D.E. degrees in Com-
munications and Systems Engineering in 1992, 1994 and 1997, re-
spectively, from the University of Electro-Communications. He is
now an associate professor of the Graduate School of Engineering,
University of Fukui. His research interests include database man-
agement system, parallel processing, and XML document man-
agement system.

IPSJ Transactions on Databases Vol. 1 No. 3 36–48 (Dec. 2008) c© 2008 Information Processing Society of Japan

