Vol.40 No.SIG2(TOM 1)
Regular Paper

TR 23

Feb. 1999

B

T

An Approximation Algorifhm for Genome Rearrangements
with Reversals and Transpositions

HIDEO MATSUDA," HIROYUKI YAMANAKA!*
and AKIHIRO HASHIMOTO!

Recently a new approach has been proposed for inferring the evolutionary process of
genomes based on comparison of gene orders. It involves searching for the minimum number
of reversals and /or transpositions to sort a permutation of genes between genomes. Since the
complexity of the problem is conjectured as NP-hard, we developed a 2-approximation algo-
rithm for genome rearrangements with both reversals and transpositions. In comparison with
the optimum solution in randomly generated permutations, the performance of our algorithm
is 1.19 for the average approximation ratio and 1.67 for the worst case. In the application of
our algorithm to comparison between complete bacterial genomes, we obtained good results

in just several seconds.

1. Introduction

Tools for constructing phylogenetic trees have
been used extensively in studies of molecular
evolution'»?). Their use has been aimed at
comparing strings representing single genes or
single proteins. For example, those studies have

“usually focused on a single gene, examining how
the DNA sequence for the gene differs in differ-
ent species. That is, such analysis uses only a
specific portion of genetic information in those
species.

Recently, a different approach to the evolu-
tionary analysis among species was proposed?).
It focuses on comparison of not gene sequences
but gene orders on whole DNA sequences (so-
called genomes) of different species, taking into
account several genome-level mutations: inver-
sions, where a segment of DNA is reversed;
transpositions, where two adjacent segments
of DNA exchange places; and translocations,
where the ends of chromosomes are exchanged.
These kinds of large-scale mutations are collec-
tively called genome rearrangements®.

In the comparison of two genomes based on
genome rearrangements, the goal is to infer a
sequence of mutations that change gene orders
on the two genomes from their common ances-
tor genome. Since all the genome-level muta-
tions mentioned above are commutative, the
problem can be described as the inference of

1 Graduate School of Engineering Science, Osaka
University
* Presently with NTT Data Corporation

82

a sequence of operations that transforms the
gene order of one genome into that of the other
genome (via the gene order of their common an-
cestor). Moreover, it is known that gene-level

mutations occur rarely (about 10~° substitu-

tions per site on DNA sequence per year) and
genome-level mutations occur more slowly than
gene-level mutations in many species. Thus,
among the possible combinations of operations
for that transformation, a sequence having the
smallest number of operations is the most likely
one. The problem here is to find the minimum
number of operations that transform gene or-
ders between different genomes.

The combinatorial problem of sorting by re-
versals (corresponding to genome rearrange-
ments by inversions) has been studied in-
tensively. Kececioglu and Sankoff sug-
gested the first performance-guaranteed (2-
approximation) algorithm for this problem?®).
Later Bafna and Pevzner improved the approx-
imation ratio to 7/4%). It has been shown that
the problem is NP-hard”).

Bafna and Pevzner studied a similar sorting
by transpositions problem. They gave a (3/2)-
approximation algorithm®). Gu, Peng and Sud-
borough studied an extended problem, sorting
by reversals and transpositions®). In the prob-
lem, they introduced an extra operation, rever-
sal+transposition, that in one operation both
inverts a segment of DNA and also inserts it
into another place on the same DNA sequence.
They gave two approximation algorithms for
this problem®: a 2-approximation algorithm
of which time complexity may not be bound

Vol. 40 No.SIG2(TOM 1) Approximation Algorithm for Genome Rearrangements 83

by a polynomial of the length of the permuta-
tion, and a 2(1+41/k)-approximation algorithm,
where %k is any fixed integer (k > 3), which
runs in polynomial time. Later they devised a
polynomial-time 2-approximation algorithm'®.

In this paper we deal with a restricted ver-
sion of the problem studied by Gu et al.,
which includes only reversal and transposition
operations. A reversal+transposition opera-
" tion is represented by a combination of re-
versal and transposition operations. We re-
strict the problem to only two operations un-
der consideration of the following. Biologi-
cal analyses of genome mutations have usually
dealt with either inversions only or combina-
tions of inversions and transpositions. Further-
more, the proportion of mutations which oc-
cur tends to differ by genome: for example, in-
versions alone are dominant in plant mitochon-
drial DNA!), whereas combinations of inver-
sions and transpositions occur in herpesvirus
genomes'?). Thus we deal with the problem
without the reversal+transposition operation
to make it easier to correspond with the results
of those biological analyses.

We developed a 2-approximation algorithm
for this problem, independently of the algo-
rithm by Gu et al. In the next section, we
give the definitions and notations of the pa-
per and introduce the lower bound on the num-
ber of operations for sorting permutations by
reversals and transpositions. Section 3 de-
scribes the approximation algorithm and Sec-
tion 4 shows performance results for sorting
randomly-generated permutations and sorting
gene orders on bacterial genomes that have re-
cently been completely determined.

2. Genome rearrangements and break-
point graph

2.1 Preliminaries

Let I1 = (m 7wy - - - m,,) represent a signed per-
mutation of integers 1 through n, where =; is
the number at the 4-th position. For example,
if I = (231) then 1y =2, mp = 3 and 73 = 1.
Note that ;4 is the number to the right of m;
in TI, whereas m; + 1 is the number that is one
greater than ;. :

A reversal (i, j) of the interval [¢,j — 1] is an
inversion of the subsequence m;m;4q -+ mj—1 of
II (1 <i<j<n+1), represented by the per-
mutation (1---2—1 j—1---1 j---n) and it
changes the signs of the numbers in the interval.
Composition of IT with 7(z, 5) yields II-7(4, j) =

(my -+ Wi —Mj_1---—W ;- Tp) where the
order of elements m;,...,mj_; is reversed and
those signs are changed.

A transposition t(i,7,k) inserts an inter-
val [t,j — 1] of II between mp_; and my
1 <1< j<n+11 < k< n+
1), represented by the permutation (1:--¢ —
1 j---k—-1 i---j—1 k---n). Composi-
tion of II with t(s,7,k) yields II - t(¢,5,k) =
(Ty - M1 Tj - M1+ + Wj—1Tg -+ - W) Where
elements ;,...,m;—1 and 7;,...,m;_1 exchange
their order in II (those signs are not changed).

Example 1 Let II = (+2+4+5-3-1).
Then IT-7(2,5) = (+24+3—-5—-4—1) and II -
t(2,4,5) = (+2 -3 +4+5—1).

Using these operators, the genome rearrange-
ment problem is formalized as follows.

Definition 1 Genome Rearrangement
Problem: Given two genomes (hereafter we as-
sume that a genome has only one chromosome),
extract identical gene pairs from these genomes

‘and let n» be the number of these pairs. Let

the identity permutation I = (4+1+2-:-+n)
represent the matched genes on one genome
and a signed permutation II = (mymy - - m,) of
{1,2,...,n} with + or — signs represent those
on the other genome. Here two genes corre-
sponding to one another on the two genomes are
represented by the same number. The sign of
7; denotes the matching of directions between
the corresponding genes on the two genomes
(+ sign, the same direction; — sign, opposite
direction). The problem is to find a shortest
sequence of operations pi, p2,..., ¢ such that
II-py-p2---pe = I where pi(1 < i < t)is
either reversal or transposition.

Figure 1 shows the relationship between
gene order and signed permutation. Each gene
is oriented according to the direction of two
DNA sequences that are complementary to each
other. In Fig. 1, the gene order on genome A
is set to be a reference (i.e, the identity permu-
tation I) and the gene order on genome B is
encoded as a signed permutation II. The sign
of each element of II is set to be + if its direc-
tion is the same as the corresponding gene on
genome A, or — otherwise.

2.2. Breakpoint graph

Bafna and Pevzner introduced the notion of a
breakpoint graph for representing the structure
of the problem®. First, they introduced break-
point graphs of unsigned permutations. Then
they extended them for signed permutations.
We describe these notions in a similar way.

84 BRI 2R

Gene 1 Gene3 Gene4
= ==> >

R ———— | ‘
Genome A < — I=(+1 42 43 +4)

<
Gene 2

Gene 1
>

— P
Genome B e e

M=(+2 +1-4-3)
< < < .
Gene 2 Gene4 Gene 3

Fig. 1 Relatioﬁship between gene order and signed
permutation

(1) Breakpoint graph of unsigned permuta-
tion. \
Add two extra numbers mp = 0 and 7,41 =
n + 1 into an unsigned permutation II =
(mymy - mn) of {1,2,...,n}. Leti ~ jif|i—j| =
1 and i+ j otherwise. A pair of consecutive
elements m; and 741 (0 < @ < n) of I is
called a breakpoint if m; +& miy1. A pair of
non-consecutive elements m; and 7; (i+ j) is
called an adjacency if m; ~ m;. A breakpoint
graph G(IT) = (V, E) of Il is a graph such that
each vertex v € V is an element of IT and each
edge e € E is a link between either a break-
point pair or an adjacency pair. Hereafter, we
refer to a link between a breakpoint pair as a b-
edge and to a link between an adjacency pair as
an a-edge. These edges form alternating cycles,
namely every two consecutive edges are differ-
ent types, either a-edge or b-edge. Hereafter we
refer to alternating cycles simply as “cycles”.
(2) Breakpoint graph of signed permutation.
To extend the notion of a breakpoint graph of
an unsigned permutation to that of a signed
permutation, Bafna and Pevzner introduced a
transformation from a signed permutation of
length n to a corresponding unsigned permu-
tation of length 2n+2 ®): a positive integer +i
is replaced by two unsigned integers, 22 — 1 and
2i; a negative integer —i is replaced by 2: and
2 — 1; and two more integers, 0 and 2n + 1,
are added at each end respectively. After this
‘transformation, a breakpoint graph of a signed
permutation is constructed similarly to that of
an unsigned permutation. ‘
Figure 2 shows a breakpoint graph of a
signed permutation Ilggneq = (+2+1—4-3).
In Fig. 2, its transformed unsigned permutation
Mipans = (34128765) and two extra integers
0 and 9 are added at the ends. Hereafter we
refer to an unsigned permutation transformed
from a signed permutation simply as a “permu-
tation”.

Feb. 1999

I trans =
I signed = (+2 -4 =3)

b-edge

Fig. 2 A breakpoint graph of a signed permutation .
I=(+2+1-4-3). :

2.3 Lower Bound

In a breakpoint graph G(II) of an arbi-
trary permutation II of {0,1,...,2n,2n + 1}
(transformed from a signed permutation of
{1,2,...,n}), let b(II) and d(II) be the number
of b-edges (i.e., breakpoints) and the distance
between II and I (i.e., the minimum number
of operations that transform II into I), respec-
tively. Denote Ab = Ab(IL, p) = b(II) — b(Ilp)
(the decrease in the number of breakpoints by
an operation p, either a reversal or a transposi-
tion).

Gu et al.!® proves that the lower bound of
sorting by reversals, transpositions and rever-
sal+transpositions is:

d(IT) > (b(II) - coaa(11)) /2, (1)
where c,q4(II) denotes the number of odd cy-
cles, which are the cycles whose number of b-
edges is odd.

Since the set of operations in our problem de-
scribed in Definition 1 is a subset of the prob-
lem studied by Gu et al., the lower bound of our
problem is at least the value given in Eq. (1).

3. 2-Approximation Algorithm

As mentioned in Section 1, Gu et al. de-
vised a 2-approximation algorithm for sort-
ing by reversals, transpositions and rever-
sal+transpositions'®). Independently of their
work, we have devised a 2-approximation algo-
rithm for a restricted version of their formula-
tion (i.e., sorting by only reversals and trans-
positions). :

Eq. (1) implies that decreasing b(II) with-

- out decreasing c,q4(IT) reduces the distance be-

tween II and I. Thus we designed this algo-
rithm as a greedy algorithm to explore opera-
tions that removes as many breakpoints as pos-
sible without decreasing the number of cycles.

We classified. operations by the number of

" breakpoints to be removed: i-transposition de-

notes a transposition that reduces ¢ breakpoints
(=3 <7 < 3) and j-reversal denotes a rever-

Vol. 40 No.SIG2(TOM 1) Approximation Algorithm for Genome Rearrangements 85

sal that reduces j breakpoints (-2 < j < 2),
respectively. Note that Ab = 4 for an i-
transposition whereas Ab = j for a j-reversal.

To remove breakpoints without decreasing
the number of cycles, we introduce the notion
of one-cycle operations. Suppose a cycle C =
(Ve, Ec) in a breakpoint graph G(II). A trans-
position t(%, 7, k) is called a one-cycle transpo-
sition if (m;_1,m;) € Eg, (7j_1,7;) € Ec and
(mk—1,7m%) € Ec. Similarly, a reversal (3, 7) is
called a one-cycle reversal if (m;_;,7;) € E¢o
and (ﬂ'j_l,’il’j) € F¢.

Gu et al. proved the property that one-cycle
operations can be performed in a cycle if the
cycle has at least one pair of crossing a-edges'®).
Here a pair of crossing a-edges consists of two
a-edges (m;,7;) (i < j) and (mg,m) (B < 1)
such that the endpoints of the two edges are
interleaved in IT (e, i < k< j<lork <i<
1< j).

Gu et al. used the reversal+transposition op-
eration in their proof. Since the problem we
introduce here lacks this operation, we prove
the property mentioned above without using it
as described below.

Hereafter, we denote Ac = Ac(I, p) = c(IT)—
c(Ilp), which represents the decrease in the
number of cycles by an operation p that is ei-
ther a reversal or a transposition.

Lemma 1 One-cycle operations can be per-

formed in a cycle with at least one pair of cross-
ing a-edges.
Proof. Let (m;—1,m;) and (7;_1,7;) be two con-
secutive b-edges that are connected by an a-
edge. There are four types depending on the
position of the a-edge (see Fig. 3).

(a) (mi—1,mj—1) is an a-edge.

A reversal 7(4, 7) is a one-cycle reversal that re-
‘moves a b-edge incident with m;_;. Moreover,
if another a-edge (7;, ;) exists, r(, j) is a one-
cycle 2-reversal that deletes the cycle. Other-
wise, r(%, j) is a one-cycle 1-reversal.

(b) (wi—1,7;) is an a-edge.

If the a-edge is crossed with another a-edge
in the same cycle, there exists another b-edge
(mk—1,) outside interval [1—1, 7] (i.e., k < i or
J < k—1) in the cycle. Either t(k,1,7) (if k <)
or t(j,k,i) (if 7 < k — 1) is a one-cycle trans-
position that removes a b-edge by making m;_;
and 7; be two consecutive numbers in IIp. Fig-
ure 3 (b) shows the case j < k — 1. Moreover,
if both (m;,m%_1) and (m;_1,7) are a-edges,
t(k,7,7) (or t(j,k,7)) is a 3-transposition that
deletes the cycle. If either of the two edges is

..........
.......
"""

.....

e
o

o
X

(c)

r (@ j)
(d)
Fig. 3 Relationship between breakpoint types and
one-cycle operations

an a-edge, t(k, ¢,) (or ¢(4,k,17)) is a one-cycle 2-
transposition. Otherwise, t(k,1,7) (or t(j,k,1))
is a one-cycle 1-transposition.
(¢) (s, wj-1) is an a-edge.

If the a-edge is crossed with another a-edge
in the same cycle, there exists another b-
edge (mp_1,m) (1 +1 < k < j — 1) in the
cycle, and a transposition t(k,7,%) is a one-
cycle transposition that removes a b-edge in-
cident with m;. Moreover, if both (m;_1,m)
and (7g_1,7;) are a-edges, t(k,j,i) is a 3-
transposition that deletes the cycle. If either
of the two edges is an a-edge, t(k, j,1) is a one-
cycle 2-transposition. Otherwise, t(k,j,4) is a
one-cycle 1-transposition.

86 BRLEZS

crenny
o -
.t v,

%,
o,
a, ,
o, Y
)

S %,
"

[I= (0 1 20=7 85 63 4m=9)

’,
" & N

0
o, 5
N o
...........

Fig. 4 Examples of non-oriented cycles

(d) (ms,7;) is an a-edge.

A reversal r(¢, 7) is a one-cycle reversal that re-
moves a b-edge incident with 7;. Moreover, if
another a-edge (m;_1,m;-1) exists, r(4,7) is a
one-cycle 2-reversal as mentioned in (a). Oth-
erwise, 7(,) is a one-cycle 1-reversal. O

The following lemma describes a property of
one-cycle operations.

Lemma 2 Ac < 0 for one-cycle 2-
transposition, one-cycle 1-transposition and
one-cycle 1-reversal operations.

Proof. Let p be any of these operations. Let
Cy and C;(2 <4 < ¢(II)) be the cycle where p
is performed and the other cycles in G(II), re-
spectively. Since C; ¢ G(IIp) and C; C G(Ilp),
c(Ilp) > ¢(II) — 1. Since any of the opera-
tions yields at least one new b-edge, p yields
at least one new cycle C' ¢ G(II). This implies
c(Ilp) > ¢(II). Thus Ac = ¢(IT) — ¢(Ilp) < 0. O

If there exists a cycle with no crossing a-
edges, one-cycle operations cannot be per-
formed in the cycle. Bafna and Pevzner call
such a cycle non-oriented cycle®). A non-
oriented cycle has one a-edge of type (b) (be-
tween the leftmost end and the rightmost end
in the permutation) and at least one a-edge of
type (c). Figure 4 shows a breakpoint graph
of Il = (0127856349) has two non-oriented
cycles. ,

Gu et al. proved that a non-oriented cycle is
always interleaved with another cycle!?). Using
this property, they provided a set of two trans-
positions that removes two b-edges from two
interleaved non-oriented cycles (one b-edge per
cycle) and does not change the length of any
other cycles. 4

Figure 5 shows an example of such a set
of two transpositions. The first transposition
removes one b-edge and merges the two non-
oriented cycles into a cycle that has crossing
a-edges. Then the second transposition also re-
moves one b-edge and split the cycle into two
new non-oriented cycles.

In this way, two b-edges are removed, while
the number of cycles remains the same before

e

Feb. 1999

‘ .
Tpervaa,, .

>
»
oftve, 00 e
R) s .,
o

%, H
DN 1 (3

Y i

ajkbced e hi fgl
Fig. 5 A set of two transpositions in two interleaved
non-oriented cycles.

and after performing the two transpositions un-
less either of the two cycles is deleted (i.e.,
Ab — Ac = 2 by two operations). When ei-
ther of the two cycles is removed, the number
of the cycles decrease by one but the two opera-
tions remove an extra b-edge since they remove
a cycle (i.e., Ab— Ac =3 —1 =2 by two oper-
ations). Similarly when both of the two cycles
are removed by the two operations, the num-
ber of the cycles decrease by two but the two
operations remove two extra b-edges since they
remove two cycles (ie., Ab—Ac=4-2=2
by two operations). By repeating these trans-
positions, all b-edges in non-oriented cycles can
eventually be removed and Ab — Ac = 1 holds
per operation on average.

The outline of our algorithm is as shown in
Fig. 6. In this algorithm, we give higher pri-
ority to the operations that remove a greater
number of b-edges, while Gu et al. dealt with
every one-cycle operation on an equal basis'?).
This ordering of operations may contribute to
a decrease in the expected approximation ratio
of our algorithm.

The number of while-loop iterations is pro-
portional to the number of b-edges and the
condition-checking process in each if-statement
requires time proportional to the number of b-
edges. Since the number of b-edges is propor-
tional to the permutation length in the worst
case, the time complexity of this algorithm is
bound by O(n?), where n is the length of per-
mutation. ‘ :

Vol. 40 No.SIG2(TOM 1) Approximation Algorithm for Genome Rearrangements 87

Algorithm 1

begin
Construct G(II);
while there exist b-edges in G(II)
begin

if one-cycle 3-transposition is executable

do it;

elseif one-cycle 2-transposition is executable

do it;

elseif one-cycle 2-reversal is executable

do it;

elseif one-cycle 1-transposition is executable

do it;

elseif one-cycle 1-reversal is executable

do it;

elseif two interleaved non-oriented cycles exist
perform two transpositions in the cycles;

end
end

Fig. 6 The outline of approximation algorithm for genome rearrangement

The following theorem holds regarding algo-
rithm performance.

Theorem 1 For each while-loop iteration

of the algorithm shown in Fig. 6, Ab— Ac >1
per operation.
Proof. The value of Ab— Ac for each operation
in this algorithm is: Ab— Ac = 2 for a one-cycle
3-transposition, Ab — Ac > 2 for a one-cycle 2-
transposition by Lemma 2, Ab— Ac =1 for a
one-cycle 2-reversal, Ab — Ac > 1 for a one-
cycle 1-transposition and one-cycle 1-reversal
by Lemma 2.

As mentioned above, a set of two operations
in two interleaved non-oriented cycles removes
two breakpoints and does not change the num-
ber of cycles. Thus Ab — Ac > 1 holds per
operation on average. O

Thus we can derive the following theorem.

- Theorem 2 In the algorithm shown in
Fig. 6, d(II) < b(II) — c(II).

Proof. Let t = d(II). Denote p;, pt—1,...,p1 as
operations that give the minimum number of
operations. Then the transformation from II
into I is represented by a recurrence relation
;—1) = Myps (1 < i < t) where Il(;) = IT and

=1 |
By Theorem 1,

d(Il(3)) = d(Il(;-1)) + 1
< d(Il—1y) + ALy, pi)
—Ac(Il), pi))
= d(Il(;-1)) + b(ILy)) — b(I1; 1)
—(c(Miy) = e(Ili-1))) (2)
Eq. (2) can be transformed into the following
equation.

d(I)) — (b(I1z)) — e(T(s)))
< d(Mi—yy) — (B(H-1y) — e(Ti-1)))
< - < d(Io)) — (b(Io)) — c(Ikp))) (3)
Since the breakpoint graph of the identity
permutation I has no b-edges and no cycles,
d(Ilo)) = b(Il()) = c(Ilpy) = 0. Thus, by re-
placing ¢ with t in Eq. (3), the upper bound is
derived from Eq. (3) as follows.
d(II) < B{II) ~ c(11). ()
O
By Eq. (1) and Theorem 2, the approxima-
tion ratio is 2(b(II) — ¢(II))/(b(II) — coqa(II)).
Since b(II) — coqq(IT) > b(II) —c(II), the approx-
imation ratio is at most 2. Thus we conclude
that the approximation ratio of our algorithm
is 2.

4. Performance Results

To evaluate the performance of our algo-
rithm, we compared results with the optimum
solution for random permutations. We gener-
ated 100 permutations of length 8. The opti-
mum solution (i.e., the minimum number of op-

88 TR 3 Feb. 1999
Table 1 Bacterial complete genomes used for the analysis of genome rearrangements
GenBank Number
ID | Species Accession No. of genes
G1 | Mycoplasma genitalium 1.43967 468
G2 | Mycoplasma pneumoniae 000089 677
G3 | Methanococcus jannaschis L77117 1735
G4 | Methanobacterium thermoautotrophicum AE000666 1871
G5 | Haemophilus influenzae L42023 1680
G6 | Escherichia coli U00096 4290
Table 2 Sorting results between bacterial genomes
Number of Lower Number of Execution
Genomes | orthologous genes (1) c(I) coda(Il) bound operations time (s)
G1 vs G2 425 6 2 0 3 3 0.02
G3 vs G4 289 117 2 1 58 63 0.23
G5 vs G6 857 349 2 1 174 181 4.17
from the lower bound in Eq. (1) only by a small
g constant). To integrate such heuristics with our
s algorithm remains as a topic of our future re-
g search.
E For the comparison between real genomes, we
5 used the genomes shown in Table 1. The gene
B sequences and their orders on these genomes are
E obtained from the GenBank database'?). Ta-
2 L ble 1 shows their accession numbers (a database
identifier) in GenBank. The genomes G1 and
1 11 12 13 14 15 16 17 G2 belong to the same genus (the layer that is

Approximation Ratio

Fig. 7 Distribution of the ratio of results to the
optimum number

erations that transform these permutations into
the identity permutation) was computed by us-
ing an exhaustive search method. Although we
used a machine with a relatively large amount
of memory (Sun SPARCstation 20 with 512 MB
memory) for this computation, we could not ob-
tain the optimum solution for permutations of
length more than 8 due to exponential growth
of the number of possible operations to be ex-
plored.

Figure 7 shows the distribution of approx-
imation ratios (the ratio of the number of op-
erations computed by our algorithm to the op-
timum number). Although the theoretical ap-
proximation ratio is 2 as described in Section 3,
the worst-case ratio in this experiment is 1.67
and the average of the ratios is 1.19 for our al-
gorithm.

Gu et al. proposed a heuristic method to
improve approximation ratio results for their
algorithm?®. In an experiment in randomly-
generated permutations, their method achieved
nearly optimum performance (results differed

one level higher than species), both G3 and G4
are methanogenic archaebacteria, and G5 and
G6 are referred to closely related bacteria al-
though G5 is a parasite bacterium but G6 is a
free-living one'®). Thus it may be considered
that G1 and G2 are closest to each other, while
G5 and G6 are furthest from each other. .

To extract identical pairs (more exactly, or-
thologous pairs) of genes, we used a method
based on bi-directional best hits on sequence
similarity’®). In this method, first compute the
sequence similarity of every possible one-to-one
match between a set of genes in one genome and
another set in the other genome, and then ex-
tract those pairs of genes that exhibit the high-
est similarity to each other (a pair of genes, ¢
from genome A and j from genome B, such
that ¢ exhibits the highest similarity to 7 than
any other genes in A and j exhibits the high-
est similarity to 7 than any other genes in B).
For computation of sequence similarity, we per-
formed pairwise global alignment!®).

In the comparison of G1 with G2 shown in
Table 2, we confirmed that the orthologous
pairs of genes are consistent with the result
of an intensive comparison between these two
genomes!'”). Since it is time-consuming pro-

Vol. 40 No.SIG2(TOM 1) Approximation Algorithm for Genome Rearrangements 89

cess to extract such orthologous pairs from
possible combinations of gene pairs of two
genomes based on pairwise global alignment,
the speedup of this process remains as a topic
of our future research.

Table 2 shows the results. Execution times
were measured on a Sun SPARCstation 20
(SuperSPARC-II, clock 75 MHz). The num-
ber of operations measured by our algorithm is
close to the lower bound, (b(II) — coqq(I1))/2.
Moreover the increasing order of the number
of operations corresponds biological knowledge
mentioned above. The computational speed is
sufficiently high even when there are hundreds
of breakpoints to be removed.

5. Conclusions

We have developed a 2-approximation algo-
rithm for genome rearrangements with reversals
and transpositions. From comparison of our al-
gorithm results with the optimum solution for
random permutations, we note that our algo-
rithm achieves good performance with an aver-
age approximation ratio of 1.19. We also ap-
plied our algorithm to some bacterial genomes
whose complete DNA sequences have recently
been determined. The performance of the algo-
rithm was close to the lower bound. Further-
more, the computational speed is high enough
to perform the comparison even if the complete
set of genes in organisms is used.

Our future research topics include the devel-
opment of algorithms that improve practical
performance (such as expected approximation
ratio) in solving this problem.

Acknowledgments We are grateful to the
reviewers for their valuable comments and as-
sistance in improving this manuscript. This
work was supported in part by a Grant-in-Aid
(08283103) for Scientific Research on Priority
Areas from The Ministry of Education, Science,
Sports and Culture in Japan.

References

1) Nei, M.: Molecular FEvolutionary Genetics,
Columbia University Press, New York, chap-
ter 11 (1987).

2) Swofford, D. L. and Olsen, G. J.: Phylogeny
Reconstruction, In Molecular Systematics, ed.
Hillis, D.M. and Moritz, C., Sinauer Associates,
Sunderland, Mass., pp. 411-501 (1990).

3) Sankoff, D. et al.: Gene Order Comparisons
for Phylogenetic Inference: Evolution of the
mitochondrial genome, Proc. Natl. Acad. Sci.

USA, Vol. 89, pp. 6575-6579 (1992).

4) Gusfield, D.: Algorithms on Strings, Trees,
and Sequences, Cambridge University Press,
chapter 19, pp. 492-500 (1997).

5) Kececioglu, J. and Sankoff, D.: Exact and Ap-
proximation Algorithms for the Inversion Dis-
tance between Two Permutations, Proc. 4th
Ann. Symp. Combinatorial Pattern Matching,
LNCS No. 684, Springer Verlag, pp. 87-105
(1993).

6) Bafna, V. and Pevzner P.: Genome Rearrange-
ments and Sorting by Reversals, SIAM J. Com-
puting, Vol. 25, No. 2, pp. 272-289 (1996).

7) Caprara, A.: Sorting by Reversals is Difficult,
Proc. 1st Ann. Conf. Research in Computa-
tional Molecular Biology (RECOMBY7), ACM
Press, pp. 75-83 (1997).

8) Bafna, V. and Pevzner P.: Sorting Permuta-
tions by Transpositions, Proc. 6th ACM-SIAM
Ann. Symp. on Discrete Algorithms, pp. 614—
623 (1995).

9) Gu, Q.-P., Peng, S. and Sudborough, H.:
Approximation Algorithms for Genome Rear-
rangements, Proc. Genome Informatics 1996,
Universal Academy Press, pp. 13-22 (1996).

10) Gu, Q.-P., Peng, S. and Sudborough, H.: A
2-Approximation Algorithm for Genome Re-
arrangements by Reversals and Transposition,
Theoretical Computer Science, to appear.

11) Palmer, J. and Herbon L.: Plant Mitochon-
drial DNA Evolves Rapidly in Structure, But
Slowly in Sequence, J. Mol. Ewvol., Vol. 28,
Nos: 1/2, pp. 87-97 (1988).

12) Hannenhalli, S., Chappey, C., Koonin, E. V.
and Pevzner, P. A.: Genome Sequence Compar-
ison and Scenarios for Gene Rearrangements: A
Test Case, Genomics, Vol.30, No.2, pp.299-311
(1995).

13) Gu, Q.-P., Iwata, K., Peng, S., Chen, Q.-M.:
A Heuristic Algorithm for Genome Rearrange-
ments, Genome Informatics 1997, Universal
Academy Press, pp. 268-269 (1997).

14) Benson, D.A., et al.: GenBank, Nucleic Acids
Research, Vol. 26, No. 1, pp. 1-7 (1998).

15) Tatusov, R. L. et al.: Metabolism and Evolu-
tion of Haemophilus influenzae Deduced from
a Whole-Genome Comparison with Escherichia
colt, Current Biology, Vol.6, No. 3, pp. 279-291
(1996).

16) Needleman, S. B. and Wunsch, C. D.: A Gen-
eral Method Applicable to the Search for Sim-
ilarities in the Amino Acid Sequences of T'wo
Proteins, J. Mol. Biol., Vol. 48, pp. 444-453
(1970).

17) Himmelreich, R., et al.: Comparative Anal-
ysis of Genomes of the Bacteria Mycoplasma
pneumoniae and Mycoplasma genitalium, Nu-

90 BRI SR

cleic Acids Research, Vol.25, No.4, pp. 701-712
(1997).

(Received May 1, 1998)
(Revised June 11, 1998)
(Accepted June 29, 1998)

Hideo Matsuda was born in
1959. He received his B.Sc.,
M.E. and Ph.D. degrees from
Kobe University in 1982, 1984
and 1987 respectively. From
1984 to 1990, he was a research
associate and, from 1990 to 1994
a lecturer of the Department of Systems En-
gineering, Kobe University. He was a visit-
ing scholar of the Mathematics and Computer
Science Division, Argonne National Laboratory
from 1991 to 1992. He is now an associate
professor of the Department of Informatics and
Mathematical Science, Osaka University. His
research interests include bioinformatics and

molecular biology database. He is a member
of IPSJ, IEICE, IEEE CS and ACM.

Feb. 1999

Hiroyuki Yamanaka was
born in 1973. He received his
. B.E and M.E. degrees from Os-
- aka University in 1996 and 1998,
respectively. Since 1998, he is
with NTT Data Corporation.

Akihiro Hashimoto was
born in 1938. He received his
B.E, M.E. and Dr.Eng. de-
grees from Osaka University in
1961, 1963 and 1966, respec-
tively. He worked in NTT Lab-
oratories from 1966 to 1989 and
was engaged in research on fault diagnosis and
design automation in computer systems and de-
velopment of the DIPS system. He was a visit-
ing assistant professor of the University of Illi-
nois from 1969 to 1971. He is now a professor of
the Department of Informatics and Mathemat-
ical Science, Osaka University. His research in-
terests include information processing technol-

ogy in molecular biology. He is a member of
IPSJ, IEICE, IEEE and ACM. '

