Vol.40 No. SIG2(TOM 1)
Regular Paper

BRI F SRS

Feb. 1999

Energy Function based on Restrictions for
Supervised Learning on Feedforward Networks

ALEXANDRA I. CRISTEA' and ToSHIO OKAMOTO!

In this paper we present the construction and usage of an energy function for supervised
learning on feedforward networks, based on restrictions. We focus on the mathematical de-
ductions of the energy function, based on the Lyapunov (also called infinite) norm, from error
minimization procedures. We will show how the movement equations derived from this en-
ergy function improve the learning and generalization capacity of the neural tool in the case
of stock exchange (SE) prediction, in the sense of time-series (TS) prediction. We will also
show some comparative results of our method and the classical backpropagation (BP) method,
obtained by means of the T (Theill) test and the correlation computation. The verification
of the proposed energy function is done through computer simulation.

1. Introduction and Delimitation

Optimizations of Neural Networks (NN) have
been performed in multiple ways. Algorithmic
improvements are the traditional concerns of
the NN community (see e.g. 1), 7), 12), 20)).
Among these, the most popular learning algo-
rithms for feedforward networks try to minimize
a certain cost function, which depends on an ad-
justable weight vector. In a statistical context,
this is very often equivalent to the maximiza-
tion of the likelihood of sample data of an input-
output relation with respect to this weight vec-
tor'®). A statistical and sound theoretical argu-
mentation of learning from data can be found in
4). Another line of research is based on enhanc-
ing NNs’ performance by using parallelization
techniques and parallel machines®?18), By
now it is obvious that a combined approach is
preferable!®).

In the present paper we will confine ourself
to the traditional optimization methods, keep-
ing in mind that this represents only a part of
the complete system (see 5), 6) for details). In
fact, we will focus here on the mathematical de-
ductions of an error metric for feedforward net-
works (also known as multi-layer perceptrons),
based on the Lyapunov (also called infinite)
norm and on error minimization procedures, in
the sense of the ”probably approximately cor-
rect” (PAC) model®). This error function is
an extension of the quadratic penalty function,
and is applicable to SE TS forecasting. We will

1 Graduate School of Information Systems, University
of Electro-Communication

15

show how the effective use of this norm reduces
the sensitivity of the network to minor errors.

Benchmarking of our system is done by com-
parison with the classical BP method, obtained
by means of the T (Theill) test and the corre-
lation computation.

The paper is structured as follows. First
(section 2) we will describe the two step error
function deductions for a general case, regard-
less of the actual dimensions of the feedforward
net used for implementation. Then we will de-
scribe the frame of the stock exchange predic-
tion problem, in section 3. In the following, we
will build a specific network for the SE prob-
lem, following some general guidelines (section
4). Then, from the obtained error function, we
will design the learning algorithm in section 5
and explain why we can use a BP based devel-
opment. The implementation details, simula-
tions and results will be presented in following
sections (6,7) and conclusions will be drawn.

2. Deductions of the energy function

For time series prediction we can rewrite
the prediction problem in a standard Energy-
minimization form. We used a Lyapunov based
development of an energy function, but while
the Lyapunov* method is based on vector
derivation, we used weights’ change, therefore
matrix derivation, as follows.

Let r be the error vector, r; = y; — d;;7 =
1,..,n, where y; = f(3°" | wi;z;), is the actual,
calculated output and d; the desired output for
neuron j in the output layer; z; is one of the

* Infinite Norm

16 THERALE R

inputs, with ¢ = 1, ..., m, w;; are the weights, m
the number of inputs, n the number of outputs,
f the external activation function. Then we can
build an energy function* as follows.

B(w) = maz,-s,..{lr; ()]} M

Finding the minimum of this error/energy

function means finding

”minwemmxn mar =i, .,n {"I"J (’lU)I} ”, (2)
or, if we define wy as being the maximum error
radius,

wo 2 l’r'J(’lD)l,j =1,.,n5we 2 0, (3)
the minimization of the error becomes equiva-
lent to the minimization of wy.

Condition 3 can be divided into 2 inequalities

(restrictions):
gj1(w) = wo +r;(w) > 0;
gjz(w) = wo — 7j(w) > 0;
Wo Z Ov] = 1,..,%, (4)

where g;1, gj2 are notations.

In order to achieve a more robust representa-
tion, we develop a new energy function by ap-
plying the standard quadratic penalties on the
newly constructed restriction inequalities, and
obtain:

B(w) = vwo + £ Y {(los (W] +

+(lgs, w))-)2, (5)

-with [y]- = min(0,y);¥ > 0,k > 0, constants.

Equation 5 states that the energy of the system

depends only on the maximum error radius wo,

as long as the restrictions in 4 are satisfied. If

not, the terms g;1, g;2 also contribute to the

error function.

Let S(y) = (1/y) * [y]—, therefore:
0, fory <O

S(y) - 1, rest .

Si = S('wo +Tj) and S;3 = S(wg -Tj), then

apply Gradient Descent reasoning. The weight
changing equations will look as follows:

dwi,j _ 6 _
i (E(w)) = | (6)
—kz; Z {('wo + ’f'j) Sjl - ('wo - ""j) Sﬂ}

=1
Similarly, we obtain a movement equation for
the maximum error radius, as follows:

* error, or cost function

Feb. 1999

Fig. 1 Delimitation through the external (maximum)
error sphere

(I
— b
o A S
o
Fig. 2 Dead zone delimiter for dwij/dt
dwo 6 .
o e (Bw) @
n
—v—=k Y {(wo+rj)Sj1 + (wo — ;) Sj2}
Jj=1

The basic idea of this approach is that wp not
only controls all the other errors, but also en-
sures convergence by decreasing monotonously.
If the maximum error(ME) radius will decrease,
so will all other errors contained in the er-
ror sphere. Which is more, the decreasing
step is set by the decreasing step of the ME,
that can be adjusted in order to assure conver-
gence (Fig. 1). In the figure, rmax is ME,
rj,withj = 1,..,n has the same meaning as in
the above equations, and the convergence takes
place when shifting from the sphere on the left
side, to the one on the right side of the picture.

We can rewrite the components that are
added in the sums of equations 6,7 as:

for %ﬂ computation

(wo + rj(w))Sj1 — (wo — 7j(w))Sj2 =

wo + 7(w), for r; < —wp
=< 0, r; € [—wo,wo) (8)
~wo +7;(w), r;>wp

for d—;”t—‘l computation

(wo + 1;(w))Sj1 + (wo — rj(w))Sj2 =
wo + rj{w), for r; < —wy

= 0> T € [_’IDO,’(UO) (9)
wo — rj{w), 75 > wo

Vol. 40 No.SIG2(TOM 1)

ri
i

B

wo
Fig. 3 Dead zone delimiter for dw0/dt

Both movement equations are functions of
r; and linear ramps of absolute slope 1 and
dead-zone [—wp, wp]. We interpret the obtained
dead-zone delimiters as follows. '

They both compare the maximal error with
the other errors. The dead-zone linear ramp
obtained for w;; in eq.8 compares each error to
the maximum error radius wg and establishes
how the weights should change in order to bring
the errors inside the range of the maximal error,
by prohibiting that other errors become greater
than the maximal one. Eq.9 for wy compares
the maximum error to the other errors, and
tries to shrink the sphere (see Fig. 1), i.e., to
adjust the maximum error wy in order to be-
come closer to the other errors. That is why wy
can only become smaller (only negative domain
in Fig. 3), but r; must correct both deviations
in the negative and positive domain, so it can
change both ways(Fig. 2).

3. Stock Exchange Forecasting

Development of prediction tools is, accord-
ing to 14), one of the ”basic subjects in sci-
ence”. Moreover, forecasting of time-series is
a challenging task that attempts to find the
rule/mechanism behind data generation. How-
ever, in such cases, there is always the ques-
tion of the predictability of the data, in other
words, if the data is fully deterministic(FD),
therefore predictable, fully random, therefore
unpredictable, or, as in most cases, somewhere
in-between.

Most of the economical functions can be rep-
resented as TS. In this work we study the TS of
SE events, that can be forecasted with certain
accuracy with NN (2)#)16)) " Still, according to
a well-known financial law called the efficient
market hypothesis, as soon as a predictable reg-
ularity appears on the market, it is immediately
exploited by all the market actors and therefore
tends to disappear. In reality, the law would be
true only in a transparent market where the in-
formation would be perfectly transmitted and
equally available for everybody. But as this is
not the case on the real market, where infor-

Energy function based on restictions

17

mation is often private or becomes public with
a delay, and also as the participants at a stock
trading possess different forecasting tools and
act driven by their own private theories, it can
be presumed that the process is not influenced
only by one theory*. The present research is
done in view of this point.

There are three ways in which a NN can make
predictions upon a TS:

1) the NN can find rules/functions,

2) it can make predictions in a fired window
of time-values, of which some are recent past
states and some are future values, and

3)it can learn from any number of past values
and predict any number of future values.

From these we selected the second type, for
the following reasons: First, because if there
might be some deterministic features in SE
data, there will surely never be enough to con-
struct a function of it, or, in other words, be-
cause SE data are not FD. On the other hand,
if we select the third option, although it might
increase the generality degree of the learning
process, the input data may loose some of the
connection information**.

The inputs can be:

1) the predictable data or

2) the predictable data and other economical
influence factors or

-3) only economical influence factors.

Further on we will call the predictable data
the ”Mathematical Data(MD)”, because it re-
flects the mathematical relation of the past
terms of a series with its future terms, and we
will call the economical influence factors the
Economical Data, as being other data from the
economical scene, with only indirect connection
to the prediction data. Here we selected again
the second type, for the obvious reason that it’s
the richest in information, although a lot of the
training takes place on simple MD (case 1).

4. The Network

The designed net is based on the Lyapunov
Gradient Descent NN. The simplest net con-
struction would be an 1 layer NN (1 input layer,
1 output layer) which isn’t enough for the com-
plexity of the analysed data. The next step is
a 2 layer NN. Previous results (see for e.g. 10)

* this is a simplified hypothesis, because, for instance,
the market is influenced by the long term windows
used by most of the predictors, that usually take fix
values, as 25/50 days, etc. ’

** as being adjacent data

18 TEHRALIE L SFROEE

Input layer hidden layer output

ST

(e

Fig. 4 The net layout

showed that a 2 layer net is enough (for a dis-
cussion upon network parameter selection, see
17). Therefore, if the Lyapunov Gradient De-
scent NN idea shows itself to be successful, it
should at least be able to work on a net of a
similar dimensional complexity.

Figure 4 shows the used net, containing
a m-dimensional input layer, a hidden layer
of dimension p and a 1-dimensional output
layer. Each layer is fully connected with
the following layer (feedforward network). We
consider 1 step ahead prediction, and for n
step prediction (long-term prediction) we re-
inforce the system’s output as a feedback to
the input (from z1,%s,...,%,, we predict y°,
from zg, 3, ..., Tm, y’, we predict y'+1, a.s.0.)*.
We have also worked with predictions like
T1y%9y evey L 1O Y1, Y2, ..o, Yo DUt the results are
poorer.

Evidently, the previously deducted weight
changes (eq. 6, 7) cannot work for a 2-layer NN
directly, so we have to take into consideration
some error backpropagation.

5. Backpropagation of Error

We have deducted the weights’ changing
equation in section 2, and we have established
the net design in section 4, subsequently we
need to see how the weight changes will propa-
gate for the different layers of the network.

The previously calculated weight changes can-

be used for the external layer. For the hidden
layer, we need a backpropagated error compu-
tation®™*, because we cannot compute a direct
error, as in the case of the external layer.

The weight changes for the output layer can
be deducted directly as being the ones in eq. 6,
7, with the only difference of letting z; be h;,

* ¢ is a time variable
** as in standard backpropagation

Feb. 1999

the hidden layer values.

By making an analogy to the backpropaga-
tion mechanisms, the weight (vi ;) changes be-
fore the hidden layer must be:

d’l)k) m+1
7’2 = —ka:kf’ (I; vk,ix[k] + ?)0@) *

> wi i {(wo +7;) Sj1 — (wo —7;) Sj2},
=1
k=1,.,mi=1,.,p; (10)
and for the biases (vo;):

dv 1
0,8 _ / . .
el kf (E v,z k] +voﬂ> *

" \k=1

n
D wi{(wo +75) Sj — (wo — 75) Sja}
J=1
i=1,.,p; (11)
with f being, for instance, the sigmoidal func-
tion, f(z) = w7, € R, p the dimension of
the hidden layer and the rest of the notations
the same as in section 2.

6. Implementation notes and simula-
tion details

The system can perform training (learning)
through weight computing, forecasting with a
2-layer feedforward NN and can also serve as
a user-interface. These 3 processes are imple-
mented as independent programs. The commu-
nication between these processes is assured by
the common resources.

The designed program provides a full help
support at each step, both for current state ex-
planations and for advice about future possible
steps.

The prediction error is displayed in percent-
age to the maximum value (price) that occured
in the given time-period in an error dispersion
window (see Fig. 6). Information about the
Mean Square Error (MSE) is also available to
the user, although it is less informative in re-
spect to local errors.

6.1 The Data

The data consists of some real-world data
from 10), as well as some user-designed, syn-
thetic series for testing (see indications about
the usage of real, realistic and synthetic data
for algorithm benchmarking in 15)). As only
graphical charts were available, the reading pro-
cedure for the real data may include some read-
ing errors of the above mentioned real-market
data, but that shouldn’t harm the generaliza-

Vol.40 No.SIG2(TOM 1)

tion power of the resulting network. The data
are divided into two subsets: a training set, that
contains pairs of { [old data/, [new data/, } and
that is fed into the system in order to learn the
correspondence between these pairs, and a sec-
ond set, the test set, of similar data, out of
which only the [old data] are fed into the sys-
tem, in order to check the system’s capabilities.
The feeding of the first set into the system is the
Supervised Learning part, the second part is the
Testing, and it contains no learning whatsoever
(therefore, no weights changing).

The data are values (prices on SE market)
over any desired period of days and are rep-
resented by the user-interface program on a
screen on the Oy axis (see Fig. 5). The Ox axis
represents the time. The data are scaled for
a better representation and for a uniformiza-
tion of input data for the learning algorithm,
so they range from [0-min; 1-max]. The known,
predicted and true future values (if available)
are represented on the same screen.

Fictional (synthetic) values with a high de-
gree of irregularity were also used. The consid-
ered time-period is usually a month, of which
about 20 values are known, and 10 to be pre-
dicted. This is not a fixed rule, though, as both
learning and display functions can handle any
amount of input and/or output data, by using
dynamic memory allocation functions.

6.2 Convergence Considerations

In 11) a method for convergence improvement
is suggested: Weight Decay, also related to the
one known in the literature under the name
Momentum. A method which is similar, but
much easier to implement is the step-changing
method. The idea is that, if the convergence is
following a certain path for a given time-period,
the step should be increased:

step = 2 * step,

and if the computation tends to oscillate
around a value, the step should be decreased,
in order to allow the algorithm to reach the so
called ”valleys of lower potential”:

step = .5 x step.

This procedure requires less memory than the
weight decay method (where all the last changes
of the weights have to be stored) and only re-
quires an integer vector of directions, with val-
ues of { —1,0, +1 }. If the last weight-change
had a negative sign, the new value of the direc-
tion vector will be [-1], if it was positive, [+1],
and if there was no change, [0].

Then, ”going in the same direction” means

Energy function based on restictions 19

having the direction vector [-1] and a new neg-
ative weights change value, or having the di-
rection vector [+1] and a new positive weights
change value. Obviously, ”going in opposite di-
rections” are the pairs ([-1],positive change) and
([+1],negative change). There appears to be a
little problem for [0] values, but the simplest
way to avoid them is not to do any change in
that case.

This simple procedure has two consequences
we observed: if the initial (random) weights are
far from the desired ones, then this procedure
tends to determine a shorter convergence time;
on the contrary, if the starting weights are close
to the final ones, the net has a slight tendency
of oscillation, till it finds the correct combina-
tion, because of the rougher approach of bigger
steps for a short time period. A comparative
training has been done in order to observe this
phenomena, and the results are presented in the
following.

7. Results

First we will introduce the elements of result
display and analysis:

System Learning Display: We present
here a learning example of an equal share of 10
input data and 10 outputs (Fig. 5). That means
that out of 10 input daily SE values, 10 output
daily values were to be learned. The weight

" matrix dimension therefore had a 10x10=100

members dimension. The continuous, zig-zag
line on the left side of the graphical chart rep-
resents the past (or input) data, while on the
right side, the desired outputs* and the predic-
tion can be seen. The prediction is normally
displayed by a dotted line, while the desired
outputs are displayed by a continuous line**
but here, with ”0” error, the two outputs over-
lap, and therefore, a single line is visible. The
program here displays the learning of the cor-
respondence of 10 past prices with 10 future
prices. The outputs are scaled from 0 to 1 (Oy
axis), and the time (days) is represented on 0x.
Error display: The error display is shown,
for a better understanding, in a separate, two-
dimensional error-display window (Fig. 5 upper
right corner, Fig. 6).*** The display of error
was designed so that a qualitative reading can

* as in Supervised Learning

% just like the inputs
% The prediction error is displayed in percentage to
the maximum value(price) that occured in the given
time-period.

20

A
=

B

Feb. 1999

0,0000008

=0,000000

=
a
L1

Ry

LY
b
T I
1]
1]
11 I
1]
1 I
L)]
) ¥
f]
11 T
k] I
L\ I
1 {
17
L
A
17
LY
1)
I

3 4 5 3 7 8 9

10

1 12 13 14 15 16 17 18 18 20

Fig. 5 A "perfectly” trained net

0,000143F{

F’

Fig. 6 Error display window

be done easily. For this reason, on both ver-
tical and horizontal axis of the error-window,
individual errors from different times are repre-
sented. Errors can occur if the desired values
and the predicted output values don’t overlap.
The dimension of the error vector is the same
as the dimension of the output vector (here,
10). Of interest are: first, the display of the
maximum error of the whole interval - repre-
sented in the window by the exterior square -
“and then, the other errors, with lower values
- represented by the lines starting in the left
corner of the picture and ending at the inter-
section with the second diagonal, on which all
the errors (including the maximum) are repre-
sented. In this way, the error structure can be
understood at a single glance.
These were the elements of the result display.
We used them to view first the behaviour of a
regular BP net, then the Lyapunov net train-

0o

v

CAN WA ON®O

10111218141518171819110111 2113114 115 116117 118119120 127 122 123 124 125 |

equal

adjustable step y viceversa =
computation time

better than constant

Fig. 7 Variable and constant step; the influence on
the convergence.

@

ing. One of the similarities that appears is that
both methods tend to increase the weights dur-
ing learning (if no momentum term is added).
As a convergence difference we mention that the
growth-rate is larger in the BP case, while our
method seems to show a smoother pattern.

7.1 Adjustable step vs. constant step

We present here some results concerning the
adjustable convergence step versus the constant
computational step. These computations were
performed on a small quantity of irregular, user-
designed data (Fig. 7). The Ox-axis shows the
number of input values, the Oy-axis shows the
number of output-values. The convergence step
number would be on a 3rd axis, which is not
represented. The step on both axis is 1 day’s
time.

As can be seen in Fig. 7, out of 300 random
starting points, that we used for training with
constant step and then with a variable step,
there were 165 input-output combinations for
which the adjustable step was better, and only
81 where the constant one showed better con-

Vol. 40 No.SIG2(TOM 1)

correlation perf. compared to
of set random walk

BKP

trained 0.951364 0.447806

test1 0.226734 0.853706

test2 0.308115 0.810235

modified Lyapunov

trained 0.960783 0.356597
test1 0.480251 0.871593
test2 0.511318 0.795510

Fig. 8 Backpropagation and Lyapunov method’s
behaviour regarding the algebraic indicators.

vergence. There were also 54 cases in which the
two types had similar convergence times. The
most frequently used pattern was the [20,10]
one, so, 20 input values, 10 outputs (together
adding up to a month=30 days). It is inter-
esting that, for this particular pattern, all test
examples showed the adjustable step to be the
quicker converging one.
7.2 Algebraic indicator comparison
We used two coefficients for comparison:
e the correlation coefficient, that measures
the linear correlation between the fore-
casted value y; and the real value b;:

D O A

R:
V0 (6 =)/, -)

with ' = £ " 2, and n the number of ob-

servations (on the validation set).

o the t test or Theill coefficient, that mea-

sures the out-performance of the NN over
the random walk (the predictor that esti-
mates the future value as y;11 = b; + Eps;,
i.e. the actual value plus a white noise):

jer (w5 = b5)°
T, : =1) (13)

Vi (b = bi0)’
If T, < 1, the NN predictor is better than the
random walk predictor.

Some average results over a number of 100
learning experiments (with error margin of 0.1,
and convergence time interval of 5-10 min.) are
presented in Fig. 8.

We observed two methods: our method, ver-
sus the classical BP method. As can be seen
in fig.8, we have tested these coefficients on the
trained set of data, and also on two test sets.
The Theill coefficient is best (lowest), as ex-
pected, in both cases, on the already trained

Energy function based on restictions 21

set. The correlation of prediction and real value
also are the best for this case (closer to 1). Ex-
cept for the performance measure for testl set
(when compared to random walk) that has a
higher value than the BP case (0.87.. when
compared to BP’s 0.85..), the rest of the val-
ues show that our method is superior: for the
correlation coeflicient, the values are closer to
1, so there is a higher correlation between pre-
diction and real values, and for the comparison
with the random walk, the Theill coefficient has
lower values for the method we proposed, when
compared to the BP method.

Furthermore, one of the similarities that ap-
pear is that both methods tend to increase the
weights during learning (if no momentum term
is added). However, the growth-rate is larger in
the BP case, while our method seems to show
a smoother pattern.

These results experimentally validate our the-
oretical energy function deduction and show
that it outperforms the classical BP algorithm
(see 13) for experimental validation suggestions
for NN algorithms).

8. Conclusions

In this paper we described the development
and usage of an energy function that reduces
the sensitivity of the network in respect to mi-
nor errors, based on the Lyapunov infinite norm
concept. From this model, a NN was designed
and a SE forecasting tool was constructed, us-
ing the TS behaviour of SE.

We compared the network constructed based
on this energy function with a network us-
ing the classical Backpropagation method and
showed the differences between the two.

The proposed energy function is less sensi-
tive to minor errors when compared with the
standard LMS-function of the backpropagation
method. We proved this by using indicator
comparison, and showed how our method is su-
perior to the traditional BP for SE forecasting.

For further work we intend to extend the sys-
tem and find out what other problems it’s ap-
plicable to. In constructing the new function we
exploited the TS structure of SE events, there-
fore we expect that it can be useful for other
problems which deal with TS forecasting.

References

1) Amari, S., et al.: Asymptotic Statistical The-
ory of Owvertraining and Cross-Validation,
RIKEN, Japan, METR 95-06 (1995).

22 RS

2) Ankenbrand, T. and Tomassini, M.: Multivari-
ate time series modeling of financial markets
with artificial neural networks, ANN and GA,
Springer Verlag, Wien, pp. 257-260 (1995).

3) Anthony, M.: Probabilistic Analysis of Learn-
ing in Artificial Neural Networks: The PAC
Model and its Variants, Neural Computing Sur-
veys, Vol. 1, pp. 1-47 (1997).

4) Cherkassky, V. et al.: Learning from Data:
Concepts, Theory and Methods, John Wiley &
Sons (1998).

5) Cristea, A. and Okamoto, T.: NN. for Stock
Exchange prediction; a Lyapunov based train-
ing, Proc. Int’l Conf. on Computational Intelli-
gence and Multimedia Applications 98 , World
Scientific, pp. 416-421 (1998).

6) Cristea, A. and Okamoto, T.: A Paralleliza-
tion Method for NNs with Weak Connection

Design, Proc. Int’l Symp. on High Performance

Computing ’97, Springer, pp. 397-404 (1997).

7) Dasgupta, D. and McGregor, D. R.: Design-
ing Application-Specific Neural Networks us-
ing the Structured Genetic Algorithm, Proc.
Combination of Genetic Algorithms and Neural
Networks , IEEE CS Press, pp. 87-96 (1992).

8) Gas, B. and Natowicz, R.: Unsupervised learn-
ing of temporal sequences by neural networks,
ANN and GA, Springer Verlag, Wien, pp. 253~
256 (1993).

9) Jabri, M., Tinker, E. and Leermk L.: MUME
- a multi- modules multi-algorithms NN, http:
//www.sedal.usyd;edu.au/mume/mume.html

10) Komo, D., et al.: Neural Network Technol-
ogy for Stock Market Index Prediction, Proc.

IEEE Int’l Symp. on Neural Networks, Image.

and Speech Processing '9/4 , pp. 543-546 (1994).

11) Krogh, A. and Hertz, J.A.: A Simple Weight
Decay Can Improve Generalization, Proc. Neu-
ral Information Processing Systems, pp. 950-
957 (1992).

12) Lin, F., et al.: Time Series Forecasting with
Neural Networks, Complexity International,
Vol. 2, ISSN 1320-0682, (1995).

13) Lukowicz, P., et al.. Ezperimental Fvalu-
ation in Computer Science: A Quantitative
Study, Tech. Rep. 17/94, Univ. Karlsruhe,
ftp:/pub/papers/techreports/1994/ (1994).

14) Miyano, T. and Girosi, F.: Forecasting Global
Temperature Variations by Neural Networks,
Al memo 1447, MIT AI Lab. (1994).

15) Prechelt, L.: Some Notes on Neural Learn-
ing Algorithm Benchmarking , Neurocomput-
ing, Vol. 9, No. 3, pp. 343-347 (1995).

16) Ossen, A. and Schnauss, M.: Practical Tools
for Derivative Instruments based on Nonlin-
ear Series Prediction, Proc. Int’l. Workshop on
Parallel Applicat. in Statistics and Econ. , Neu-

R Feb. 1999

ral Network World, Vol. 5, pp. 525-536 (1995).
17) Ripley, B. D.: Statistical Ideas for Select-
ing Network Architectures, Neural Information
Processing Systems ’95 , http://www stats.ox.
ac.uk/pub/bdr/NIPS/ (1995).

18) Rogers, R.O. and Skillicorn, D.B.: Strategies
for Parallelizing Supervised and Unsupervised
Learning in ANN using the BSP Cost Model.,
TR97-406, Dept. of Comp. & Inf. Sci., Queen’s
Univ. (1997).

19) Rueger, S.M. and Ossen, A.: Performance
Evaluation of Feedforward Networks Using
Computational Methods, Proc. Int’l Conf.
on Neural Networks and their Applications
95/96, pp. 35-39, (http://ini.cs.tu-berlin.de/”
ao/pubs/pitfalls_submitted.ps.gz) (1995).

20) Tang, Z. and Fishwick, P. A.: Feedforward
Neural Nets as Models for Time Series Fore-
casting, TR91-008, Comp. & Inf. Sci., Univ. of
Florida (1991).

(Received April 15, 1998)
(Revised June 10, 1998)
(Accepted June 29, 1998)

Alexandra Ioana Cristea
graduated 1994 as a Computer
Science Eng. from ’Politehnica’
Univ.,Bucharest (PUB) and did
her Master thesis study at Lyn-
gby Univ., Denmark; she re-
ceived 1996 a Master in Econom-
ical Eng., from the Dept. of Eng.Sciences, PUB
and Techn. Hochsch. Darmstadt. She worked
as a teaching assistant at PUB and Univ. of
Electro-Communic.,Tokyo (UEC). At present
she does a PhD. research at UEC, Grad. School
of Info Syst.(IS). She is a student member of
IEEE, IEEE Computer Soc. and IEICE.

Toshio Okamoto graduated
1971 Kyoto Univ. of Education,
received his Master 1975 from
Tokyo Gakugei University, and
his Dr. of Eng. from Tokyo
Instit. of Technology. He is
presently a professor at UEC,
engaged in research on AI models for intelli-
gent CAI system. He is a member of the Board
of CAI Soc., and Jap. Soc. Educ. Tech., Educ.
Eng., Al & Knowledge Eng. in IEICE, and
has a lot of important official functions for pro-
moting the field of computer and education in
Japan.

