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1 Introduction
It is known that the Youla-Kučera parametrization
parametrizes all stabilizing controllers of a stabilizable
plant whenever it admits a doubly coprime factorization
[1]-[3]. If a plant does not admit a doubly coprime factor-
ization, the Youla-Kučera parametrization is not applied to
such a plant. In this case, to parametrize all stabilizaing con-
trollers of such a plant, the general parametrization is em-
ployed. The general parametrization does not require that a
plant admits a doubly coprime factorization [1], [2]. Also
the general parametrization can parametrize all stabilizing
controllers of a plant that admits a doubly coprime factor-
ization. However, when the general parametrization is ap-
plied to such a plant, extra parameter variables always exist.
Furthermore, when the general parametrization is applied
to a plant that does not admits a doubly coprime factoriza-
tion, also there exist possibility that some extra parameter
variables are included in a parametrization of all stabilizing
controllers of such a plant. Consequently, following two
verifications are purposed in this study. (1) If a plant admits
a doubly coprime factorization, by computing extra param-
eter variables, it is confirmed that a reduced parametrization
is obtained when the general parametrization is applied to
this plant. (2) If a plant does not admit a doubly coprime
factorization, by computing some extra parameter variables,
it is confirmed that a reduced parametrization is obtained.

2 Preliminaries
Denote by A a commutative ring that is the set of stable
causal transfer functions. The total ring of fractions of A
is denoted by F ; that is, F = {n/d|n, d ∈ A, d: nonzero
divisor}. This F is considered to be the set of all possible
transfer functions. Matrices over F are transfer matrices. A
matrix over A is said to be nonsingular if the determinant
is a nonzero divisor ofA . We consider the feedback system
∑

shown in Fig. 1. [1]-[3]. For details of the stabilization
problem, considered this thesis, the reader is reffered to [1]-
[3]. Throughout this thesis, suppose that 1) a plant has m
inputs and n outputs, and its transfer matrix is denoted by P
2) P is a n×m matrix over F and stabilizable, 3) a trans-
fer matrix of a stabilizing controller of P is denoted by C.
Then H(P,C) denotes the transfer matrix from [ut

1 ut
2] to

[et
1 et

2] of the feedback system
∑

, that is

H(P,C) :=

[

(In + PC)−1 −P (Im + CP )−1

C(In + PC)−1 (Im + CP )−1

]

where det(In + PC) is a nonzero divisor of A , namely
H(P,C) is a (m + n) × (m + n) matrix over A [1]. Ma-
trices A and B over A are right- (left-)coprime if there
exist matrices X and Y over A such that XA + Y B =
I (AX + BY = I) holds. An ordered pair (N,D) of
matrices N and D over F is said to be a right-coprime
factorization of P if 1) D is nonsingular, 2) P = ND−1

over F , 3) N and D are right-coprime. As a parallel no-
tion, the left - coprime factorization of P is defined anol-
ogously. When P admits both a right-coprime factoriza-
tion and left-coprime factorization, P is said to admit a
doubly coprime factorization [1].
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Fig. 1. Feedback system
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3 Youla-Kučera Parametrization and
General Parametrization

First, the Youla-Kučera parametrization is introduced
briefly. Suppose that P admits a doubly coprime factor-
ization. Then the set of all stabilizing controllers of P is
parameterized with mn parameter variables [3].

Next, the general parametrization is introduced briefly.
Suppose that C is already given one of stabilizing con-
trollers of P . Then the set of all stabilizing controllers of
P is parameterized such that H(P) = {Ω(Q)|Ω(Q) is a
matrix over A and Ω(Q) is nonsingular} where Ω(Q) =

Ω̂(Q) + H(P,C), and

Ω̂(Q) =

(

H(P,C) −

[

In O
O O

] )

Q×

(

H(P,C) −

[

O O
O Im

] )

with (m+n)×(m+n) parameter matrix Q overA [1], [2].
Since Q has (m + n)2 entries such that Q = (qi,j) where
1 ≤ i, j ≤ m + n, (m + n)2 parameter variables exist in
Ω(Q). It is possible to give an element inA for a parameter
variable freely.

4 General Parametrization for a
Polynomial Ring

We propose the reduction algorithm in the case of polyno-
mial ring. Even so, our algorithm can be applied to the set
of causal stable taransfer function is a Euclidean domain.
Also, the reduction algorithm is focused on Ω̂(Q) since pa-
rameter variables only exist in Ω̂(Q).

In a polynomial ring, R[x] is A and R(x) is F . Then
Ω̂(Q) is expanded and decomposed such that

Ω̂(Q) = A1,1q1,1+A1,2q1,2+ · · ·+Am+n,m+nqm+n,m+n

where coefficient matrices A1,1, A1,2, · · · , Am+n,m+n are
(m + n)× (m + n) matrices over R[x]. It is the reduction
algorithm to calculate a minimal basis of Ω̂(Q). By calcu-
lating a minimal basis Ω̂(Q), coefficient matrices of extra
parameter variables are zero matrix. Then extra parameter
variables are reduced from Ω̂(Q), and such reduced Ω̂(Q) is
denoted by Ω̂r(Q). By adding H(P,C) to Ω̂r(Q), reduced
Ω(Q), say Ωr(Q), is obtained. To calculate a minimal ba-
sis, new coefficient matrix is constructed by A1,1, A1,2, · · · ,

Am+n,m+n such that M =
[

~A1,1, ~A1,2, · · · , ~Am+n,m+n

]t
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where each of row vectors corresponds to each of coeffi-
cient matrices, namely, coefficient matrices are considered
as row vectors. Then a reduction starts from the first col-
umn of M . In the first column, an entry a that has the
lowest degree except zero is found. There exit some quo-
tients q1, · · · , qm+n−1, and remainders r1, · · · , rm+n−1

for the other entries modulo a. Note that quotients and re-
mainders are in R[x]. Multiplying the row vector that has
a by each of these quotients with the opposite sign, namely
−q1, · · · , −qm+n−1, is added to each of the other row vec-
tors. Then the entries of the other row vectors are equal to
these remainders. This calculation can be reflected to Ω̂(Q)
since an element in R[x] can be given to a parameter vari-
able freely. Namely, in Ω̂(Q), the parameter variable for
the coefficient matrix that has a is re-given as new prame-
ter variable. For example, suppose that a is (1, 1) entry of
~A1,1, then there exit quotients q1, · · · , qm+n−1 and remain-
ders r1, · · · , rm+n−1 modulo a for each of (1, 1) entries
of ~A1,2, · · · , ~Am+n,m+n. Then q1,1 is re-given such that
q́1,1 = q1,1− q1q1,2− · · · − qm+n−1qm+n,m+n, and q́1,1 is
applied to Ω̂(Q) as follows:
Ω̂(Q) = A1,1q́1,1 + A1,2q1,2 + · · ·+

Am+n,m+nqm+n,m+n

= A1,1(q1,1 − q1q1,2 − · · · −

qm+n−1qm+n,m+n) +

A1,2q1,2 + · · ·+ Am+n,m+nqm+n,m+n

= A1,1q1,1 + (−q1A1,1 + A1,2)q1,2 + · · ·+

(−qm+n−1A1,1 + Am+n,m+n)qm+n,m+n

= A1,1q1,1 + A∗

1,2q1,2 + · · ·+

A∗

m+n,m+nqm+n,m+n

where each of (1, 1) entries of A∗

1,2, · · · , A∗

m+n,m+n is each
of these remainders r1, · · · , rm+n−1. If all remainders are
zero, a reduction in the first column of M ends since it is
impossible to reduce a from r1, · · · , rm+n−1. Therefore
A1,1 is one of a minimal basis, and q1,1 is not extra parame-
ter variables. If one or more nonzero remainders exist in r1,
· · · , rm+n−1, a remainder that has the lowest degree except
zero is found. Then the above procedure is repeated in the
first column until only one entry is nonzero and the other en-
tries are zero. When a reduction ends in the first column, the
coefficient marix that has nonzero entry is one of a minimal
basis, and the parameter variable of this coefficient matrix
is not extra parameter variable. Then reductions are contin-
ued from the second column to the last column of M . When
a reduction in the last column ends, namely, all reductions
end, Ω̂r(Q) is obtained. Note that, in a Euclidean domain,
M is an upper triangular matrix by suitable interchanging
row vectors when all reductions end.

Due to space limitation, we have omitted to describe the
cases of classic continuous-time systems and discrete-time
systems. Since these systems are also over a Euclidean do-
main, the reduction algorithm can be applied to these sys-
tems. For details the reader reffered to [3].

5 General Parametrization for the
Case of Nonexistence of a Doubly
Coprime Factorization

The polynomial ring R[d2, d3] is equal to R[d] except a
term of first degree, namely ad1 where a ∈ R, does not

exist. Moreover, P over R[d2, d3] does not admits a doubly
coprime factorization. Since R[d2, d3] is not a Euclidean
domain, the Euclidean division can not be employed in the
reduction algorithm. Therefore, instead of the Euclidean di-
vision, we employ leading term elimination [4]. The reduc-
tion algorithem can be applied to R[d2, d3] by constructing
quotients and remainders with leading term elimination.

6 Examples
As an example, we present a reduced parametrization of all
stabilizing controllers of a stabilizable plant over a poly-
nomial ring R[x]. Both Ω(Q) and Ωr(Q) are appeared as
below.

Suppose that P = x2 + 1, C = −2

2x2+1
, and Q = (qi,j)

where 1 ≤ i, j ≤ 2. Then Ω(Q) = Ω̂(Q)+H(P,C) where

H(P,C) =

(

−2x2 − 1, 2x4 + 3x2 + 1
2, −2x2 − 1

)

,

Ω̂(Q) = A1,1q1,1 + A1,2q1,2 + A2,1q2,1 + A2,2q2,2.

Coefficient matrices A1,1, A1,2, A2,1, A2,2 are as follows.

A1,1 =

(

4x4 + 6x2 + 2, −4x6 − 10x4 − 8x2 − 2
−4x2 − 2, 4x4 + 6x2 + 2

)

,

A1,2 =

(

−4x2 − 4, 4x4 + 8x2 + 4
4, −4x2 − 4

)

,

A2,1 =
(

−4x6 − 8x4 − 5x2 − 1, 4x8 + 12x6 + 13x4 + 6x2 + 1
4x4 + 4x2 + 1, −4x6 − 8x4 − 5x2 − 1

)

,

A2,2 =

(

4x4 + 6x2 + 2, −4x6 − 10x4 − 8x2 − 2
−4x2 − 2, 4x4 + 6x2 + 2

)

.

While, a reduced parametrization Ωr(Q) is such that
Ωr(Q) = Ω̂r(Q) + H(P,C) where Ω̂r(Q) = A1,2q1,2.
H(P,C) and A1,2 are the same as H(P,C) and A1,2 of
Ω(Q).

7 Conclusions
In a parametrization of all stabilizing controllers of a sta-
bilizable plant that admits a doubly coprime factorization,
extra parameter variables is reduced successfully. Hence
it is possible to apply the general parametrization with the
reduction algorithm to such a plant as well as the Youla-
Kučera parametrization. In the case where a stabilizable
plant does not admit a doubly coprime factorization, we
have confirmed that some extra parameter variables can be
reduced.
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