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Self-Adaptive GAs with 0/1 Multiple Knapsack Problems
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In this work we study varying mutations applied parallel to crossover in generational de-
terministic and self-adaptive varying mutation GAs and compare them with the conventional
generational model of varying mutations that apply mutation mostly serial to crossover. Ex-
periments are conducted with several subclasses of 0/1 multiple knapsack problems. We found
that varying mutation parallel to crossover can be a more effective and efficient framework
than the conventional model of varying mutations in both deterministic and self-adaptive GAs
to achieve faster convergence velocity and higher convergence reliability. We also found that
the conventional model of varying mutations affects negatively the self-adaptive mutation rate
control. This strongly suggests that the conventional model of varying mutation GAs may
not be appropriate for combining forms of control. Also, we compare deterministic, adaptive,
and self-adaptive mutation schedules within the parallel varying mutation model. Best overall
performance was achieved by a parallel varying mutation self-adaptive GA.

1. Introduction

Parameter control methods modify the val-
ues of the strategy parameters during the run
of the algorithm by taking into account the ac-
tual search process. These methods are an al-
ternative form to the common practice of tun-
ing parameters “by hand” and are considered
as one of the most important and promising
areas of research in evolutionary algorithms 1).
One of the approaches for parameter control
in genetic algorithms (GAs) seeks to combine
crossover with (higher) varying mutation rates
during the course of a run. Deterministically
varying mutation rates over the generations
and/or across the representation 2)∼4) and self-
adaptive mutation rate schedules have been
proposed to control the mutation rate of gen-
erational and steady state GAs 4),7),8). The
principle of self-adaptation incorporates strat-
egy parameters into the representation of in-
dividuals evolving simultaneously strategy pa-
rameters and object variables. Self-adaptation
is regarded as the method having the advantage
of reducing the number of exogenous parame-
ters 8) and is thought to be the most promising
way of combining forms of control (parameters
co-adaptation) 1).

From the application of operators standpoint,
the varying mutation principles, usually in-
spired from evolution strategies (ES) 5) and evo-
lutionary programming (EP) 6), when applied
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to generational GAs have been incorporated fol-
lowing the canonical model of GAs 9),10). These
conventional varying mutation GAs have the
advantage of allowing a simple incorporation of
the varying mutation principles while usually
performing better than canonical GAs. How-
ever, since in canonical GAs crossover is ap-
plied with probability pc and then follows mu-
tation, it turns out that in conventional varying
mutation GAs higher mutations are mostly ap-
plied after crossover. This conventional model
of varying mutation GAs raises several impor-
tant questions regarding the interference be-
tween crossover and high mutation, how this
affects performance of the algorithm, whether
this affect the mutation rate control itself in
the case of self-adaptive varying mutation algo-
rithms, and more generally whether this is an
appropriate model for combining forms of con-
trol (co-adaptation of strategy parameters).

An alternative to conventional varying muta-
tion methods is to design approaches that apply
“background” mutation 9),10) after crossover (or
none at all) and higher mutations only parallel
to crossover. These approaches could give an ef-
ficient framework to achieve better balances for
varying mutation and crossover, in which the
strengths of the operators can be kept without
interfering one with the other, and have the po-
tential of being more suitable models for com-
bining forms of control.

From this point of view, we continue to ex-
plore a model of generational GA that applies
varying mutations parallel to crossover followed
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by “background” mutation, putting the oper-
ators in a cooperative-competitive stand with
each other by subjecting their offspring to ex-
tinctive selection. The model of varying mu-
tation parallel to crossover was proposed in
previous reports and its internal structure was
studied in depth using an adaptive schedule for
varying mutation 11)∼13). Important structural
issues that were studied include the balance for
offspring creation between the operator that ap-
plies varying mutation and the operator that
uses crossover followed by “background” muta-
tion, the ratio between number of parents and
number of offspring (extinctive selection pres-
sure), “background” mutation probability after
crossover, and the threshold to trigger adap-
tation in the varying mutation operator. Two
mutation strategies to select the bits that will
undergo mutation were also investigated for the
varying mutation operator. The effect of pop-
ulation size and number of evaluations was ob-
served, too. In Ref. 14) the effectiveness of par-
allel adaptive varying mutation was explored
within distributed GAs.

In this work, the model of varying muta-
tions parallel to crossover is applied to other
subclasses of varying mutation GAs (determin-
istic and self-adaptive varying mutation GAs)
and compare it with the conventional genera-
tional model of varying mutations GAs across
a broad range of difficult, large, and highly con-
strained 0/1 multiple knapsack problems 15).
After comparative experiments, we found that
varying mutation parallel to crossover can be a
more effective and efficient framework than the
conventional model in both deterministic and
self-adaptive varying mutation GAs to achieve
faster convergence velocity and higher conver-
gence reliability. We also found that the con-
ventional model of varying mutations affects
negatively the self-adaptive mutation rate con-
trol. This strongly suggests that the conven-
tional model of varying mutation GAs may not
be appropriate for combining forms of control.

Also, deterministic, adaptive, and self-
adaptive mutation schedules are compared
within the parallel varying mutation model.
Best overall performance was achieved by a par-
allel varying mutation self-adaptive GA. Some
parts of this work have been presented in
Refs. 16), 17).

Fig. 1 A conventional varying mutation GA.

2. A Conventional Varying Mutation
GA

A conventional varying mutation GA, similar
to canonical GAs, applies crossover with proba-
bility pc followed by mutation with probability
pm per bit. In the absence of crossover (1−pc),
mutation is applied alone. From the application
of operators standpoint, it can be said that the
probability of crossover pc enables an implicit
parallel application of two operators. One of
the operators is crossover followed by mutation
(CM) and the other one is mutation alone (M).
It should be noted that mutation in both CM
and M is governed by the same mutation prob-
ability pm and applies the same “bit by bit”
mutation strategy. Figure 1 illustrates the ap-
plication of operators in a conventional varying
mutation GA.

Since pc is usually set to 0.6, and higher val-
ues are often used 1), it turns out that mutation
is mostly applied serial to crossover. In canoni-
cal GAs pm is small, therefore the amount of di-
versity introduced by mutation either through
CM or M is modest. For the same reason, the
disruption that mutation causes to crossover in
CM is also expected to be small. In varying
mutation GAs, however, mutations are higher
and the combined effect of crossover and muta-
tion in CM and the effect of mutation alone in
M should be carefully reconsidered.

In the case of CM, besides those cases in
which crossover and mutation aggregate in a
positive manner or are neutral, those cases in
which one of the operators is working well but
is being hampered by the other should also be
taken into account. For example, if mutation
rates were high, although crossover could be
doing a good job it is likely that some of the
just created favorable recombinations would be
immediately lost, before they become fix in the
offspring, due to the high disruption introduced
by mutation. We can think of this case as
a mutation interference with crossover in the
creation of beneficial recombinations. On the
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other hand, mutation could be working well but
crossover may produce poor performing indi-
viduals affecting the survivability of beneficial
mutations that can contribute to the search.
We can think of this case as a crossover in-
terference with mutation in the introduction of
beneficial mutations.

In the case of mutation alone M, its instanta-
neous effectiveness depends only upon itself and
does not diminish the effectiveness of other op-
erator. High mutations in M, when are harmful,
will have a negative impact on the propagation
of beneficial recombinations already present in
the parent population, but will not affect their
creation by crossover as high mutation can do
it in CM.

In the following we also refer to conventional
varying mutation GAs as varying mutation se-
rial to crossover.

3. A GA with Parallel Varying Muta-
tion

3.1 Parallel Genetic Operators
An alternative to standard varying muta-

tion GAs is to explicitly differentiate the muta-
tion operator applied parallel to crossover from
the mutation operator applied after crossover.
We explore a model of GA that in addition
to crossover followed by background mutation
(CM) it also explicitly applies parallel vary-
ing mutation 11)∼13). To clearly distinguish be-
tween mutation operators the parallel varying
mutation operator is called Self-Reproduction
with Mutation (SRM). SRM parallel to CM im-
plicitly increases the levels of cooperation to in-
troduce beneficial mutations and create benefi-
cial recombinations. It also sets the stage for
competition between operators’ offspring. In
the following we also refer to this model of
GA that applies varying mutation parallel to
crossover as GA-SRM.

3.2 Extinctive Selection
The model also incorporates the concept of

extinctive selection that has been widely used
in Evolution Strategies. Through extinctive se-
lection the offspring created by CM and SRM
coexist and compete for survival (the number
of parents is smaller than the total offspring)
and reproduction. Among the various extinc-
tive selection mechanisms available in the EA
literature 18) we chose (µ, λ) Proportional Se-
lection.

The parallel formulation of genetic oper-
ators tied to extinctive selection creates a

Fig. 2 A GA with parallel varying mutation.

cooperative-competitive environment for the
offspring created by CM and SRM. The block
diagram of the model is depicted in Fig. 2. The
number of parents is µ, λCM and λSRM are the
number of offspring created by CM and SRM,
respectively, and λ = λCM + λSRM is the to-
tal number of offspring. Both λCM and λSRM

are deterministically decided at the beginning
of the run.

3.3 Mutation Rate Control in SRM
In this work we use deterministic and self-

adaptive mutation rate controls in SRM to com-
pare the conventional and parallel model of
varying mutations. The deterministic approach
implements a time-dependent mutation sched-
ule that reduces mutation rate in a hyperbolic
shape, originally proposed in Ref. 4) and ex-
pressed by

p(t)
m =

(
ro +

n − ro

T − 1
t

)−1

(1)

where T is the maximum number of genera-
tions, t ∈ {0, 1, · · ·, T − 1} is the current gener-
ation, and n is the bit string length. The mu-
tation rate p

(t)
m varies in the range [1/ro, 1/n].

In the original formulation ro = 2. Here we
included ro as a parameter in order to study
different ranges for mutation. In the determin-
istic approach the mutation rate calculated at
time t is applied to all individuals created by
SRM.

To include self-adaptation, each individ-
ual incorporates its own mutation probability
within the representation. SRM to produce
offspring first mutates the mutation probabil-
ity of the selected individual and then mutates
the object variable using the individual’s mu-
tated probability. In this work we use the
self-adaptive approach originally proposed in
Refs. 4), 8), which uses a continuous represen-
tation for the mutation rate and mutates the
mutation probability of each individual by
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p(t)
m (i)

=

(
1 +

1−p
(t−1)
m (i)

p
(t−1)
m (i)

exp(−γN(0, 1))

)−1

(2)

where i indicates the i-th individual, γ is a
learning rate that control the speed of self-
adaptation, and N(0, 1) is a normally dis-
tributed random number with expectation zero
and standard deviation one. Note that individ-
uals selected to reproduce with SRM at gener-
ation t could have been created either by SRM
or CM at generation t − 1. Since the muta-
tion rate of each individual is mutated only by
SRM, individuals created by CM do not carry
an updated mutation rate. Thus, the mutation
rate of individuals that were created by CM at
generation t − 1 is first updated by

p(t−1)
m (j) =

1
µSRM

µSRM∑
k=1

p(t−1)
m (k) (3)

where j indicates an individual created by CM
at (t − 1), k indicates the individuals created
by SRM at (t − 1) that survived extinctive se-
lection, and µSRM is the number of offspring
created by SRM that survived extinctive selec-
tion. In the case that no offspring created by
SRM survived extinctive selection, p

(t−1)
m (j) is

set to the mutation value of the best SRM’s
offspring. SRM will mutate this updated mu-
tation in order to mutate the object variable.

Also, to compare mutation schedules within
the parallel varying mutation model, besides
the deterministic and self-adaptive schedules
mentioned above, we also use the adaptive dy-
namic probability (ADP) mutation schedule
used in Ref. 13). ADP varies mutation rate each
time a normalized mutant’s survival ratio ζ falls
under a threshold τ (ζ < τ) by

pm =
{

pm × β (≥ 1/n)
1/n otherwise

(4)

where 0 < β < 1 and n is the bit string length.
The ratio ζ is specified by

ζ =
µSRM

λSRM
· λ

µ
. (5)

The mutation rate pm varies in the range
[p(t=0)

m ,1/n] and, similar to the deterministic ap-
proach, it is applied to all individuals created
by SRM.

4. 0/1 Multiple Knapsacks Problems

In the 0/1 multiple knapsack problem there
are m knapsacks and n objects. The capacities
of the knapsacks are c1, c2, ..., cm. For each ob-
ject there is a profit pi (1 ≤ i ≤ n) and a set of
weights wij (1 ≤ j ≤ m), one weight per knap-
sack. If an object is selected its profit is accrued
and the knapsacks are filled with the object’s
weights. The problem consists on finding the
subset of objects that maximizes profit without
overfilling any of the knapsacks with objects’
weights. The 0/1 multiple knapsack problem
can be formulated to maximize the function

g(x) =
n∑

i=1

pixi (6)

subject to
n∑

i=1

wijxi ≤ cj (j = 1, ...,m) (7)

where xi ∈ {0,1} (i = 1, ..., n) are elements of
a solution vector x = (x1, x2, ..., xn), which is
the combination of objects we are interested in
finding. Solutions to this problem have a natu-
ral binary representation in the GA constructed
by mapping each object to a locus within the
binary chromosome. A 1 in locus i indicates
that the object i is being selected and a 0 oth-
erwise. A solution vector x should guarantee
that no knapsack is overfilled and the best so-
lution should yield the maximum profit. An x
that overfills at least one of the knapsacks is
considered as an infeasible solution.

The 0/1 multiple knapsack problem is a NP-
hard combinatorial optimization problem and
its importance is well known both from a the-
oretical and practical point of view. It is
a generalization of the 0/1 simple (m = 1)
knapsack problem, which can be used as sub-
problems to solve more complicated ones 19);
also, other combinatorial problems, such the
partition problem, can be polynomially trans-
formed into it 20). Furthermore, well known
NP-complete problems, such satisfiability prob-
lems (SAT), can be formulated as special in-
stances of a 0/1 multiple knapsack problem 21).
Many practical problems can be formulated as
a 0/1 multiple knapsack problem. Some ap-
plications of the problem include the capital
budgeting problem, allocating processors and
databases in a distributed computer system 22),
project selection and cargo loading 23), cutting
stock problems 24), and maximizing the number
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of served clients or the use of bandwidth for ad
hoc networks 25).

Test function generators 26) for broad classes
of problems are seen as the correct approach for
testing the performance of genetic algorithms
(GAs). In our study we use a set of prob-
lems obtained from the OR-Library☆ that con-
sists of subclasses of difficult, large, and highly
constrained 0/1 multiple knapsack problems.
These subclasses of problems were created us-
ing a knapsack test problem generator, initially
proposed in Ref. 15). The generator itself is
based in the procedure suggested in Ref. 27) and
its main characteristics are as follows:
( 1 ) The weights wij are drawn at random

from a uniform distribution U(0, 1000).
( 2 ) For each combination of m-n, the capac-

ities of the knapsacks are set by

cj = φ
n∑

j=1

wij

where φ is the tightness ratio.
( 3 ) The profits of the objects are correlated

to the weights of the objects☆☆ by

pi =
m∑

i=1

wij/m + 500qj

where qj is a real number drawn from a
continuous uniform distribution U(0, 1).

With this test problem generator, besides
defining the number of knapsacks m and the
number of objects n, it is also possible to define
the tightness ratio φ between knapsack capaci-
ties and object weights. Each combination of φ,
m, and n defines a subclass of problem. By sys-
tematically varying these parameters, 0/1 mul-
tiple knapsacks allows us to carefully observe
the behavior and scalability of the algorithms
in three important aspects that are correlated
to the difficulty of a problem: number of con-
straints m, size of the search space 2n, and the
ratio φ between the feasible region (knapsacks’
capacities) and the whole search space (objects’
weights). We use 7 subclasses and 10 random
problems in each subclass. Table 1 shows the
combination of values of the parameters φ, m,
and n used to define the subclasses of problems.

To deal with infeasible solutions a penalty
term is introduced into the fitness function as
follows

☆ http://mscmga.ms.ic.ac.uk/jeb/orlib/info.html
☆☆ The correlation between profits and weights in-

creases the difficulty of the problems 19).

Table 1 7 subclasses of problems
(10 random problems in each subclass).

Paremeters
Subclass m n φ Comment

1 30 100 0.75 reducing
2 0.50 feasible
3 0.25 region
4 5 100 0.25 increasing
5 10 number

(3) 30 constraints
(3) 30 100 0.25 increasing
6 250 search
7 500 space

f(x) =
{

g(x)/(s · max{oj}) (s > 0)
g(x) (s = 0)

(8)

where s (0 ≤ s ≤ m) is the number of overfilled
knapsacks and oj (> 1) is the overfilling ratio
of knapsack j calculated by

oj =
n∑

i=1

wijxi/cj . (9)

Note that the penalty term of f is a function
of both number of violated constraints (s) and
distance from feasibility (oj).

5. Experimental Setup

The following GAs are used in our sim-
ulations. A simple canonical GA that ap-
plies crossover followed by background muta-
tion, denoted as cGA. Two parallel varying
mutation GAs implemented following the GA-
SMR model; one with the deterministic vary-
ing mutation schedule, denoted as GA-hM, and
the other one with self-adaptive varying mu-
tation schedule, denoted as GA-sM. Similarly,
two conventional varying mutation GAs with
the deterministic (Eq. (1)) and self-adaptive
(Eq. (2)) mutation schedules, denoted hGA and
sGA, respectively. The GAs use either propor-
tional selection or (µ,λ) proportional selection.
This is indicated by appending to the name of
the GA (µ) or (µ,λ), respectively☆☆☆. All algo-
rithms use fitness linear scaling and mating is
restricted to (xi, xj), i �= j, so a solution will
not cross with itself. Linear scaling is imple-
mented as indicated in Ref. 10) (p.79), where
the coefficients a and b that implement the lin-
ear transformation f ′ = af + b are chosen to
enforce equality of the raw (f) and scaled (f ′)
average fitness values and cause the maximum

☆☆☆ a simple GA with (µ,λ) proportional selection is de-
noted GA(µ,λ)
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scaled fitness to be twice the average fitness.
For cGA, hGA, and sGA pc = 0.6 and for GA-
hM and GA-sM the ratio for offspring creation
is set to λCM : λSRM = 1 : 1. Background mu-
tation is set to p

(CM)
m = 1/n. The learning rate

for self-adaptation is set to γ = 0.2
The initial population is randomly initialized

with a 0.25 probability for 1s. Results are av-
eraged over 50 runs and the number of genera-
tions is set to T = 5000.

6. Simple GA and Extinctive Selection

Since most varying mutation algorithms com-
bine higher mutations with a kind of extinc-
tive (truncated) selection, it is important to
try to asses the contributions to performance
of a higher selection pressure and varying mu-
tations. In order to do so, we first observe the
effect of extinctive selection on the performance
of a simple GA. Figure 3 plots the fitness of
the best-so-far individual over the generations
by the canonical cGA(100) and a simple GA us-
ing (µ, λ) = {(15, 100), (50, 100)} populations.

From this figure we see that extinctive se-
lection alone remarkable improves the solution
quality reached by the cGA in this kind of
problems. As mentioned before, the problems
used in this study are highly constrained with
sparse feasible regions where algorithms with
penalty functions have a hard time finding fea-
sible solutions 3),15). A higher selection pres-
sure in these problems is helping the algorithm
to focus the search around the feasible regions.
Extinctive selection has also another effect. It
increases the convergence speed of the algo-
rithm 18). Both GA(15,100) and GA(50,100)

Fig. 3 Effect of extinctive selection on a simple GA
(m = 30, n = 100, φ = 0.25).

are faster than cGA(100). However, a popu-
lation of (50,100) gives better final results than
(15,100). In the following we use the results
of GA(50,100) as reference for comparison with
the varying mutation algorithms.

7. Comparing the Conventional and
Parallel Varying Mutation Models

7.1 Deterministic Varying Mutation
and Extinctive Selection

Deterministic mutation varies mutation rates
with exactly the same schedule whether it is
applied serial (hGA) or parallel to crossover
(GA-hM) and therefore is an ideal candidate to
isolate and observe the impact of higher muta-
tions in both models of GAs. Experiments are
conducted using various populations (µ, λ) =
{(15, 100), (50, 100), (100, 100)} and initial mu-
tation probabilities p

(t=0)
m = {0.50, 0.10, 0.05}.

Figure 4 (a) and (b) plot the average fitness
of the best-so-far individual over the genera-
tions illustrating the convergence behavior by
hGA and GA-hM, respectively. Results by GA
(50,100) are also included for comparison.

From Fig. 4 (a) we can observe that hGA’s
convergence becomes faster increasing extinc-
tive pressure (reduce µ while keeping constant
λ). However, better final results were given by
(µ,λ)=(50,100) rather than by (µ,λ)=(15,100).
Setting initial mutation probability to lower
values also helps to speed up convergence.
These, however, do not help to increase the
quality of the final results. Note the initial flat
periods in which the fitness of the best-so-far
individual did not improve. This is a clear in-
dication of the disruption caused by high mu-
tation after crossover.

From Fig. 4 (b) we can see that increasing
extinctive selection and reducing initial muta-
tion probability in GA-hM produce similar ef-
fects to those remarked for hGA. Looking at
both Fig. 4 (a) and Fig. 4 (b) becomes apparent
that varying mutation parallel to crossover is
less disruptive than varying mutation serial to
crossover. Contrary to hGA, in the case of GA-
hM there are no initial flat periods and in all
cases GA-hM converges faster than hGA for
similar values of (µ,λ) and p

(t=0)
m . Also, as a

consequence of this less disruptiveness, the ini-
tial value set for varying mutation in GA-hM
has a smaller impact on convergence speed than
it does in hGA. See for example GA-hM(50,100)
for p

(t=0)
m = 0.5 and p

(t=0)
m = 0.05 and compare
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(a) Serial to Crossover

(b) Parallel to Crossover

Fig. 4 Deterministic varying mutation
(m = 30, n = 100, φ = 0.25).

it with hGA for similar settings. Thus, GA-hM
is more robust than hGA to initial settings of
mutation rate.

In GA-hM, similar to hGA, a (µ, λ)=(50,100)
population gives better final results than
(µ, λ)=(15,100). In fact, note that GA-
hM(15,100)’s final quality is not better than
GA(50,100)’s that does not apply varying mu-
tations. A (15,100) extinctive selection turns
out to be too strong for GA-hM. A less strong
selection pressure, such (50,100), gives a better
chance to hM’s offspring to compete with CM’s
offspring, which in turn helps to improve the
search process.

The quality of the solutions found by the al-
gorithms are measured by the average percent-
age error gap in a subclass of problems, which
is calculated as the normalized difference be-
tween the best solutions found and the optimal

Fig. 5 Convergence reliability of deterministic varying
mutation GAs: reducing the feasible region φ =
{0.75, 0.50, 0.25}, m = 30, n = 100.

Fig. 6 Convergence reliability of deterministic varying
mutation GAs: increasing the number of con-
straints m = {5, 10, 30}, n = 100, φ = 0.25.

value given by the linear programming relax-
ation (LP) (the optimal integer solutions are
unknown) 15). Figures 5, 6, and 7 plot the
average percentage error gap by hGA and GA-
hM. These figures show the effect on conver-
gence reliability of reducing the feasible region
(φ), increasing the number of constraints (m),
and increasing the search space (n), respec-
tively. The vertical bars, overlaying the mean
curves, represent 95% confidence intervals.

The statistical significance of the results
achieved by hGA and GA-hM is verified con-
ducting a factorial analysis of variance (facto-
rial ANOVA). ANOVA is a procedure for com-
paring multiple population means. Rejecting
the null hypothesis (that the population means
are equal, in this case the means achieved by
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Table 2 Factorial ANOVA for hGA and GA-hM.

Source SS df MS F Pval
GA 0.18371 1 0.18371 3.260 0.0766
φ 132.47870 2 66.23935 1175.553 0.0000

GA-φ 0.05120 2 0.02560 0.454 0.6373
Error 3.04276 54 0.05635
Total 135.75637 59
GA 0.40017 1 0.40017 6.219 0.0157
m 70.77277 2 35.38639 549.927 0.0000

GA-m 0.00654 2 0.00327 0.051 0.9505
Error 3.47476 54 0.06435
Total 74.65424 59
GA 0.54150 1 0.54150 8.685 0.0047
n 11.72973 2 5.86487 94.062 0.0000

GA-n 0.00121 2 0.00060 0.010 0.9903
Error 3.36696 54 0.06235
Total 15.63940 59

Fig. 7 Convergence reliability of deterministic varying
mutation GAs: increasing the search space n =
{100, 250, 500}, m = 30, φ = 0.25.

hGA and GA-hM) implies that at least one of
the population means differ from the others.
The factorial experiments examine the effects
of at least two factors, each having at least two
levels. In this case one factor is the type of GA
(with levels hGA and GA-hM) and the other
factor is a parameter of the problem, for ex-
ample φ (with levels 0.75, 0.5 and 0.25). Each
factor is tested for a main effect. If the null
hypothesis is rejected, it can be concluded that
there are differences among the means of the
populations corresponding to the factor levels.
The factorial ANOVA also provides information
about the interactions between factors, see for
example Ref. 28).

Table 2 summarizes the three two-factor fac-
torial ANOVA corresponding to the plots pre-
sented in Figs. 5, 6, 7. In Table 2 Source in-
dicates the source of variation, SS the sum of
squares, df the degrees of freedom, MS is the

mean square, which is the result of dividing the
sum of squares by its degrees of freedom, F is
the ratio between the mean square treatment
and the mean square error, and Pval is the p
value, the smallest significant level α that would
allow rejection of the null hypothesis (i.e., that
the means of hGA and GA-hM are the same).

From Table 2, inspection of the p values re-
veals that in the case of reducing the feasible
region (φ) there is some indication of an effect
by the GA type factor (conventional/parallel
application of deterministic varying mutation).
Note that Pval = 0.0766 is not much greater
than α = 0.05. In the cases of increasing
the number of constraints (m) and the size of
the search space (n) there are indications of a
strong main effect by the GA type concluding
that the parallel deterministic varying muta-
tion (GA-hM) attains significantly smaller er-
ror than the conventional deterministic varying
mutation GA (hGA). Notice that the p values
0.0157 and 0.0047, respectively, are consider-
ably less than 0.05. Furthermore, note that in
all three cases there is indication of a main effect
by the problem difficulty factor (φ, m, and n).
Nothing can be concluded for a possible inter-
action between GA type and problem difficulty
factor (F < 1).

7.2 Self-Adaptive Varying Mutation
and Extinctive Selection

A self-adaptive scheme uses one mutation
rate per individual, which are usually set at
t = 0 to random values in the range allowed for
mutation. Two important ingredients of self-
adaptation are the diversity of parameter set-
tings and the capability of the method to adapt
the parameters. It has been indicated that some
of the implementations of self-adaptation ex-
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ploit more the diversity of parameter settings
rather than adapting them. However, it has
also been argued that the key to the success
of self-adaptation seems to consist in using at
the same time both a reasonably fast adapta-
tion and reasonably large diversity to achieve a
good convergence velocity and a good conver-
gence reliability, respectively 8).

To observe the influence that the conven-
tional/parallel application of varying mutations
could have on the self-adaptive capability it-
self we avoid initial diversity of parameters.
Experiments are conducted using populations
(µ, λ) = {(15, 100), (50, 100)} and mutation
ranges of pm = [pmin

m , pmax
m ] = [1/n, {0.50,

0.25, 0.10, 0.05}]. In all cases initial mutation
for each individual is set to the maximum value
allowed for the range, p

(t=0)
m = pmax

m . Fig-
ure 8 (a) and (b) plot the average fitness of the
best-so-far individual over the generations illus-
trating the convergence behavior by sGA and
GA-sM, respectively. Results by GA(50,100)
are also included for comparison.

From Fig. 4 and Fig. 8 it is worth noting the
following. (i) Self-adaptive mutation increases
convergence speed compared to deterministic
mutation either serial or parallel to crossover.
Looking at Fig. 8 (a) and Fig. 4 (a), note that
in sGA the initial flat periods observed in hGA
have disappeared completely. Also, looking at
Fig. 8 (b) and Fig. 4 (b) we can see that GA-
sM(50,100)’s fitness picks up much earlier than
GA-hM(50,100)’s for similar values of p

(t=0)
m .

Between sGA and GA-sM, however, looking at
Fig. 8 (a) and (b) note that sGA can match GA-
sM’s convergence velocity only for small values
of p

(t=0)
m . This is an indication that even in

the presence of adaptation the convergence ve-
locity of a conventional varying mutation GA
would depend heavily on initial mutation rates,
which is not an issue if adaptive mutation is
applied parallel to crossover. (ii) Contrary to
deterministic varying mutation, convergence re-
liability of a conventional self-adaptive varying
mutation GA could be severely affected, which
becomes quite notorious if no initial diversity
of parameters is allowed. Note in Fig. 8 (a) that
only the configurations of sGA(50,100) having
p
(t=0)
m = {0.10, 0.05} achieved better final re-

sults than GA(50,100). On the other hand, the
initial lack of diversity of parameters does not
affect convergence reliability of GA-sM. Note
in Fig. 8 (b) that for the same selection pres-

(a) Serial to Crossover

(b) Parallel to Crossover

Fig. 8 Self-adaptive varying mutation

p
(t=0)
m (i) = pmax

m (m = 30, n = 100, φ = 0.25).

sure convergence reliability of GA-sM is simi-
lar for all values of p

(t=0)
m . (iii) Similar to de-

terministic varying mutation, better results are
achieved by (µ, λ) = (50, 100) rather than by
(µ, λ) = (15, 100).

Next, we allow for initial diversity of param-
eters setting p

(t=0)
m to a random value between

the minimum and maximum value allowed for
mutation. In this case, the disruption that
higher serial mutation causes to crossover be-
comes less apparent due to the initial diversity
of parameters and convergence speed is similar
for both sGA and GA-sM. Convergence relia-
bility of sGA also improves. However, the neg-
ative impact on reliability remains quite signif-
icant for sGA (see below). Figure 9 (a) and
(b) illustrates the fitness transition and the av-
erage flipped bits (Log scale) by sGA and GA-
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(a) Convergence Velocity

(b) Average Number of Flipped Bits

Fig. 9 Convergence velocity and average number of
flipped bits (m = 30, n = 100, φ = 0.25).

p
(t=0)
m = 0.5 for hGA and GA-hM. p

(t=0)
m (i) =

rand[1/n, 0.5] for sGA and GA-SM.

sM both with random initial mutation rates be-
tween [1/n,0.50]. Results for hGA and GA-hM
are also included in Fig. 9 (a) for comparison.
From these figures note that sGA converges to
lower fitness and reduces mutation rates faster
than GA-sM.

The self-adaptation principle tries to exploit
the indirect link between favorable strategy pa-
rameters and objective function values. That
is, appropriate parameters would lead to fitter
individuals, which in turn are more likely to sur-
vive and hence propagate the parameter they
carry with them to their offspring. A GA that
applies varying mutation parallel to crossover as
GA-sM can interpret better the self-adaptation
principle and achieve higher performance be-
cause (i) inappropriate mutation parameters do

Fig. 10 Convergence reliability of self-adaptive vary-
ing mutation GAs: reducing the feasible re-
gion φ = {0.75, 0.50, 0.25}, m = 30, n = 100.

not disrupt crossover, and (ii) it preserves mu-
tation rates (see Eq. (3)) that are being useful to
the search. A GA that applies varying mutation
serial to crossover as sGA, however, can mis-
lead the mutation rate control because (i) ap-
propriate parameters could be eliminated due
to ineffective crossover operations, and (ii) in
sGA an appropriate parameter implies param-
eters that would not affect greatly crossover.
Thus, in sGA there is a selective bias towards
smaller mutation rates. Algorithms based on a
model like GA-SRM, where varying mutations
are detached from crossover, (self) adapts mu-
tation rates based only on the instantaneous ef-
fectiveness of varying mutations. In the case of
conventional varying mutation GAs, however,
mutation rates are (self) adapted based on the
combined effectiveness of crossover and muta-
tion, which can mislead the mutation rate con-
trol negatively affecting performance.

Figures 10, 11, 12 plot the average percent-
age error gap by sGA and GA-sM showing the
effect on performance of reducing the feasible
region (φ), increasing the number of constraints
(m), and increasing the search space (n). Ta-
ble 3 summarizes the three two-factor factorial
ANOVA corresponding to the plots presented
in Figs. 10, 11, 12.

From Table 3, inspection of the p values re-
veals that in all three cases (reducing the feasi-
ble region, increasing the number of constraints,
and increasing the size of the search space)
there are indications of a strong main effect by
the GA type concluding that the parallel self-
adaptive varying mutation GA (GA-sM) at-



Vol. 45 No. SIG 2(TOM 10) A Study on Parallel Varying Mutation 87

Table 3 Factorial ANOVA for sGA and GA-sM.

Source SS df MS F Pval
GA 0.70634 1 0.70634 9.731 0.0029
φ 82.77031 2 41.38516 570.167 0.0000

GA-φ 0.59193 2 0.29596 4.078 0.0224
Error 3.91955 54 0.07258
Total 87.98813 59
GA 0.89060 1 0.89060 12.418 0.0009
m 74.48359 2 37.24180 519.263 0.0000

GA-m 0.69806 2 0.34903 4.867 0.0114
Error 3.87291 54 0.07172
Total 79.94516 59
GA 3.33233 1 3.33233 42.053 0.0000
n 9.25077 2 4.62539 58.371 0.0000

GA-n 0.08025 2 0.04013 0.506 0.6055
Error 4.27902 54 0.07924
Total 16.94237 59

Fig. 11 Convergence reliability of self-adaptive vary-
ing mutation GAs: increasing the number of
constraints m = {5, 10, 30}, n = 100, φ =
0.25.

Fig. 12 Convergence reliability of self-adaptive vary-
ing mutation GAs: increasing the search space
n = {100, 250, 500}, m = 30, φ = 0.25.

tains significantly smaller error than the con-
ventional self-adaptive varying mutation GA
(sGA). Notice that the p values 0.0029, 0.0009,
and 0.0000, respectively, are considerably less
than 0.05. Furthermore, note that in all three
cases there are indications of a main effect by
the problem difficulty factor (φ, m, and n).
In other words, increasing the difficulty of the
problem makes it more difficult for the self-
adaptive GA to find good solutions. In addi-
tion, note that the interaction between GA type
and problem difficulty factor was significant for
ratio φ and number of constraints m (F > 1 and
very small Pval), which means that the self-
adaptive parallel varying mutation GA (GA-
sM) not only performs better but also scales
up better than the conventional self-adaptive
varying mutation GA (sGA) as the difficulty of
the problem increases.

8. Comparing Mutation Schedules in
the Parallel Varying Mutation
Model

In Section 7 we compared the conventional
and parallel varying mutation models using de-
terministic and self-adaptive mutation sched-
ules in both models of GAs. In this sec-
tion we compare different mutation schedules
within the parallel model of varying muta-
tion. Besides the deterministic (GA-hM) and
self-adaptive (GA-sM) mutation schedules used
above we also include results by the adaptive
scheme (GA-aM) described in Eq. (4) and used
in Ref. 13). For GA-aM the initial mutation
rate is set to p

(t=0)
m = 0.5 and the mutation

rate reduction factor is set to β = 0.7, which
allows a smooth reduction of mutation rates es-
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Fig. 13 Convergence reliability of deterministic, adap-
tive, and self-adaptive parallel varying muta-
tion GAs: reducing the feasible region φ =
{0.75, 0.50, 0.25}, m = 30, n = 100.

pecially in the later stages of the search. The
threshold τ to trigger adaptation is sampled for
each subclass of problems. The values of τ used
are 0.58 for subclass 5, 0.60 for subclasses 1, 3
and 4, and 0.64 for subclasses 2, 6, and 7 (for
the problem subclass number and its character-
istics see Table 1). Note that τ is not sampled
for each problem within a subclass. The other
parameters for GA-aM are the same used by
GA-hM and GA-sM (see Section 5).

Figures 13, 14, 15 plot the average percent-
age error gap by GA-hM, GA-aM, and GA-sM
showing the effect on performance of reducing
the feasible region (φ), increasing the number
of constraints (m), and increasing the search
space (n).

From these figures we can see that the over-
all performance of the self-adaptive GA-sM is
better than the performance of the determinis-
tic GA-hM and adaptive GA-aM. The only re-
gion where GA-sM performs worse than the two
other algorithms is for problems with wide fea-
sible region (Fig. 13, φ = 0.75 and φ = 0.5). A
self-adaptive algorithm requires additional re-
sources and is more complex than the other two
(one mutation rate per individual instead of the
one mutation rate for the whole population).
These results suggest that for less difficult prob-
lems simpler algorithms like GA-hM and GA-
aM would be sufficient to approach the global
optimum. However, for difficult problems more
complex but well engineered GAs like GA-sM
are needed.

The performance of the adaptive GA-aM is
better than the deterministic GA-hM for all

Fig. 14 Convergence reliability of deterministic, adap-
tive, and self-adaptive parallel varying mu-
tation GAs: increasing the number of con-
straints m = {5, 10, 30}, n = 100, φ = 0.25.

Fig. 15 Convergence reliability of deterministic, adap-
tive, and self-adaptive parallel varying muta-
tion GAs: increasing the search space n =
{100, 250, 500}, m = 30, φ = 0.25.

subclasses of difficult problems (Fig. 13 φ =
0.25, Fig. 14 and Fig. 15). For more simple
problems the performance of both algorithms
is similar (Fig. 13, φ = 0.75 and φ = 0.5). It is
also important to note that in GA-aM the pa-
rameter to trigger adaptation offers a tradeoff.
At the expense of fine tuning this parameter we
can seek to increase the performance of GA-aM
approaching and in some cases performing bet-
ter than GA-sM. Real world applications some-
times impose additional constraints, like mem-
ory usage. In these applications it may not be
feasible to use a self-adaptive algorithm and an
adaptive algorithm could be the best option.

Finally, it should be mentioned that the per-
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formance of GA-hM, despite being the worst
among the parallel varying mutation algorithms
studied here, is by far better than the per-
formance of a simple GA. For example, for
the subclasses of problems n = {100, 250, 500},
m = 30, and φ = 0.25 (Fig. 15) the percent-
age error gaps achieved by GA-hM(50,100) are
{4.88, 4.01, 3.88}, respectively, while the per-
centage error gaps achieved by a cGA(100) are
{9.34, 9.58, 9.41} and by a GA(50,100) are
{6.03, 5.83, 6.54}.

9. Conclusions

We have studied varying mutations applied
parallel to crossover in generational determin-
istic and self-adaptive varying mutation GAs
and compared them with the conventional gen-
erational model of varying mutations that ap-
ply mutation mostly serial to crossover. Exper-
iments were conducted with several subclasses
of 0/1 multiple knapsacks problems. We found
that varying mutation parallel to crossover can
be a more effective and efficient framework than
the conventional model of varying mutations
in both deterministic and self-adaptive GAs.
In the case of deterministic mutation GAs, a
GA with varying mutation parallel to crossover
showed faster convergence and higher robust-
ness to initial settings of mutation rate than
a conventional varying mutation GA. Also, an
ANOVA gave some indication of higher con-
vergence reliability by the parallel application
of deterministic varying mutation. In the case
of self-adaptive GAs, the convergence velocity
of a parallel self-adaptive mutation GA was
matched by a conventional self-adaptive muta-
tion GA only when initial diversity of param-
eters was allowed. Convergence reliability was
higher for the parallel varying self-adaptive mu-
tation GA with or without initial diversity of
parameters. An ANOVA gave a strong indica-
tion in this direction. We also found that the
conventional model of varying mutations affects
negatively the self-adaptive mutation rate con-
trol. This strongly suggests that the conven-
tional model of varying mutation GAs may not
be appropriate for combining forms of control.

Deterministic, adaptive, and self-adaptive
mutation schedules were also compared within
the parallel varying mutation model. Best over-
all performance was achieved by the parallel
varying mutation self-adaptive GA.

In the future, the effectiveness of varying mu-
tation parallel to crossover should be further

studied with other important classes of prob-
lems. Also, it is worth pursuing co-adaptation
of parameters within the parallel varying mu-
tation model.
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