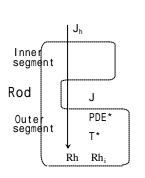
5B-4

杆体外節における光感受性電流生成の定常応答に対する 非線形増幅回路モデル

小島正典

†大阪工業大学 情報科学部


1.まえがき

網膜の杆体外節における光変換機構を等価回路 で構成して実験検証することを目指している。

網膜の杆体外節における光感受性電流の生成は 12の微分方程式で表されている。数値計算によると、光感受性電流の変化を 9 倍にするための活性化ロドプシンの変化は約 1000 倍必要である。すなわち対数的圧縮をしていることが分かる。この発表では 12 の式から定常解を求めて、これを非線形増幅器による等価回路で表せることを示した。そして、この等価回路をシミュレーションは、 この等価回路をシミュレーションは 性を確認することができた。対数的特性は積要素への帰還で実現されており、積要素を含む非線形増幅器にはギルバートセルが使えるので、等価回路全体のハードウェア化が可能と考えられる。

2 . 杆体の光電流生成過程

網膜の杆体における光変換機構が、トラフサンショウウオの場合について $(1) \sim (8)$ の方程式モデルで示されている[1]。

J: Photocurrent PDE*: Activated

phosphodiesterase

T* : Activated transducin

Rh_i: Inactive rhodopsin Rh : Photoexcited rhodopsin

J_h : Flux of rhodopsin photoisomerization

図1 杆体の光変換模式図 Phototransduction in rod

Active Filter Model of PDE Activation in Retinal Rods
† Kojima Masanori • Faculty of Information Science,
OsakaInstitute of Technology

光量子がロドプシンを活性化(Rh)し、以後は連鎖的にトランスデューシンを活性化(T*)し、燐酸ジエスティラーゼを活性化 (PDE*)する。PDE*は環状グアニル酸 cGMP を低下させ、Ca**チャンネルが閉じ、光感受性電流Jを低下させる。

$$Rh = J_h - _1 Rh + _1 Rh_i$$
 (1)

$$Rh_{i}^{\bullet} = {}_{1}Rh - ({}_{2}+ {}_{3})Rh_{i}$$
 (2)

$$T^* = Rh (T_{Tot} - T^*)$$
 (3)

$$PDE^* = {}_{1}T^* (PDE_{Tot} - PDE^*) - {}_{2}PDE^* (4)$$

$$c = bJ - r_{ca} (c - c_0) - k_1(e_T - c_b)c + k_2 c_b$$
 (5)

$$c_b = k_1 (e_T - c_b) c - k_2 c_b$$
 (6)

$$\dot{g} = \frac{A_{\text{max}}}{1 + (c/K_c)^4} - g (\overline{V} + PDE^*)$$
 (7)

$$J = J_{max} g^3/(g^3 + K^3)$$
 (8)

 $_{1}$: 20 sec⁻¹ , $_{2}$: 0.0005 sec⁻¹ , $_{3}$: 0.05 sec⁻¹

: 0.5 $\, sec^{\text{-}1}\, \mu\, M^{\text{-}1}$, T_{Tot} : $1000\, \mu\, M$, PDE_{Tot} : $100\, \mu\, M$,

 $_1:0.1~sec^{-1}\,\mu\,M^{-1}$, $_2:10~sec^{-1}$, $_1:10.6~sec^{-1}$: 1 sec $^{-1}\,\mu\,M^{-1}$, $r_{ca}:50~sec^{-1}$, $c_0:100~nM$, V: 0.4 sec $^{-1}$, b: 0.625 $\mu\,M$ sec $^{-1}$ pA $^{-1}$, $A_{max}:65.6~\mu\,M$ sec $^{-1}$, $K_c:100~nM$, K: $10\,\mu\,M$, $J_{max}:5040~pA$

数値計算から定常値を図 2 で示した。暗時の光電流が J_0 なら $I=(J_0-J)/J_0$ である。 $Jhv(R_{ht}^*/s)$ が約 1000 倍の変化に対して変化率 I が 9 倍の変化 $(0.1\sim0.9)$ に圧縮されている。以下の章では対数的な圧縮がどこで起こるのかを調べる。

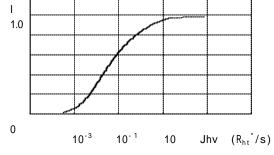


図 2 光感受性電流の正規化応答 Fig.2 Normalized Photo responses of J

2. PDE活性化過程の定常応答

数理モデルと定常応答を示す方程式を示す。 $0 = Rh (T_{Tot} - T^*) - {}_{1}T^* + {}_{2} PDE^* (9)$ $0 = {}_{1} T^* (PDE_{Tot} - PDE^*) - {}_{2} PDE^* (10)$ { Rh $(T_{Tot} - T^*) + {}_{2} PDE^* \} / {}_{1} = T^* (11)$ ${}_{1} T^* (PDE_{Tot} - PDE^*) / {}_{2} = PDE^* (12)$ $Rh = \frac{{}_{2} PDE^{*} \{ {}_{1} - {}_{1} (PDE_{Tot} - PDE^{*}) \}}{\{T_{Tot} {}_{1} (PDE_{Tot} - PDE^{*}) - {}_{2} PDE^{*} \}}$

等価回路は次のようになる。

図3 PDE 活性化の等価回路 Fig.3 Equivalent circuit of PDE activation

要素は、分析やハードウェア構成に適するオペ アンプと乗算回路が使える。

3. 光電流生成過程の定常応答

数理モデルと定常応答を示す方程式を示す。

$$0 = bJ - r_{ca} (c - c_0)$$
 (14)

$$0 = \frac{A_{\text{max}}}{1 + (c/K_c)^4} - g (\overline{V} + PDE^*)$$
 (15)

$$g = \frac{A_{\text{max}}}{(V + PDE^*)\{1 + (c/K_c)^4\}}$$
 (16)

$$c = J b / r_{ca} + c_0$$
 (17)
 $J = J_{max} g^3 / (g^3 + K^3)$ (18)

$$J = J_{max} g^3 / (g^3 + K^3)$$
 (18)

$$PDE^* = \frac{1}{\{\frac{A_{max}}{K} \frac{(J_{max} / J - 1)^{1/3}}{1 + (Jb/r_{ca} + c_0)^4/K_c^4} - V^-\}}$$

(19)

ブロック図は次のようになる。

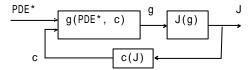


図6 光電流生成のブロック図 Block diagram of photocurrent activation

等価回路は次のようになる。

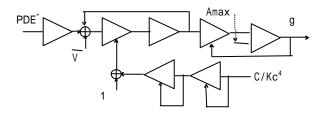


図4 PDE 活性化の等価回路 Fig.4 Equivalent circuit of PDE activation

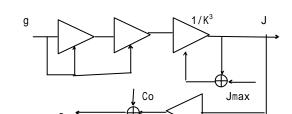


図5 光電流生成過程の等価回路 Fig.5 Equivalent circuit of J activation

要素は、分析やハードウェア構成に適するオペ アンプと乗算回路が使える。

4 . T* PDE* g J の正規化応答

正規化応答を調べると各過程で圧縮が同等に行 われているが、順に Jhv の動作点が移動している ことがわかる。

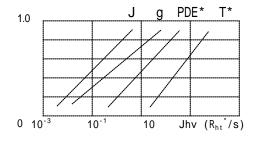


図6 T* PDE* g J の正規化応答 Fig.6 Normalized Photo responses of T*, PDE*, g and J

5.むすび

杆体の光電流生成過程の定常応答を非直線増幅 器型等価回路で表すことができた。

文

[1] V. Torre, S. Forti, A. Menini, and M. Canpnni: Model of Phototrunsduction in Retinal Rods, Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV., pp.563-573 (1990)