AL F 2R Dec. 1999

RERME

s

FEHEERAFTED LS WPP D
— FEER SPMD {bHEfiT —

t B E B

FurSIVIRRET, EEEOTE ST A UTEMRERIE T HEF A Y BN
(SMP) BEHZEDTWA. LhL, EEEEEB5I0E, FREICERB oy — & KEBHRS
RN LT 2w L 2 B0V VEERBEIRICHBATALERH Y, AFTRERRFALETS.
0w, BRI 1S T bk SMP FIFIC BEIEET 3 BEIEFIL VA T ~OHIIIRE V. Hik
1, TEEMEFIL= %1 T WPP (Whole Program Parallelizer) (8T, T 3 0
HEFRERHL, BMEEFRoTVS: (1) YHESHLEOEFMLE 2 — FeRRE 2z io
THIRT 2 X [SPMD 1k, (2) * vy ¥ a5 —FBEIZHIET 2 & 5 iKA— 7285k T 5 F
IGEXRBIT 7 4 =T A Ry P a—Y v, 3) Fvy 2 OBREZE L ICHRNETY A 7 VERHE
PEUTCEERA— T WFULT 3R EMBEEL—THFUE. R BIIUTORFTERT 5%
F, WHFIL—T R P EFEBICED, TROOBICIIL—TRR MOSIFERRNBRE ST B H
% SPMD U —Ua v FHEEICENoTRDB. KIZ, ZTORT, Fyry a7 —FBaI5%
ELRWVEEL—TRE 1) — REeTAN—TES S 72 ERT 5. K%L, /797 LOWRER/ —
FOMECTRT DEATYA 7 VEEEME L, B/MEEZE 2 BA—7HERIUET D, FEFM T
32 7uk v ¥ T 50 [FoMRER 2B,

Prototyping of Interprocedural Parallelizing Compiler WPP:
Interprocedural SPMD Region Coustruction and Parallelization

MAKOTO SATOH!

Symmetric Multi-Processors (SMP) have lately attracted considerable attention because of
easy programming and the expectation of getting higher performance for a wide variety of
programs. But obtaining the maximum performance by hand requires great efforts because
we must make the best use of interprocedural data dependence information and the char-
acteristics of machine resources such as caches. Therefore people are hoping for automatic
parallelizing compilers. We have examined and implemented the following three functions on
our interprocedural parallelizing compiler WPP (Whole Program Parallelizer): (1) interpro-
cedural SPMD region construction that moves parallel control codes such as thread creations
beyond procedure boundaries and reduces them, (2) interprocedural static affinity scheduling
that parallelizes such loops as reducing data movement among caches, (3) interprocedural op-
timal loop parallelization that statically evaluates the execution cycles considering the effect
of caches and parallelizes the most appropriate loops. The algorithm of these functions is as
follows: first, beyond procedure boundaries, WPP finds SPMD regions that include as their
first and last parts two parallel loop nests and as the other parts sequential sections without
branches or any loop nests. Second, in each SPMD region, WPP finds groups of contiguous
loops among which no inter-cache data movement occurs and makes a loop class graph that
deals with each group as a node. Lastly, WPP evaluates the execution cycles of every SPMD
region for all possible combinations of nodes in the graph and parallelizes the most appropri-
ate loops that provide the minimum cycle. Preliminary evaluation shows 50 times speed-ups
were obtained for 32 processors.

(EpR 1142 6 A 18 H3ER)

t FEReLF Tty a2y Ea—7 4 S BUTRR
RWCP Multiprocessor Computing Hitachi Laboratory

82

