TR RS Mar. 2000

RERBE

BESH —~Ny T AL 7Y 3L DATECDONT
i X L W% B o

UIRBCHELEENT — Xy Yal ¥ a v (occasional GC) DMITLE #DEREIZOW
T2, HEN GC &, VAMNELEOMEEHFEEL /v - hoRHodRBos%
AMHEELTHEHEP A 7Y 22 FOIEHM (sliding compaction) WHEITH LD THA., FORELL
T, GC BB OEMLL, ¢ —7HHAOERIE) 7 —F v 7ty b O/ CHEHERMOEHE
LENZ 2 A EIEARBOER, HRENTVS, ZOFEEN GC 0EFFbix, TP 3 GC
MBDERH (realtime) L& EHHNZFTHN S GC OXF] (concurrent) {LEN S % 5. FHILE
BEOWBEL ZEOITI I L%, BFEIHHMO»» 2 KBHEY BT ) 2L BRT A, GCOE
ML OERMALICULER, write-barrier & Y W HEEORBEEL, 0T T HFLICLEHTE 2.
BHFUL TR N SIZ, FHMFIEIIMEN 217 TH 5. BUWHEEL X, —BICERET 247V x
7 M EBEIRICEOMBNESNAHBICRET 22 TH Y, GC OFFLE TG TORE % T
T4, £/, write-barrier 1347 Yz 7 P BRI MEBROBANE RS . MEMEANL Lisp @
—HETHA PHL T Hv, GCHEAL vy FIA7 IV EFBELLAL—F 1 WS RHBLER
RTCTEELITo7. BHED Lisp 717 7 LOFETHRP OB ONR GC OERMEFMIZOWT
Lk,

Incremental Occasional Garbage Collection

AKIRA KAWAMATA,t XIANG LUOt and MOTOAKI TERASHIMA'

The design and implementation of incremental occasional garbage collection are presented.
The occasional garbage collection is a new type of garbage collection (GC) based on a “mark-
and-compact” or sliding compaction scheme. The GC focuses its task of scavenging on most
recently generated data objects to gain time, and its good performance is shown by a proto-
type of “stop-and-collect” version. The incremental occasional garbage collection is made up
of two features: “real-time” and “concurrency”. The former is performed usually, while the
latter is periodically to gain more spaces. They need common schernes of a write barrier and
a coherent copy. The write barrier is less costly in time for coordination than a read barrier,
and the coherent copy makes each data object consistent upon its relocation. The concur-
rency needs exclusive control in addition to them, so that these two features are implemented
effectively in the GC. The incremental GC is implemented on a multi-processor machine with
shared memory by using (POSIX) thread library that makes it portable. The analysis of the
GC on its performance is done by using our experimental data obtained from the execution
of typical Lisp programs.

(FRL114E 8 A 5 HEER)

b RS EAT RIS A7 & 7R R
Graduate School of Information Systems, University of
Electro-Communications



