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Abstract: The theory of general relativity predicts that the strong gravity of a black hole bends the trajectories of light
rays. Calculating their bendings numerically, we can obtain a 3D CG image when the view point is set in the black hole
spacetime. The existing researches adopt the ray tracing method for rendering while we adopt the rasterization method
in this paper. In order to achieve fast perspective projection in the curved spacetime, we calculate more than thirty
million light trajectories on an optimally constructed computational mesh in advance and let a GPU interpolate them
when rendering. Furthermore, in order to render the lines and triangular polygons of CG objects accurately, we apply
the dynamic subdividing technique (tessellation). Various types of CG programs can be easily written in the same way
as in the conventional 3D CG programming with a common graphics API. Utilizing the recent computing power of
the GPU, the rendering performance of nearly one million polygons per second is achieved even on a notebook PC.

Keywords: rasterization, black hole, graphics processing unit

1. Introduction

The theory of general relativity that Einstein proposed predicts
that the strong gravity of a black hole bends the trajectories of
light rays [1], [2]. Calculating their bendings numerically, we can
naturally extend the concept of the usual three dimensional com-
puter graphics (3D CG in below) into the black hole’s spacetime.
Let us call such an extended CG as the general-relativistic 3D
CG. One of its visual effects is known as a gravitational lens ef-

fect [3], which has been studied by a number of research papers
(e.g., Refs. [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]).

The general-relativistic 3D CG has two kinds of purposes.
One is to contribute to the study of astrophysics, in partic-

ular, the study of high energy radiation near around a black
hole [4], [6], [7], [13], [14]. In this case the numerical simula-
tion is the main theme to verify with the actually observed data
obtained from radio telescopes. Therefore it is almost sufficient
to render a simple geometrical shape of a CG object just like a
plane, disk, torus, or sphere which represents a model of an ac-
cretion disk [3] around the black hole. Due to its simplicity, some
of the researches [7], [13] have achieved on-the-fly realtime CG
image generation of the gravitational lens effect by utilizing the
massive computing power of a recent graphics processing unit
(GPU in below).

The other purpose of the general-relativistic 3D CG is to con-
tribute to the field of physics education and/or entertainment that
gives an intuitive understanding to high school/junior high school
students and amateur scientists who have a particular interest in
theory of general relativity [5], [8], [9], [10], [11], [12]. In this
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case, in contrast to the former case, complex CG objects like
space ships, rockets, and so on are preferable for the students and
amateurs to feel familiar and intuitive. In the case of conventional
3D CG it is quite common to define the shapes of such space
ships and rockets with more than a thousand triangular polygons
and render them on GPU by the rasterization framework with
common graphics APIs like OpenGL [15] and DirectX [16]. In
the general-relativistic 3D CG, in contrast, no research has ever
achieved such rasterization based rendering. We challenge it in
this paper and fully exploit the graphics processing power of the
GPU.

To the author’s best knowledge, all the existing research adopt
the ray-tracing technique/method but not the rasterization tech-
nique/method due to the following two reasons.
( 1 ) The calculation cost of on-the-fly perspective projection in

the black hole spacetime is extremely high.
( 2 ) A straight line in the black hole spacetime is not perspec-

tively projected to a straight line but a curved line in general.
In the same sense, the three straight lines of a triangular poly-
gon are not projected to straight lines in general.

We solve the problem (1) by constructing a well-formed com-
putational mesh and calculating the light trajectories at all the
crossover points on the mesh in advance. The calculation results
are loaded to GPU memory and the vertices of CG objects are lin-
early interpolated by the GPU hardware. Furthermore we solve
the problem (2) by applying the dynamic, recursive subdividing
technique, often called tessellation, to lines and polygons in the
same way as in Refs. [17], [18], [19].

Our system in this paper consists of two stages (see Fig. 1).
The first half is the preprocessing stage to prepare the mesh data.
The last half is the actual rendering stage, in which the host pro-
gram is implemented with OpenGL API and the shader programs
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Fig. 1 Overall structure of the CG system consisting of the preprocessing stage and the rendering stage.

on a GPU are written in OpenGL Shading Language [20] (GLSL
in below). Because of adopting OpenGL/GLSL framework, we
can manage the CG primitives in the same way as in the conven-
tional 3D CG programming. In fact we will show various kinds
of CG programs which render point sprites, wireframes, and the
3D modeling data defined by more than a thousand of polygons in
the black hole spacetime. The programs can achieve the render-
ing performances of more than one million polygons per second
on the desktop PC, Mac Pro, and nearly one million polygons per
second on the notebook PC, MacBook Pro.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss our CG framework (geometry model, rendering
method, and color model) that we assume when rendering a CG
scene in the black hole spacetime. In Section 3 we explain how to
perform the perspective projection by utilizing the trilinear inter-
polation hardware of a GPU. In Section 4 we actually render the
OpenGL primitives: point sprites, lines, and triangular polygons.
In particular, lines and polygons are dynamically subdivided to
render their distorted appearances accurately. We also discuss the
rendering speeds.

2. Framework

In this section we discuss our framework of the general-
relativistic 3D CG and the two key problems of the rasterization
which we must solve.

2.1 Geometry Model
Figure 2 illustrates the geometrical model in this paper, where

the gray disk with white letters “BH” in the figure represents the
black hole. A light ray (each of the solid and dashed arrows in
the figure) is assumed to be emitted from a point P on a polygon
surface of a self illuminating CG object, or emitted from a certain
light source and then reflected at the point P. Such a ray passes
near a black hole, then proceeds through a pixel point S on a per-
spective screen, and then finally reaches a view point V . Because
the ray bends by the strong gravity of the black hole, there can be
more than one such ray that goes through both P and V . In Fig. 2
there are the two rays of solid and dashed arrows that go through
the points S and S ′, respectively. Note that, if the light source
exists, the ray trajectory from the light source to P (the gray bold
arrow in Fig. 2) also bends near the black hole. However, in or-
der to reduce the calculation cost, we simply assume that the line
segment of such a ray from the light source to P does not bend
and that the polygon is rendered according to Phong’s shading
model [21] with an ideal parallel light source at infinity.

We fix the black hole at the origin of the world coordinate sys-

Fig. 2 Geometrical framework among a polygon, a perspective screen, and
a view point.

tem (or global coordinate system). In this sense, we implicitly
identify the world coordinate system with the black hole space-
time coordinate. The type of the black hole we discuss here is the
simplest, spherically symmetric one, called Schwarzschild black

hole, which is defined by the following Riemann metric [1], [2]

ds2 =

(
1 − a

r

)
dt2 −

(
1 − a

r

)−1
dr2 − r2

(
dθ2 + sin θdφ2

)
(1)

where the triplet (r, φ, θ) expresses the polar space-like coordi-
nates and t the time-like coordinate. The constant a, called a
gravitational radius, defines the radial boundary between the in-
side (r < a) and outside (r > a) of the black hole, where we
consider only the outside for the view point and polygon points.
The trajectory of every light ray is defined by a set of second-
order, nonlinear, ordinary differential equations, called a geodesic

equations, derived from the Riemann metric according to the the-
ory of general relativity (see the details in Ref. [1]). In our case
of Eq. (1), because of the symmetricity of the black hole, we can
omit the coordinate θ by fixing θ = π/2 so that, without the loss
of generality, the ray trajectory can be defined by the following
set of three equations,

ẗ = − a
r2

(
1 − a

r

)−1
ṫṙ

r̈ = −1
2

(
1 − a

r

) (aṫ2

r2
− aṙ2

(r − a)2
− 2rφ̇2

)
(2)

φ̈ = −2ṙφ̇
r

where the dot ˙ and the double dot ¨ mean the first and second
order derivation operators d/dλ and d2/dλ2, respectively, with an
arbitrary parameter λ. There are two kinds of methods available
to solve Eq. (2). One method is to use the fourth-order Runge-
Kutta integration as many existing research do [4], [7], [8], [9],
[10]. The other method is to use the analytic solution [13].

2.2 Problems of Rasterization
To the author’s best knowledge, all research up to now adopt
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the ray tracing method *1, which traces the light ray trajectory
in Fig. 2 back in time. Mathematically speaking, the ray tracing
method must solve the initial value problem (IVP in below) of
Eq. (2), that is, given an arbitrary view point V and an arbitrary
pixel point S (or S ′) on the perspective screen, we first calculate
the initial point and initial direction of the light ray, then trace the
ray trajectory according to Eq. (2), and obtain the point *2 P on a
certain polygon surface if there exists such a surface that the ray
hits on. This calculation cost is expensive but, with the comput-
ing power of a recent GPU, several research effort/paper [7], [13]
have accomplished solving the IVP on the fly and generating CG
images in realtime. However they treat a considerably simple ge-
ometrical shape of a CG object like a plane or a disk. The render-
ing programs are specialized to their specific CG objects. When
challenging to render more complicated objects that may be de-
fined by more than a thousand of polygons, it seems still hard to
render them in realtime by the ray tracing method.

In contrast to the existing researches, we adopt the rasteriza-
tion in this paper. One of the benefits of the rasterization is that,
because it is the fundamental framework for all commercial GPU,
we expect that we can fully exploit the hardware performance of
the GPU. The other is that we can write the general-relativistic
3D CG programs in the same manner as we write usual 3D CG
programs with common graphics APIs. In fact, various CG ex-
amples are given in Section 4. On the other hand, we must herein
focus on two key problems, which are the main reasons why the
existing researches do not adopt the rasterization method.

One problem is that we must solve the boundary value prob-

lem (BVP in below) of Eq. (2) to implement the rasterization in
the black hole spacetime. That is, given an arbitrary view point V

and an arbitrary polygon point (vertex) P, we must calculate the
light ray that goes through both V and P and obtain the pixel point
S (or S ′) on the perspective screen that the ray trajectory crosses.
In general, solving the BVP is more expensive than solving the
corresponding IVP. A standard method of solving the BVP is to
use the bisection algorithm (or its improved algorithm) of iter-
atively solving the IVP, and therefore it is unacceptable for fast
on-the-fly rendering. Another method is to use the analytic solu-
tion of Eq. (2). However, the calculation cost does not decrease
drastically because the solution contains a couple of Jacobi ellip-
tic functions [13].

For these reasons, we propose another method of utilizing the
hardware linear interpolation unit of a GPU, though the idea is
not new at all. Our system consists of the preprocessing stage
and the rendering stage, as illustrated in Fig. 1. In the preprocess-
ing stage we first construct a computational mesh, then solve the
BVP for every mesh point, and store the calculation results (a set
of BVP solutions) into a hard disk. Next, in the rendering stage,
for given arbitrary V and P, the solution is linearly interpolated
from the pre-calculated solutions loaded from the hard disk. Now
arises the question whether the interpolation error can be suffi-
ciently small or not. The answer is yes when we prepare enough

*1 Precisely speaking, the method we mention here is the ray casting
method which includes no multiple trace of reflective and refractive rays.

*2 Note that Fig. 2 may be misleading in the case of ray tracing because P
is usually an inner point of a polygon surface but not a polygon vertex.

number of solutions on a deliberately constructed mesh. The ren-
dering cost is expected to be particularly smaller than those of the
above two on-the-fly methods because we do not solve the BVP
on the fly and use the GPU hardware effectively. The key point is
how to construct an optimal structure of computational mesh. We
will discuss the details of mesh construction in Section 3.

The other technical problem of the rasterization is that a
straight line in the curved spacetime is perspectively projected
to a curved line but not a straight line in general due to light ray
bending. Thus we cannot use the common rasterization method.
To solve this problem, we apply the subdividing technique that
divides a given line into two or more shorter lines recursively and
then rasterizes the lines. If the divided lines are shorter enough
such as the approximation errors are on the sub-pixel scale, the
human eye cannot recognize the errors. The same technique is
also applicable to a triangular polygon. In this paper we imple-
ment this technique on the geometry shader of a GPU (see Fig. 1).
The details are explained in Section 4.

Here we put one more assumption that any polygon point P

stands at rest in the black hole spacetime or moves slowly enough,
because it is too complex to trace P when P moves with semi-
light speed. In contrast, the view point can move at any speed if
the speed is not beyond the light speed. In this case it is enough
to insert the Lorentz transformation (see Ref. [14] from the view
point of the 3D CG on special relativity) after the usual viewing
transformation and before perspective projection over the whole
sequence of 3D CG coordinate transformations.

2.3 Color Model
One of the visual effects necessary for the relativistic 3D CG is

the red/blue-shift of light frequency due to gravitational potential
and/or the Doppler shift of light. In order to implement this effect
simply in a CG program, we assume that the rendering color of
every CG object is approximately represented with the color tem-
perature of an ideal black body radiation. Because it is known
that the ratio of the light frequency change is equivalent to that of
the temperature change in the case of black body radiation [22],
given the original temperature T of the CG object and the ratio f

of the light frequency change (see Section 3.4), the temperature
T ′ that the view point observes is simply calculated as T ′ = f T ,
and further translated into the RGB color (r′, g′, b′) on the per-
spective screen.

3. Fast Perspective Projection by Trilinear In-
terpolation

In this section we first clarify our requirements for the perspec-
tive projection in the black hole spacetime. Next, we optimize the
structure of the computational mesh for interpolating the perspec-
tive projection.

3.1 Requirements for Perspective Projection
Due to the spherical symmetricity of the black hole, every light

ray we discuss here travels along the plane that contains the view
point V , the center O of the black hole, and the polygon point P.
Thus it is enough to treat the perspective projection only on this
plane.
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Fig. 3 Simplified geometry model for the primary and secondary rays.

Now let us consider a light ray such that starts from P, goes
around the black hole less than 180◦ of angle, and then reaches
V . We categorize such a ray as the primary light ray, whose tra-
jectory is illustrated as the solid line in Fig. 3. In this case, the in-
cident angle ψ of the light ray to the view point V can be uniquely
determined by the following three parameters:
( 1 ) the radial coordinate value *3 p (∈ [a + ε,Rmax]) at P,
( 2 ) the angle φ (∈ [0, π]) enclosed by P, O, and V , and
( 3 ) the radial coordinate value v (∈ [a + ε,Rmax]) at V ,
where [a + ε,Rmax] specifies the range at which we can arrange
the view point and polygon vertices. We set ε = 0.01a and
Rmax = 500a here. Once we obtain the angle ψ, the projected
point S on the perspective screen can be easily geometrically cal-
culated. Let us categorize another type of ray such that starts
from P, goes around the black hole more than or equal to 180◦

and less than 360◦ of angle, and reaches V , as the secondary light

ray, whose trajectory is illustrated as the dashed line in Fig. 3. Its
incident angle ψ′ can also be uniquely determined by the given
triplet (p, φ, v). Theoretically, we can also consider other types
of rays that go around the black hole more than 360◦ of angle.
We however discard them because the incident angles of such
rays are contained within a quite narrow range and therefore the
images of CG objects rendered with this kind of light rays are
negligibly small.

As a consequent, if the points P, O, and V are given,
( 1 ) we first determine the plane that contains all the three points,
( 2 ) calculate the three parameters p, φ, and v,
( 3 ) obtain the incident angles ψ and ψ′ from the triplet (p, φ, v),

and
( 4 ) calculate the points S and S ′ on the perspective screen.
Because ψ and ψ′ obtained from (p, φ, v) can be recognized as the
three argument functions ψ(p, φ, v) and ψ′(p, φ, v), respectively,
we can expect to use the hardware trilinear interpolation unit on
GPU with 3D textures to obtain the function values. Therefore
this technique of utilizing the trilinear interpolation is not appli-
cable when more than three parameters are required to calculate
ψ (or ψ′). Hence we note that our technique in this section is
restricted for the spherically symmetric black hole and not appli-
cable for black holes having more degrees of freedom. For exam-
ple, the research paper [7] roughly estimates the potential of the
interpolation for fast ray tracing in the case of the axi-symmetric
black hole [2] and concludes that it is ineffective.

*3 Note that this is not the physical distance from O to P because a physical
distance between inside and outside of the black hole cannot be defined
in Eq. (1).

Fig. 4 Black-hole-centric
mesh structure.

Fig. 5 View-point-centric
mesh structure.

3.2 Mesh Structures for Perspective Projection
A 3D texture can be used not only for representing volumetric

data in a CG scene but also for representing a function of three
input parameters if the function becomes smoother as the interpo-
lation error becomes smaller. Although the default mesh structure
of the 3D texture is a cube of size 1 (= [0, 1]3), we can change the
structure by apply coordinate transformations so as to decrease
the interpolation error. The aim of this section is to obtain an
optimal mesh structure suitable for the functions ψ(p, φ, v) and
ψ′(p, φ, v) discussed in the previous subsection.

Before proceeding to searching for the optimal mesh structure,
let us estimate the permissible upper limit of the interpolation er-
ror Δψ of the incident angle. Suppose that the horizontal pixel
resolution of the CG images is 2,000 and that the horizontal an-
gle of view of the virtual camera is 40◦ *4. Thus, letting Δp be the
error of the pixel position on a CG image, the error of the angle
is derived as follows.

Δψ =
40◦

2,000
Δp = 0.02◦Δp

If we give the condition Δp < 1, that is, the error is on the sub-
pixel scale, it is implied that Δψ < 0.02◦. This is the maximum
permissible error of the incident angle.

The simplest mesh structure is identified with the structure of
the triplet (p, φ, v) itself, of which the two dimensional substruc-
ture (p, φ) is regarded as the black-hole-centric mesh structure
illustrated in Fig. 4. This structure however is not acceptable for
the primary rays because the interpolation errors around the view
point are beyond the above permissible upper limit no matter how
many mesh points are added to the mesh, that is, the mesh bound-
ary does not match with the view point. In the similar reason, the
view-point-centric mesh structure illustrated in Fig. 5 is also un-
acceptable due to the errors near around the black hole.

To resolve these problems, we introduce a new mesh structure
(s, t, u) ∈ [0, 1]3 that matches with both the boundaries of the
view point and the black hole. Figure 6 illustrates its sub-mesh
(s, t), which consists of two kinds of circular arcs. One is the arc
whose circular center is located on the line along the center of
the black hole and the view point (see the arcs with parameter
s = 0.1, 0.2, . . . , 0.9 in Fig. 6). The other is the arc that passes
through both the center of the black hole and the view point (see
the arcs with parameter t = 0.1, 0.2, . . . , 0.9 in Fig. 6). Mesh
points are the crossover points of these two kinds of arcs. The cal-
culation cost of the coordinate transformation (p, φ, v) �→ (s, t, u)
is not very large because it requires at most 40 arithmetic opera-
tions, three square-root operations, and one arctangent operation
(the details are omitted due to the limited paper space). Next, in

*4 The value 40◦ is the horizontal angle of view of a standard 50 mm lens
on a 35 mm film camera. The permissible upper limit Δψ of the error
becomes larger (more relaxed) if we use wider angle of view.
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Fig. 6 Mesh structure (s, t) matched with the black hole boundary and the
view point boundary.

Fig. 7 The optimal mesh structure (s′, t′) transformed from Fig. 6.

order to accommodate further smaller errors, one more coordinate
transformation from (s, t, u) to a new mesh (s′, t′, u′) ∈ [0, 1]3 is
introduced. Figure 7 illustrates such an example of the optimal
sub-mesh (s′, t′) exhaustively obtained by the method explained
in the next subsection. As a result, we can construct the optimized
mesh for the primary rays by the two successive coordinate trans-
formations: (p, φ, v) �→ (s, t, u) �→ (s′, t′, u′).

Different from the primary light ray, we can use the black-hole-
centric mesh (p, φ, v) for the secondary ray (see Fig. 4) and there
is no need for concern about the boundary matching with the view
point since the secondary ray goes around the black hole at least
180◦ so that any polygon point is regarded as sufficiently far from
the view point even if they are geometrically close in the coordi-
nate system. In order to normalize the mesh domain and accom-
modate smaller errors, the mesh (p, φ, v) is transformed to a new
mesh coordinate (s′′, t′′, u′′) ∈ [0, 1]3.

3.3 Exhaustive Search of the Optimal Mesh
According to OpenGL, a 3D texture has the size of 2i × 2 j × 2k

(i, j, k > 1) and the corresponding memory size is its multiple by
16. For example, the setting i = j = 8 and k = 7 requires 128
megabytes of memory on GPU.

Given a memory size M, the author has exhaustively searched
the optimal mesh structure (such as Fig. 7) for the primary rays as
follows.
( 1 ) Initialize the sizes (triplet of integers) (i, j, k) of the 3D tex-

ture such as 16 × 2i+ j+k = M.
( 2 ) Initialize the shape of the mapping (s, t, u) �→ (s′, t′, u′) in

some way.
( 3 ) Calculate ψ for each of 2i+ j+k crossover points on the mesh

Table 1 Linear interpolation error of the incident angle ψ for primary light
rays in terms of required memory size of mesh data.

Memory (MB) Δψmax Δψ Δψ + 3σ

64 0.609 0.008 0.059
128 4.014 0.007 0.043
256 0.242 0.005 0.039
512 0.226 0.002 0.018

(s′, t′, u′) by solving the BVP *5 of Eq. (2).
( 4 ) Check the error Δψ = |ψ − ψ̃| between the true angle ψ

and the linearly interpolated angle ψ̃ at each of four million
test points chosen different from the crossover points on the
mesh, and summarize the maximum errorΔψmax, the average
error Δψ, and the average plus the three standard deviation
Δψ + 3σ.

( 5 ) Modify the shape of the mapping (s, t, u) �→ (s′, t′, u′) in
some way (with the idea of the so-called hill-climbing but
almost randomly) and goto to Step (3).

( 6 ) Determine the optimal mesh such that it gives the minimum
Δψ + 3σ for the texture sizes (i, j, k).

( 7 ) Modify the texture sizes (i, j, k) under the restriction 16 ×
2i+ j+k = M and goto to Step (2).

( 8 ) Determine the couple of the texture sizes (i, j, k) and the op-
timal mesh such that it gives the minimum Δψ + 3σ for the
given memory size M.

In the same way, the optimal mesh for the secondary rays is de-
termined.

Table 1 shows the experimental results of the interpolation er-
rors for the primary rays in terms of the GPU memory usage. We
see that Δψ + 3σ is under the maximum permissible error 0.02◦

when the texture memory size is 512 megabytes *6. Thus we can
statistically estimate that 99.7% *7 of the interpolation errors are
on the sub-pixel scale. On the other hand, Δψmax indicates that
the errors are far bigger than the permissible error at some test
points *8. However, it does not seriously affect our research be-
cause other kinds of experiments we omit to give here show that
such test points exist near at v ≈ Rmax. Hence we can prevent
them by putting the view point not far from the black hole. If we
intend to put the view point far from the black hole, that is, we
render super-telephoto images, we should construct a new mesh
structure optimized for the super-telephoto condition, in which
case we expect that we can use the black-hole-centric mesh in
Fig. 4 instead of the complex mesh in Fig. 6 because no polygon
point overlaps with the view point.

Table 2 shows the results for the secondary rays; the errors
in this table are small enough even if we use a 3D texture of 16
megabytes.

It took about 116 hours and 114 hours to search for the optimal

*5 The author applied the bisection method of iteratively solving the corre-
sponding IVP.

*6 In this case, i = j = 9 and k = 7. The number of mesh points is
29+9+7 = 225, which is about thirty million.

*7 The actual ratio the author counted from the experimental results is
99.5%.

*8 The maximum error 4.014 in the case of 128 megabytes in Table 1
means that the searching procedure falls into the local minimum in this
case because we focus on only the value of Δψ + 3σ. As a matter of
fact the second best solution gives Δψmax = 0.609, Δψ = 0.006, and
Δψ + 3σ = 0.056.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.4

Table 2 Linear interpolation error of the incident angle ψ′ for secondary
light rays in terms of required memory size of mesh data

Memory (MB) Δψ′max Δψ′ Δψ′ + 3σ′

4 0.044 0.005 0.026
8 0.044 0.003 0.020

16 0.041 0.003 0.018
32 0.029 0.002 0.012

mesh structures and calculate the mesh data for the primary and
secondary rays, respectively, by using a Mac Pro (Mid. 2012, 12
cores of Intel Xeon 2.4 GHz) in a MPI-based parallel computing
environment [23].

3.4 Additional Data Set
In addition to calculate ψ and ψ′, the following values are nec-

essary to implement realistic shading for polygons:
( 1 ) the emission angle γ of the light ray at the polygon point P,

which is used for the calculations of diffusion and reflection
of Phong’s shading model [21],

( 2 ) the length L =
∫ V

P
dλ of the ray trajectory from P to V (recall

Eq. (2)), which is used for the depth buffer hidden surface al-
gorithm, and

( 3 ) the ratio f = e′/e of the light ray’s energy e′ at V to the
same ray’s energy e at P, which is used for the calculation of
red/blue-shift of the light ray frequency (see Section 2.3).

As a consequence, we must prepare two kinds of mesh data
(s′, t′, u′) �→ (ψ, γ, L, f ) and (s′′, t′′, u′′) �→ (ψ′, γ, L, f ) in the pre-
processing stage.

Encapsulating the difference of the above two mesh data for
the primary and secondary rays, we can write only one set of pro-
grams for the vertex, geometry, and fragment shaders common
to both kinds of light rays. When executing the set of the shader
programs, we first execute them with the mesh data for the pri-
mary rays and next execute them with that for the secondary rays
by switching the data (see the switching circuit controlled by the
host program in Fig. 1).

4. Rendering OpenGL Primitives

In this section we explain the rendering techniques of OpenGL
primitives: point sprites, lines, and triangular polygons in the
black hole spacetime.

For help in understanding of each CG image example in this
section, four scene conditions: the horizontal angle of view, the
radial coordinate value v at the view point, the radial coordinate
value po at the center position of each 3D object, and the size
(or length, width) so of the object, are noted in the caption of
each figure, where v, po, and so are expressed as multiples of the
gravitational radius a introduced in Eq. (1). The view point and
objects are assumed to be at rest or move slowly near the black
hole. Note that such a CG image is not yet intended to strictly
render a physically realistic situation but is mainly used to check
whether our rendering algorithm works as expected or not. More
realistic rendering is one of our future works (see Section 5).

4.1 Rendering Point Sprites
Point sprites can be rendered in the same manner as in the usual

OpenGL/GLSL manner [21]. The CG image in Fig. 8 shows such

Fig. 8 CG image of a star field around a black hole. Stars are implemented
by point sprites. The horizontal angle of view is 60◦. The view point
is at v = 30a and the radius so of celestial sphere is 200a.

an example that renders a star field having tens of thousands of
stars *9 on the celestial sphere. The view point exists near the
black hole and watches the direction of the black hole. The black
blank circular area at the center of Fig. 8 is considered to be the
visual appearance of the black hole because no light ray from the
black hole can reach the view point. Big, bright stars apart from
the black hole are rendered with the primary rays, while small,
dark ones near around the black hole are rendered with the sec-
ondary rays.

Note that the visual solid angle dΩ′ of a star in the black hole
spacetime differs from the corresponding solid angle dΩ in the
flat spacetime due to the bending of light rays, and that the star
becomes brighter than usual if dΩ′ > dΩ and vice versa. Hence
we must prepare the ratio dΩ′/dΩ at the same time as we pre-
pare the quadruplet (ψ, γ, L, f ) in the preprocessing stage (re-
call Section 3.4). Various shapes of stars including the cross
shapes of brighter stars are implemented in the same way as in
the book [21].

4.2 Rendering Lines
Lines can also be used in our rendering system. The difference

from the usual OpenGL usage is that a straight line near around
the black hole is not projected to a straight line on the perspective
screen in general due to the light ray bending.

Figure 9 (a) illustrates an example of inaccurate projection of
a straight line. Suppose that the primary light rays perspectively
project the two end points P1 and P2 of the line to the points S 1

and S 2 on the perspective screen, respectively. The usual raster-
izing algorithm draws the straight line S 1S 2 while the accurately
projected shape of the line could be the dashed, curved one in the
figure. Similarly, the secondary light rays project P1 and P2 to S ′1
and S ′2, respectively, and the straight line S ′1S ′2 is drawn, which
is also inaccurate in general.

In order to rasterize the accurate shape, we apply a recursive
subdivision method [17] to line rendering. Figure 9 (b) illustrates
the first level subdivision; the midpoint Pm between P1 and P2 is
projected to the point S m by a primary ray, and the two straight
lines S 1S m and S mS 2 are drawn. Similarly, the same Pm is pro-
jected to S ′m by a secondary ray, and the two straight lines S ′1S ′m

*9 To make natural, realistic CG image, the positions and colors (color tem-
peratures precisely) of the stars are obtained from Yale Bright Star Cata-
log [24].
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Fig. 9 Line subdividing procedure in a black hole spacetime.

Fig. 10 Terminating condition for recursive line subdivision.

and S ′mS ′2 are drawn. Figure 9 (b) shows a better approximation
than Fig. 9 (a). The condition for terminating the recursive sub-
division is whether the pixel distance δ (see Fig. 10) between the
projected point S m and the mid point S ′m between the projected
points S 1 and S 2 is smaller than a certain threshold Δ, that is,
δ < Δ. We set Δ = 1 in our implementation so that the ap-
proximation error of the subdivision can hardly be recognized by
human eyes. Figure 9 (c) illustrates the case that the subdivid-
ing does not terminate for the primary rays but terminates for the
secondary rays. The author implemented this dynamic, recursive
line subdividing algorithm on the geometry shader (see Fig. 1) of
a GPU. The recursion must also be terminated if the number of
lines recursively generated is beyond the hardware upper limit of
the geometry shader’s output buffer.

For example, Fig. 11 is the wireframe image of the Utah teapot
of astronomical size; though the situation is quite unusual. The
ring shape of the distorted image is called the Einstein ring [2].
It is known that the sun in our solar system has a gravitational ra-
dius of approximately 3.0 km if the sun became a black hole [2].

Fig. 11 Wireframe image of Utah teapot near a black hole. The horizontal
angle of view is 50◦. The view point is at v = 10a, the center of the
teapot is at po = 5a, and its size so is 2a.

Fig. 12 CG image of the x-y mesh lines near around a black hole. The
horizontal angle of view is 60◦ and the view point is at v = 30a.

Fig. 13 An enlarged part of a CG image in the case that the geometry
shader’s output buffer is overflown.

Under this assumption, the view point in Fig. 11 is at v = 30.0 km,
the center of the teapot is at po = 15.0 km, and its size is
so = 6.0 km. All the lengths and sizes in this spacetime are cal-
culated proportional to the gravitational radius a.

Figure 12 is another CG example of rendering the x-y equato-
rial mesh lines. Note that the lines near the black hole are slightly
red-shifted due to the gravitational potential. Figure 13 is an en-
larged part of a CG image example in the extreme case that the
shader’s output buffer is overflown. When the view point is al-
most in contact with the x-y equatorial plane under the similar
situation to Fig. 12, the geometry shader generates too many lines
beyond the output buffer’s limit because the light rays bend so
strongly. Each disconnected line in Fig. 13 is the corresponding
evidence. Resolving the overflow in such an extreme case is our
next future work (see Section 5).

4.3 Rendering Triangular Polygons
Polygon rendering has essentially the same problem as line

rendering; a triangle defined by three straight lines in the black
hole spacetime is not projected to a triangle defined by straight
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Fig. 14 CG Example of a recursively subdivided (tessellated) triangular
polygon near a black hole. The horizontal angle of view is 30◦. The
view point is at v = 50a, the center of the polygon is at po = 200a,
and its size so is 200a.

Fig. 15 CG image of the earth rotating a black hole. The horizontal angle
of view is 17◦. The view point is at v = 30a, the center of the earth
is at po = 20a, and its radius so is 5a.

lines but by curved lines in general. Thus we apply the recur-
sive triangle subdivision method naturally extended from the line
subdivision method in the previous subsection. This method for
polygons is often called a tessellation. At the initial step, we
project the three vertices P1, P2, and P3 of a given triangle to the
points S 1, S 2, and S 3 on the perspective screen, respectively, and
check exactly the same terminating condition in Fig. 10 for each
of the three lines S 1S 2, S 2S 3, and S 3S 1. If all the three condi-
tions hold, we rasterize the triangle S 1S 2S 3 without subdivision.
Otherwise we subdivide the triangle to smaller triangles recur-
sively, where we adopt the algorithm in Ref. [18] as the concrete
subdivision algorithm. For example, Fig. 14 is the CG image of
the actual rendering result of one triangular polygon. To show
the triangles clearly, only their boundaries are painted with white
color. The right bigger triangular mesh and the left smaller tri-
angular mesh are rendered with the primary and secondary light
rays, respectively. We see that the triangles nearer the black hole
are smaller because the light rays bend stronger so that the recur-
sion proceeds more deeply.

Three more CG examples are given in Fig. 15, Fig. 16, and
Fig. 17. When rendering these images, the length L of every light
trajectory mentioned in Section 3.4 is used for hidden surface re-
moval. The so-called Z value cannot be used because some light
rays move around the black hole more than 180◦. Figure 15 is
the CG image when the earth goes around the black hole. The
earth is constructed from ten thousand triangular polygons onto
which the texture image of the earth is mapped. We can see the
similar CG image of a sphere, which is not defined by polygons,
in the research paper [8]. The right hand side image of Fig. 16
is the CG image when a US space shuttle goes around the black
hole, where the original modeling data [25] is shown in the left
hand side. To the author’s best knowledge, no existing research

Fig. 16 CG images of a US space shuttle rotating a black hole. The hori-
zontal angle of view is 38◦. The view point is at v = 10a, the center
of the polygon is at po = 5a, and its size so is 2a.

Fig. 17 CG image of a star field, a spiral galaxy, an accretion disk, and a
space train of nine cars near a black hole. The horizontal angle of
view is 60◦. The view point is at v = 10a, the center of the train is
at po = 5a, its length is 18a, and its width is 0.2a.

has ever rendered such a complex shape of CG object (model-
ing data) constructed with more than ten thousand polygons in a
curved spacetime. The last CG example given in Fig. 17 is the
combined image of the following four CG objects.
( 1 ) A star field is rendered in the same way as in Fig. 8 as the

background image.
( 2 ) A spiral galaxy texture image *10 mapped onto polygons is

rendered as the background image.
( 3 ) An accretion disk [3], [27] is an astronomical disk structure

formed by circumstellar dust that rotates spirally around the
black hole. Because the disk is rotating fast in semi-light
speed *11, the apparent color *12 of the disk changes reddish
or bluish due to the Doppler shift. The similar CG image can
be seen in many research papers (e.g., Ref. [13]).

( 4 ) A space train *13 of nine cars is rendered, where the original
modeling data [25] is the Japanese train named Sakura.

4.4 Rendering Performance
Table 3 summarizes the performances of frames per second

(fps) and primitives per second (pps) for ten kinds of CG scenes

*10 The original galaxy texture is an illustration by Mr. Shigemi
Numazawa [26].

*11 Rendering fast moving CG objects violates our assumption (recall Sec-
tion 2.2). However our CG program can render it accurately with a small
program modification because the disk structure is invariant to time shift
even though it moves fast.

*12 The color of the disk is calculated according to the theory of accretion
disk [3] under some assumptions.

*13 The author pays homage to the Japanese manga “Galaxy express 999”
written and drawn by Mr. Leiji Matsumoto.
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Table 3 Average frames per second (fps) and primitives per second (pps) of CG image generation.

PC1 PC2
Scene # Primitives CG image (Fig. #) # objects fps Mpps fps Mpps

1 Point sprites Star field (Fig. 8) 9,110 456.0 4.15 221.2 2.02

2 Lines Utah teapot (Fig. 11) 928 217.5 0.20 98.5 0.09
3 X-y lattice lines (Fig. 12) 1,300 135.3 0.18 44.0 0.06

4 Polygons Utah teapot (no ref. image) 3,136 130.6 0.41 133.1 0.42
5 Earth (Fig. 15) 9,800 83.9 0.82 64.7 0.63
6 Galaxy (part of Fig. 17) 20,000 61.0 1.22 43.0 0.86
7 Accretion disk (part of Fig. 17) 23,200 51.8 1.20 29.2 0.68
8 Space shuttle (Fig. 16 (b)) 27,096 13.5 0.37 31.0 0.84
9 Space Train (part of Fig. 17) 429,876 2.6 1.12 2.1 0.90

10 Points sprites Star field, galaxy, accretion 482,186 2.3 1.11 2.0 0.96
and polygons disk, and space train (Fig. 17)

PC1: Mac Pro (Mid 2012) with ATI Radeon HD 5770
PC2: MacBook Pro (Mid 2014) with NVIDIA GT 750M

rendered on two kinds of computers, PC1 and PC2. PC1 is a
slightly outdated Desktop PC, Mac Pro (Mid 2012, OS X 10.10)
with ATI Radeon HD 5770, and PC2 is a high-end notebook PC,
MacBook Pro (Mid 2014, OS X 10.10) with NVIDIA GT 750M.
The size of all the CG images is 1,280×720 pixels *14. Each of the
experimental results given in the table is the average value when
the view point moves slowly around the black hole, watching the
direction of the black hole. The host program on CPU and the
shader programs on GPU are written in OpenGL/GLSL.

We observe the following from the table.
Several pps values are beyond one million pps in PC1 and

near one million pps in PC2, especially for the scenes with more
than ten thousand primitives. The rendering performance of point
sprites is considerably higher than those of lines and polygons be-
cause the primitive subdivision is not necessary for point sprites.
In other words, the subdivision process is a serious bottleneck
in the whole rendering process for lines and polygons. The pps
values are almost proportional to the number of CG primitives for
Scenes No. 2 to 7 in Table 3, because the rendering pipeline of the
GPU is accelerated by the number of primitives. The rendering
performance of Scene No. 8 on PC1 is extraordinary lower than
the other cases; the reason is not understood yet. The reason why
the rendering performances of PC1 and PC2 are not so different
is understandable from several GPU benchmarks (e.g., Ref. [28]).

5. Conclusion and Future Work

In this paper we have developed the rasterization framework
for the 3D CG in a spherically symmetric black hole spacetime
based on Einstein’s theory of general relativity. The rasterization
in this curved spacetime needs two key techniques. One is the tri-
linear interpolation for fast perspective projection and the other is
the recursive subdivision of CG primitives for accurate rendering.
As the result, we have achieved polygon rendering rates of about
one million pps.

The following problems still remain on this research.
It is known that the recursive subdivision (tessellation) on the

geometry shader is problematic from the view point of execu-
tion speed and GPU buffer overflow [19]. As mentioned in Sec-
tion 4.4, the main reason of the slow rendering performance of

*14 The CG images in Fig. 11, Fig. 14, Fig. 15, and Fig. 16 are trimmed from
the originally rendered images of resolution 1,280 × 720.

lines and polygons is due to bottleneck of the tessellation. Hence
our next work is to implement it with the tessellation specific
shaders (the tessellation control shader and tessellation evalua-
tion shader in OpenGL/GLSL [15], [21], [29] and the hull shader
and domain shader in DirectX 11 [16]).

This paper assumes that any object stands at rest or moves
slowly enough. However, the strong gravity attracts the object
if it does not have an extremely powerful thruster. When the
motion speed of the attracted object reaches near to light speed,
the Doppler shift of light and other relativistic effects may be
observed. In this sense the CG images shown in this paper in-
clude fakes. The basic treatment of relativistically fast moving
objects in ray tracing is given in [8]. We must develop its ex-
tended technique in rasterization, mainly extending the boundary
value problem (BVP) and its solver. Let (t′(τ), r′(τ), θ′(τ), φ′(τ))
be a four-dimensional trajectory of a polygon point with an ar-
bitrary parameter τ, where the trajectory of an object that moves
freely under the influence of gravity is defined by the geodesic
equation according to the theory of general relativity. Alterna-
tively, the trajectory of an object that has a rocket thruster may
be defined programmably, in which case we should precheck if
the speed of the object is below the light speed, by calculating
the magnitude of the line element ds along the programmed tra-
jectory. The extended BVP must obtain the light ray trajectory
(t(λ), r(λ), θ(λ), φ(λ)) such that the light ray crosses the view point
at a certain time t(λ0) and satisfies the equations t′(τ) = t(λ1),
r′(τ) = r(λ1), θ′(τ) = θ(λ1), and φ′(τ) = φ(λ1) with λ0 > λ1. Here
the technical problem is how to effectively solve it. The same tes-
sellation techniques as in Section 4 are expected to be applicable
to the solutions of this extended BVP.

The rendering performance of tablet computers is rapidly in-
creasing. Table 3 shows that even a notebook PC can make CG
images in realtime when the number of rendered polygons is not
so excessive (not beyond ten thousand in the case of PC2). We
expect that our research in this paper can be ported to tablet com-
puters and run smoothly in realtime. It will have a large impact
on education and entertainment.
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