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Visualizing Intrinsic Space for Spatial Data via Input

Regularized Gaussian Process Latent Variable Models

Tomoharu Iwata1,a) Naonori Ueda1,b)

Abstract: We propose the input-regularized Gaussian process latent variable model for visualizing a latent intrinsic

input space that improves interpolation performance in regression tasks. The proposed model assumes that a latent lo-

cation is associated with each observed input location, and the covariance function is determined by distance between

the latent locations. The latent locations are estimated so that the output covariance of the given data is appropriately

captured by the latent locations while preserving the neighbor relationships between the observed input space and the

latent space by input regularization. When the input regularization is omitted, the proposed model reduces to the Gaus-

sian process latent variable model. When the input regularization is strong enough to perfectly preserve the neighbor

relationships, the proposed model becomes Gaussian process regression. The degree of the regularization is controlled

by a hyperparameter, which can be automatically selected by cross-validation using the given data. We demonstrate the

effectiveness of the proposed model with real-world spatial data sets in terms of interpolation performance of multiple

output values.

1. Introduction

Analyzing spatial data is an important task in a wide variety of

fields such as geology, ecology, climatology, sociology and urban

planning. Gaussian process regression [12], or which is known as

Kriging [3] in geostatistics, is a representative method for analyz-

ing and interpolating spatial data. In Gaussian process regression,

a covariance function plays a crucial role to define its behavior.

With spatial data, kernels that solely depend on distance between

two locations, e.g. Gaussian kernels, are usually used for co-

variance functions, since closely located points are assumed to

have similar output values. However, some closely located loca-

tions can have different output values, and distant locations can

have correlated output values. For example, weather at coastal

area would be different from inland area in the same city, peo-

ple’s cultural behavior in two cities divided by a river would be

dissimilar, and seismic activity would be related in distant areas

when they share a fault line. In other words, the observed input

space would be different from its intrinsic space that reflects rela-

tionships among locations. Revealing the intrinsic space is ben-

eficial to understand the given spatial data as well as to improve

interpolation performance.

In this paper, we propose the input-regularized Gaussian pro-

cess latent variable model (IGPLVM) that visualizes the latent

intrinsic space. The proposed model assumes that each observed

input location has its own latent location, and the covariance func-

tion is determined by distance between the latent locations. Since

neighbor relationships in the latent space should be similar to
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those in the observed input space as long as the output covariance

of the given data is captured by the latent locations, latent loca-

tions are regularized to preserve the neighbor relationships. When

the regularization is omitted, the proposed model becomes the

Gaussian process latent variable model (GPLVM) [8], [9], which

is an unsupervised method that learns latent locations using out-

put values without input information. When the regularization

is strong enough to perfectly preserve the neighbor relationships,

it corresponds to Gaussian process regression, where input loca-

tions are assumed to be noise free. The proposed model adap-

tively uses input information so that output variables are modeled

properly.

The proposed model improves interpolation performance by

flexibly defining the covariance function by adjusting latent loca-

tions. Since the proposed model learns a common latent intrin-

sic space shared by multiple output variables, it can be used for

multi-task learning. The latent space learned by using output val-

ues in a task helps to interpolate output values in another related

task, even if data are too sparse to learn latent locations with a

single task. Note that, although we motivate the proposed model

for analyzing spatial data, the proposed model is applicable to

other data for any regression problems where input and output

values are contained, such as time-series, spatio-temporal, high

dimensional input, and multiple output data.

The remainder of this paper is organized as follows. In Sec-

tion 2, we present our task and introduce Gaussian process re-

gression, on which the proposed model is based. In Section 3,

we formulate the proposed model and provide its learning pro-

cedures. In Section 4, the effectiveness of the proposed method

is demonstrated by experiments with real-world spatial data sets

in terms of interpolation performance of multiple output values.
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Finally, we present concluding remarks and a discussion of future

work in Section 5.

2. Preliminaries

Suppose that we have a set of input and output instances,

{(xn, yn)}N
n=1

, where xn ∈ R
L and yn ∈ R

D. For example, in a case

of spatial climate data, xn is th nth location vector such as latitude

and longitude, and yn is an observed weather condition vector at

the location such as temperature, humidity and precipitation.

With standard regression methods, an output yn is assumed to

be generated by mapping input xn using nonlinear functions,

ynd = fd(xn) + ǫ, (1)

where fd(·) is the nonlinear function for the dth feature, and

ǫ ∼ N(0, β−1) is a Gaussian noise. Gaussian process regression

uses a Gaussian process for a prior distribution of the nonlinear

function,

fd(x) ∼ GP(m(x), k(x, x′)), (2)

where m(x) is a mean function, which is often set to zero, and ker-

nel function k(x, x′) specifies the covariance of outputs between

two locations as follows,

k(x, x′) = E[( fd(x) − m(x))( fd(x′) − m(x′))]. (3)

Since the kernel determines the behavior of the nonlinear func-

tions, it is important to use an appropriate kernel for the given

data. For real-valued input data, such as time-series and spatial

data, kernels that are negatively correlated to distance between

two locations ‖ x − x′ ‖ are often used, such as Gaussian kernels.

However, output values can be different even if two locations are

close together, and they can be similar even if two locations are

far apart.

3. Input-regularized Gaussian Process Latent

Variable Models

We propose the input-regularized Gaussian process latent vari-

able model (IGPLVM), which is a method to obtain kernels that

appropriately capture the output covariance between inputs by

distorting the input space in the Gaussian process regression

framework. The distorted input space reveals intrinsic charac-

teristics of the input space.

The proposed model assumes that an output yn is generated

from its latent intrinsic location zn ∈ R
K , instead of input loca-

tion xn, as follows,

ynd = fd(zn) + ǫ. (4)

The dimensionality of the latent space K can be different from

that of the input space L. Then, the probability of the out-

put observations Y = (y1, · · · , yN)⊤ given the latent locations

Z = (z1, · · · , zN)⊤, by integrating out the nonlinear functions,

is given by

p(Y|Z,θ) = (2π)−
DN
2 |K|−

D
2 exp

(

−
1

2
tr(Y⊤K−1Y)

)

, (5)

where K is the N × N covariance matrix defined by the kernel

function k(zn, zn′ ), and θ is the kernel hyperparameter vector. In

this paper, we use a Gaussian kernel with an additive noise term,

k(zn, zn′ ) = α exp

(

−
1

2ℓ2
‖ zn − zn′ ‖

2

)

+ δnmβ
−1, (6)

where δnm = 1 if n = m and δnm = 0 otherwise, and θ = (α, ℓ, β)

are the kernel parameters. Note that the GPLVM [9] finds latent

locations Z that minimizes the negative log likelihood of (5),

EY = − log p(Y|Z,θ), (7)

where input information X = (x1, · · · , xN)⊤ is not used.

We assume that neighbor relationships in the latent space

should be similar to those in the input space as long as the output

covariance that is specified by the latent space is appropriate to

the given data. The proposed method models the neighbor rela-

tionships by defining a probability of being selected as neighbors

as defined in stochastic neighbor embedding [5], [6], [15]. In the

latent space, the probability that n selects n′ as its neighbors is

given by

p(n′|n,Z) =
exp(− 1

2
‖ zn − zn′ ‖

2)
∑

n′′,n exp(− 1
2
‖ zn − zn′′ ‖

2)
, (8)

where locations with small Euclidean distance ‖ zn − zn′ ‖ in the

latent space are likely to be selected as its neighbors. Similarly,

in the input space, the neighborhood probability is given by

p(n′|n,X) =
exp(− 1

2
‖ xn − xn′ ‖

2)
∑

n′′,n exp(− 1
2
‖ xn − xn′′ ‖

2)
. (9)

The neighbor relationships are preserved when these two proba-

bilities are matched. This is achieved by minimizing the follow-

ing sum of Kullback-Leibuler divergences between the probabil-

ities,

EX =

N
∑

n=1

∑

n′,n

p(n′|n,X) log
p(n′|n,X)

p(n′|n,Z)
. (10)

The proposed method finds latent locations that properly cap-

ture the output covariance while preserving the neighbor relation-

ships by minimizing the following sum of (7) and (10),

E = EY + λEX, (11)

where λ > 0 is a hyperparameter that controls how the neigh-

bor relationships are preserved. When λ = 0, it corresponds to

GPLVM. When λ = ∞ and dimensionality of the latent space

is the same with the input space K = L, it corresponds to Gaus-

sian process regression since the latent locations become the same

with the input locations Z = X. The proposed method can be

seen as a multi-task learning method based on Gaussian process

regression. Since the latent locations are learned by using all of

the output variables, the learned covariance matrix can improve

multi-task regression performance when the output variables are

related.

A local optimum solution of latent locations Z and ker-

nel hyperparameters θ is obtained by minimizing (11) using

gradient-based optimization methods such as the quasi-Newton

method [10]. The gradients of the GPLVM term EY with respect
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to a latent location are calculated by

∂EY

∂K
=

1

2
DK−1 −

1

2
K−1YY⊤K−1, (12)

∂k(zn, zn′ )

∂zn

= −
α

ℓ2
exp

(

−
1

2ℓ2
‖ zn − zn′ ‖

2 (zn − zn′ )

)

, (13)

using the chain rule. The gradients of the regularization term EX

with respect to a latent location are calculated by

∂Ex

∂zn

=

∑

n′,n

(

p(n′|n,X) − p(n′|n,Z)
)

(zn − zn′ ), (14)

where a sum of forces pulling or pushing z depends on difference

of the neighborhood probability p(n′|n,X) − p(n′|n,Z).

We can select the hyperparameter value λ by cross-validation

on an interpolation problem of the output matrix Y. The cross-

validation procedure is as follows. The elements of the output

matrix are randomly split into multiple subsets. While the el-

ements in a subset are supposed to be missing, the latent lo-

cations and kernel hyperparameters are estimated with a fixed

hyperparameter value λ. The interpolation performance of the

learned model is evaluated by the rooted mean squared error for

the missing elements. The error is averaged over different sub-

sets, and a hyperparameter value that achieved the lowest error

is selected. When ynd is missing, its estimated value is given

by ŷnd = k⊤n K−1yd, where kn = (k(zn, z1), · · · , k(zn, zN))⊤ and

yd = (y1d, · · · , yNd)⊤, and they are calculated using the observed

data. Note that even when all of the output variables are missing

with an instance, the latent location can be estimated by using its

neighbor relationships.

The proposed model can be seen as a probabilistic generative

model. An output value ynd is generated from a Gaussian distribu-

tion with mean fd(zn) using the latent location zn, where the non-

linear function fd(·) is generated from a Gaussian process prior.

The input locations xn are not directly generated, but we can con-

sider that the neighbors of the input locations are generated by a

multinomial distribution, where the multinomial parameters are

defined by latent locations Z as in (8).

Although we considered that the input variables are real-

valued, the proposed method is applicable to other types of input

variables that can calculate similarity between two input locations

to define neighbor relationships in (9). For example, we can use

normalized tree kernels and graph kernels for tree and graph data,

respectively, instead of normalized Gaussian kernels in (9).

4. Experiments

We evaluated the proposed method by using a real-world spa-

tial data set: the comprehensive climate data of North America

(NA) *1. The NA data set consists of monthly climate reports from

1990 to 2002 [1], [11]. We used 16 output variables, such as car-

bon dioxide and temperature, which were interpolated on 2.5×2.5

degree grid with 125 locations. We normalized all output values

to mean zero and unit variance, and conducted experiments with

data for each month, where the input variables were latitude and

*1 http://www-bcf.usc.edu/˜liu32/data/

NA-1990-20002-Monthly.csv

longitude.

We compared the proposed IGPLVM (Proposed) with the fol-

lowing five methods: GP, MTGP, GPLVM, MF and KNN. GP is

a Gaussian process regression method, which assumes that out-

put values are determined by the input locations using nonlinear

functions with Gaussian process priors. MTGP is a multi-task

Gaussian process regression method [2], which learns relation-

ships between output variables. We used the code provided by the

authors*2. GPLVM is a Gaussian process based nonlinear matrix

imputation method [9]. MF is a matrix factorization method [7].

It imputates missing values by the product of two low-rank matri-

ces. Both GPLVM and MF do not use input information. KNN is

a k-nearest neighbor regression method, which estimates a miss-

ing value by the average value of its four neighbors. The dimen-

sionality of the latent space with the proposed method, GPLVM

and MF was set at K = 2, which is the same with that of the input

space. With the proposed method, we selected a hyperparame-

ter λ for each output variable by five-fold cross-validation from

{0, 1, 10, 102, 103, 104, 105}. The latent locations were initialized

by the input locations.

We measured the effectiveness of the proposed method by in-

terpolation tasks. Ten percent of output values were randomly

selected as test data. The performance was evaluated by rooted

mean squared error (RMSE). Table 1 shows the RMSE with the

NA data set. The proposed method achieved the lowest average

RMSE. This result indicates that the output covariance is properly

modeled by distorting the input space with the proposed method.

GP achieved low RMSE with output variables whose covariance

is determined by the input locations, such as WET and DTR.

GPLVM achieved low RMSE with output variables which can be

estimated easily from other output variables. Since the proposed

method can become the GP and GPLVM by controlling the hy-

perparameter for each output variable, the RMSE of the proposed

method was low for all output variables.

The computational time of the proposed method was 18 sec-

onds with a one-month data using a computer with Xeon 7350

2.93GHz CPU.

Figure 1 shows the original input space and the estimated latent

space by the proposed method. When λ = 0, the latent locations

were different from the input locations, since the latent locations

did not regularized by the input locations at all. When λ = 105,

the latent space was the same with the input space, since the ef-

fect of preserving neighbor relationships became dominant. With

λ = 10 and λ = 103, the some neighbor relationships were pre-

served but some latent locations were transformed so as to model

the output covariance. The latent locations of west coast were

separated from the other locations (b,c,d), because west coast ex-

hibits different weather from the other area.

5. Conclusion

In this paper, we have proposed a probabilistic model for dis-

covering a latent intrinsic space. The proposed method is based

on Gaussian processes, where a latent location is associated with

each input location, and output values are determined by the la-

*2 https://github.com/ebonilla/mtgp
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Table 1 RMSE on interpolation tasks with the NA data set for each output variable averaged over all

locations and all timestamps. The last row shows the RMSE averaged over all output variables.

Values in bold typeface are statistically better at the 5% level from those in normal typecface as

indicated by a paired t-test.

Proposed GP MTGP GPLVM MF KNN

CO2 0.0532 0.0536 1.3110 0.2342 0.5448 0.1474

CH4 0.0520 0.0528 1.3751 0.1966 0.4935 0.1473

CO 0.0496 0.0501 1.3807 0.2007 0.5150 0.1411

H2 0.0479 0.0484 1.3669 0.1614 0.4116 0.1358

WET 0.3672 0.3684 1.3502 0.5033 0.6242 0.3773

CLD 0.2483 0.2543 1.3201 0.3580 0.5253 0.2817

VAP 0.1911 0.2071 1.3712 0.2511 0.3957 0.2495

PRE 0.5289 0.5201 1.3420 0.5991 0.6857 0.5098

FRS 0.3502 0.4480 1.3528 0.3371 0.5613 0.4409

DTR 0.4579 0.4611 1.3947 0.5098 0.5873 0.4704

TMN 0.1832 0.3315 1.3694 0.2039 0.3661 0.3531

TMP 0.1568 0.3190 1.3786 0.1762 0.3294 0.3419

TMX 0.1866 0.3319 1.3706 0.2082 0.3435 0.3578

GLO 0.1901 0.1901 1.3755 0.2755 0.3618 0.2311

ETR 0.0641 0.0647 1.3677 0.1376 0.3714 0.1733

ETRN 0.0568 0.0572 1.3034 0.1239 0.3190 0.1547

Average 0.1990 0.2349 1.3581 0.2798 0.4647 0.2821

observed input λ = 0 λ = 10 λ = 103 λ = 105

Fig. 1 The observed input space, and the latent space estimated by the proposed method with different

hyperparameters. The locations that are closely located at the input space are connected by edges.

The color represents the locations in the input space.

tent locations. The latent locations are estimated so as to preserve

the neighbor relationships as well as to capture the output covari-

ance of the given data. Although our results have been encourag-

ing, our framework can be further improved upon in a number

of ways. Firstly, we would like to estimate the hyperparame-

ter for controlling input regularization by using the variational

Bayesian framework [14]. Secondly, we plan to estimate rela-

tionships among output variables using multi-task learning tech-

niques [2]. With the proposed method a single latent space is

shared by all output variables. By using estimated task relation-

ships, we can obtain multiple latent spaces that capture the char-

acteristics of individual output variables, and it leads to better

interpolation performance for missing values. Finally, we would

like to extend our method more scalable by using scalable Gaus-

sian process techniques [4], [13].
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