
A New Parallelization Model using Complex Grid
Partitioning for Density-based Spatial Clustering

Algorithm on a Multi-Core CPU

Tatsuhiro Sakai1,2,a) Keiichi Tamura1,b) KoheiMisaki1 Hajime Kitakami1,c)

Abstract: Recently, the sizes and volumes of spatial databases have been increasing not only because of the popu-
larity of geographical data, but also because of the popularity of geosocial media. A density-based spatial clustering
algorithm is one of the simplest but most robust clustering techniques for geospatial data. Therefore, the speedup for
the processing of density-based spatial clustering algorithms is one of the most important challenges. In this paper, we
propose a new parallelization model using complex grid partitioning for density-based spatial clustering algorithm on
a multi-core CPU. The main technique of the new parallelization model is that it forms complex spatial partition, n
order to speed up the processing. The experimental results show that our new model outperforms a conventional data
parallelization model.

1. Introduction
With the increasing interest in big data, the use of geospatial

databases for ICT (information and communications technology)
has received much attention in recent years. The clustering tech-
nique for geospatial data is one of the most well studied tech-
niques because it allows us to reveal spatial relevance of geospa-
tial data. Clustering techniques for geospatial data differ from
traditional clustering techniques (e.g., k-means method) only in
that clusters for geospatial data do not always form circles. For
example, contaminated land sites form arbitrary shapes from a
satellite observation.

A density-based spatial clustering algorithm is one of the sim-
plest but most robust clustering techniques for geospatial data.
The DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm was first introduced by Ester et al. [1][2],
and it applies a density-based concept of spatial clusters. Spatial
clusters are recognized by analyzing the density of data points.
Areas with a high density of data points are spatial clusters,
whereas areas with a low density are not. DBSCAN can discover
spatial clusters with arbitrary shapes. Therefore, many methods
apply this algorithm to geospatial databases because spatial clus-
ters in geospatial databases are not circular.

In this paper, we focus on the speedup of the DBSCAN al-
gorithm. The goal of this study is to develop a new parallel-
processing parallelization model for DBSCAN on a multi-core
CPU. Currently, PCs and workstations have one or more multi-

1 Graduate School of Information Sciences, Hiroshima City University,
Hiroshima 731-3194, Japan

2 JSPS Research Fellow, Japan
a) da65003@e.hiroshima-cu.ac.jp
b) ktamura@hiroshima-cu.ac.jp
c) kitakami@hiroshima-cu.ac.jp

core CPUs. A multi-core CPU is a single microprocessor with
two or more independent CPU cores on a die, which are the units
that read and execute program instructions. It is necessary to de-
velop an efficient parallelization model for spatial clustering tech-
niques on a multi-core CPU.

To parallelize the DBSCAN algorithm, the proposed paral-
lelization model is based on the master-worker model using data
parallelism. In data parallelism, an entire geospatial database is
divided into two or more sub-databases called partitions using
grid partitioning. To extract a spatial cluster that is spread over
several grids, each gird contains a replication of geospatial data
beyond the borders of the grid. Moreover, to reduce the number
of replications, the proposed parallelization model utilizes com-
plex grid partitioning. In complex grid partitioning, a complex
grid is composed of highly dense adjacent grids. Composing a
complex grid reduces the number of grids; therefore, the number
of replications decreases compared with simple grid partitioning.
This improves the overall performance of the parallel processing.

The rest of this paper is organized as follows. In Section 2,
related work is reviewed. In Section 3, a density-based spatial
clustering algorithm and its algorithm are presented. In Section
4, we propose a new parallelization model for the parallel pro-
cessing of DBSCAN. In Section 5, we report the experimental
results. In Section 6, we conclude the paper.

2. Related Work
Recently, the parallelization model of DBSCAN for speedup

of its algorithm has been proposed as the sizes and volumes of
spatial databases have been increasing because of the popularity
of geographical data. Xu et al. [3] proposed the parallelization
model of DBSCAN on a cluster computer. The method divides
an entire geospatial dataset using grid division of the space index,

ⓒ 2016 Information Processing Society of Japan 1

IPSJ SIG Technical Report Vol.2016-MPS-109 No.4
2016/7/25

and each computer performs clustering for the divided geospatial
data.

Misaki et al. [4] proposed a parallelization model for the par-
allel processing of DBSCAN on a multi-core CPU. In previous
model, a geospatial database is divided into two or more sub-
databases called partitions using grid partitioning on the basis of
data parallelism. Each CPU core performs the same processing
on different partitions. In the experimental results, the previous
model showed the effectiveness of parallel processing in terms of
speedup; however, the process for each grid partitioning is time
consuming because each grid is increased in the number of repli-
cations. The proposed new model reduce the processing time be-
cause decreasing the number of replications by using complex
grid partitioning.

3. DBSCAN
In this section, the definitions and algorithm of the DBSCAN

(Density-Based Spatial Clustering of Applications with Noise)
are briefly reviewed.

3.1 Definitions
Let GS D be the entire geospatial data, and ϵ and MinGS D

be user parameters. The ϵ-neighborhood of gsdp (gsdp ∈ GS D)
GS Nϵ(gsdp) is defined as geospatial data within a radius of ϵ.

Definition 1 (Core geospatial data, Border geospatial data)
A geospatial data gsdp is called a core geospatial data if there
is at least the minimum number of geospatial data, MinGS D, in
the ϵ-neighborhood GS Nϵ(gsdp) (|GS Nϵ(gsdp)| ≥ MinGS D).
Otherwise, (|GS Nϵ(gsdp)| < MinGS D), gsdp is called a border
geospatial data.

Definition 2 (Density-based reachable) A geospatial data se-
quence (gsd1, gsd2, · · · , gsdn) is called density-based reachable in
that satisfies the following restrictions:
（1） gsd1, gsd2, · · · , gsdn−1 are core geospatial data.
（2） gsdi+1 ∈ GS Nϵ(gsdi).

Definition 3 (Density-based spatial cluster) A density-based
spatial cluster (GS C) in a geospatial data set GS D that satisfies
the following restrictions:
（1） ∀gsdp, gsdq ∈ GS D, if and only if gsdp ∈ GS C and
gsdq is density-based reachable from gsdp, and gsdq is also
in GS C.

（2） ∀gsdp, gsdq ∈ GS C, there is a gsdo ∈ GS C, and gsdp

and gsdq are density-based reachable from gsdo.

3.2 Algorithm
To extract density-based spatial clusters, approximate core

geospatial data are appended recursively. For each geospatial
data gsdi in GS D, the following steps are executed. If gsdi is
a core geospatial data according to Definition 1, it is assigned to
a new spatial cluster GS C, and all the neighbors are queued to
a candidate queue Q for further processing. The processing and
assignment of geospatial data to the current spatial cluster con-
tinue until Q is empty. The next geospatial data is then dequeued

Fig. 1 Geospatial data around the border of a grid

from Q. If the dequeued geospatial data is not already assigned
to the current spatial cluster, it is assigned to the current spatial
cluster. The ϵ-neighborhood of the dequeued geospatial data is
then queued to Q, which puts input geospatial data into Q if they
are not already in Q.

4. Proposed Method
In this section, we propose a new parallelization model for the

parallel processing of DBSCAN on a multi-core CPU.

4.1 Grid Partitioning and Dynamic Load Balancing
In this study, we focus only on the data-parallelism-based

master-worker model on a multi-core CPU. In data parallelism,
a geospatial database is divided into two or more sub-databases
called partitions. In a multi-core CPU environment, each CPU
core performs the same processing on different partitions. The
proposed parallelization model utilizes grid partitioning to divide
the whole database. Each data in the geospatial database is as-
signed to a grid that includes the data.

A processing of spatial clustering for a partition associated
with a grid is referred to as a task. The master thread manages
tasks using the task pool to distribute the loads dynamically. Each
worker perform clustering after obtaining a task from the task
pool. Finally, if the task pool is empty and each worker finishes
task processing, the entire process is completed.

4.2 Data Replication
In the grid partitioning framework, we cannot determine

whether a geospatial data near the border of a grid is core geospa-
tial data or not using only the data set of the grid that contains
geospatial data. In Fig. 1, even though a geospatial data gsd near
the border of Grid 1 is a core geospatial data the geospatial data
gsd is not identified as a core geospatial data, because some its
neighbors are located in Grid 3. To determine whether a geospa-
tial data near the border of a grid is core geospatial data or not, all
grids extend only ϵ. Therefore, adjoining grids overlap. In Fig. 1,
Grid 1 contains not only a set of geospatial data located in its area
but also a set of geospatial data located in the area shown with a
transmission color. The set of geospatial data located in the area
is a replication.

4.3 Complex Grid
To reduce the number of replications, the proposed paralleliza-

tion model utilizes complex grid partitioning. Fig. 2 shows an

ⓒ 2016 Information Processing Society of Japan 2

IPSJ SIG Technical Report Vol.2016-MPS-109 No.4
2016/7/25

IPSJ SIG Technical Report

Fig. 2 Example of complex grid partitioning

example of complex grid partitioning. One of the disadvantages
of simple grid partitioning is the increase in the number of repli-
cations due to merging, as shown in the left side of Fig. 2 In
complex grid partitioning on the right side of Fig. 2, a complex
grid is composed of highly dense adjacent grids. Composing a
complex grid reduces the number of grids; therefore, the number
of replications decreases compared with simple grid partitioning.
This improve the overall performance of the parallel processing.
Moreover, if data there is concentrated in one of the grids, the
loads are not distributed. Then, if the number of geospatial data
in a grid is larger than the number of the entire geospatial data
divided by the number of workers, the grid is further divided.

The steps are the processing steps of creating complex grids.
(1) For each grid, the number of geospatial data in the grid is

counted.
(2) For each grid, if the number of geospatial data is larger than

the number of all geospatial data divided by the number of
workers, the grid is further divided.

(3) For each grid, if the number of geospatial data is larger than
twice the average of the number of geospatial data, the grid
is labeled a dense grid. Otherwise the grid is labeled a non-
dense grid.

(4) Each dense grid combines with the adjoining dense grids up
to the number of all geospatial data divided by the number
of workers. A set of dense grids then forms a complex grid.

(5) Each non-dense grid forms a complex grid.

4.4 Merging Clusters
To extract a spatial cluster that spread over several grids, the

proposed model merges extracted spatial clusters from each parti-
tion. First, the proposed model obtains adjacent grids information
from the area number of each partition and the division points for
each dimension. On the basis of the information from the adja-
cent grids, the proposed model extracts overlapping clusters from
spatial clusters in a grid and spatial clusters in grids adjacent to its
grid. It is possible to extract overlapping spatial clusters because
of data replication. The extracted overlapping spatial clusters are
merged, and those spatial clusters become one spatial cluster. The
proposed model can obtain the same as clustering results using no
parallel method by the merging clusters.

4.5 Algorithm
The processing steps of the master thread and the worker

threads are as follows.
A) Master Thread
(1) The master thread received a geospatial database GS D, and

parameters p, ϵ, and MinGS D.
(2) The whole space is divided into p subspaces for each dimen-

sion. A separated space is a grid. For each geospatial data

gsd ∈ GS D, the master thread assigns gsd to a grid.
(3) If the number of geospatial data in a grid is larger than the

number of the entire geospatial data divided by the number
of workers, the grid is further divided.

(4) The master thread calculates GS Nϵ(gsd) for geospatial data.
(5) The master thread generates complex grids and a tack pool.
(6) The complex grid is referred to as a partition. The master

puts a partition in the task pool.
(7) The master thread creates t worker threads.
(8) The master thread receives a request for task assignment

from a worker thread.
(9) If the task pool is not empty, the master thread pops a task

from the task pool and sends it the task to the worker thread.
Otherwise, the master worker sends a wait message to the
worker thread.

(10) If the master thread has sent wait messages to all the
worker threads, the processing step goes to (11). Otherwise,
the processing step returns to (8).

(11) The master thread sends an end message to each worker
thread.

(12) The master thread receives clustering results from all the
worker threads and merges clusters that spread over several
grids.

(13) The master thread returns a set of spatial clusters.
B) Worker Thread
(1) The worker thread sends a task assignment request to the

master thread.
(2) If the worker thread receives a wait message, the processing

step goes to (4). Otherwise, the worker thread receives a task
from the master thread.

(3) The worker thread extracts spatial clusters from a partition
associated with the task using the DBSCAN algorithm. The
worker thread puts the clustering results of the assigned task
in a result pool. The processing step returns to (1).

(4) The worker thread waits for an end message from the master
thread.

(5) The worker thread sends a set of spatial clusters to the result
pool.

5. Performance Evaluation
To evaluate the proposed model for parallel processing for

DBSCAN on a multi-core CPU, we implemented the proposed
model. We conducted an experiment with a PC with the follow-
ing specifications: CPU INTEL XEON E5-1270 V2 (number of
core = 4) @3.5 GHz, memory:32GB. In the experiment, we used
three types of datasets: R15, Aggregation and Pathbased. For,
each dataset, we expanded the number of geospatial data to ap-
proximately 100,000 by increasing geospatial data around each
geospatial data artificially. The parameters were set to the num-
ber of initial grid divisions of each dimension p = 8. Moreover,
the parameters were set to ϵ = 0.5 and MinGS D = 3000 with
R15, ϵ = 1.8 and MinGS D = 1550 with Aggregation, and ϵ = 1.6
and MinGS D = 2300 with Pathbased so as to be correct cluster-
ing results. We compared the results of changing the number of
worker threads t from 1 to 4.

In the experiments, we measured the processing time of DB-

ⓒ 2016 Information Processing Society of Japan 3

IPSJ SIG Technical Report Vol.2016-MPS-109 No.4
2016/7/25

0

1

2

3

4

0 1 2 3 4 5

S
p

ee
d
u
p

Number of threads

SGPM CGPM_A CGPM_B

Speedup of R15

0

1

2

3

4

0 1 2 3 4 5

S
p

ee
d

u
p

Number of threads

SGPM CGPM_A CGPM_B

Speedup of Aggregation

0

1

2

3

4

0 1 2 3 4 5

S
p

ee
d

u
p

Number of threads

SGPM CGPM_A CGPM_B

Speedup of Pathbased
Fig. 3 Speedup for each dataset

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4

P
ro

ce
ss

in
g

 t
im

e(
s)

Number of threads

SGPM CGPM_A CGPM_B

Processing time of R15

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4

P
ro

ce
ss

in
g

 t
im

e(
s)

Number of threads

SGPM CGPM_A CGPM_B

Processing time of Aggregation

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4

P
ro

ce
ss

in
g

 t
im

e(
s)

Number of threads

SGPM CGPM_A CGPM_B

Processing time of Pathbased
Fig. 4 Processing time for each dataset

SCAN using the proposed model, which utilizes complex grid
partitioning, and the previous model, which utilizes simple grid
partitioning (denoted by SGPM). Moreover, we compare CGPM
with chenging the condition of combining of the dense grids. One
is to combine up to the number of all geospatial data divided
by the number of workers (denoted by CGPM A). The other is
to combine up to the number of all geospatial data divided by
four (denoted by CGPM B). Fig. 3 shows the speedup for each
dataset. The previous model obtained a higher speedup compared
to the proposed model, as shown in Fig 3.

In addition, Fig. 4 shows the processing time for each dataset.
The processing time of CGPM A are faster than that of SGPM
using R15 and Aggregation. This is because the number of repli-
cation data is reduced by the complex grid partition. The pro-
cessing time with t = 3 and 4 of CGPM A is worse then that of
SGPM using Pathbased. It is assumed that deviation of the loads
occurred by conbining of dense grid.

The previous model obtained a higher speedup compared to the
proposed model. It is assumed that the number of replication data
with worker threads t = 4 is more than the number of replication
data with worker threads t = 1, because the less the number of
threads, the more combining of dense grids increase. We then
considered the experimental result of CGPM B. The speedup ra-
tio of CGPM B is much the same as the speedup ratio of SGPM
using R15 and Aggregation. The processing time of CGPM B
is faster than the processing time of SGPM. However, the pro-
cessing time of CGPM B is slower than the processing time of
CGPM A. We are necessary to develop a method for automatic
setting of the combining condition for each the number of worker
thread.

6. Conclusion
This paper proposed a new parallelization model on a multi-

core CPU for the parallel processing of DBSCAN. The proposed
parallelization model utilizes the data replication technique and
complex grids in order to speed up processing time. Moreover,
the proposed model reduces the number of replications owing
to the complex partition grid partition. The experimental results
showed that the proposed parallelization model outperforms the
conventional parallelization model, which utilizes the simple grid
partitioning. In our future work, we intend to discuss combining
condition of the dense grids.

Acknowledgment
This work was supported by JSPS KAKENHI Grant Number

16J05403 and 26330139, and Hiroshima City University Grant
for Special Academic Research (General Studies).

References
[1] Ester, M., peter Kriegel, H., Sander, J. and Xu, X.: A density-based al-

gorithm for discovering clusters in large spatial databases with noise,
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD-96, pp. 226–231 (1996).

[2] Sander, J., Ester, M., Kriegel, H.-P. and Xu, X.: Density-Based Clus-
tering in Spatial Databases: The Algorithm GDBSCAN and Its Ap-
plications, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp.
169–194 (1998).

[3] Xu, X., Jäger, J. and Kriegel, H.-P.: A Fast Parallel Clustering Algo-
rithm for Large Spatial Databases, Data Mining and Knowledge Dis-
covery, Vol. 3, No. 3, pp. 263–290 (1999).

[4] Misaki, K., Tamura, K. and Kitakami, H.: Parallel Processing for
Density-based Clustering Algorithm on a Multi-core CPU, Proceedings
2014 IEEE SMC Hiroshima Chapter Young Researchers’ Workshop, pp.
33–36 (2014).

ⓒ 2016 Information Processing Society of Japan 4

IPSJ SIG Technical Report Vol.2016-MPS-109 No.4
2016/7/25

