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On Proving AC-Termination by Argument Filtering Method

KEIICHIROU KUSAKARIT and YOSHIHITO TOYAMA?®

The notion of dependency pairs is widely used for proving termination of TRSs. Recently,
this notion was extended to AC-TRSs. Using AC-dependency pairs, we can easily show the
AC-termination property of AC-TRSs to which traditional techniques cannot be applied. On
this notion, a weak AC-reduction pair plays an important role. In this paper, we introduce the
argument filtering method, which designs a weak AC-reduction pair from an arbitrary AC-
reduction order. Moreover, we improve the method in two directions. One is the lexicographic
argument filtering method, which lexicographically combines argument filtering functions to
compare AC-dependency pairs. Another one is an extension by AC-multiset extension. These
methods offer useful means to prove AC-termination of complicated AC-TRSs.

1. Introduction

Term rewriting systems with associative-
commutative equations (AC-TRSs) can be
regarded as a model for computation in
which terms are reduced by directed equa-
tions modulo associative-commutative equa-
tions. AC-TRSs themselves can be re-
garded as functional programming languages.
They can represent abstract interpreters of
functional programming languages with AC-
functions such as the addition and the mul-
tiplication. For example, the data structure
Node(Leaf(1), Node(Leaf(1), Leaf(2))) for a
binary tree naturally represents the multi-
set {1,1,2} by interpreting Node as an AC-
function symbol, which denotes the union over
multisets. Functions over multisets can be eas-
ily defined with this data structure. A member-
ship function member is non-recursively defined
as follows:

member(z, Leaf(z)) —  True
member(z, Node(Leaf(z),y)) — True
Thus AC-TRSs can model formal manipulating
systems used in various applications, such as
program optimization, program verification and
automatic theorem proving®-®14).

The AC-termination property is one of the
most fundamental properties of AC-TRSs. In
general, the AC-termination property is unde-
cidable. Thus, it is important to find methods
for proving AC-termination. In order to prove
AC-termination, we commonly design an AC-
reduction order by which all rules are ordered.

The notion of dependency pairs was intro-
duced for proving termination of TRSs by Arts
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and Gies!??)% . This notion was extended to
AC-TRSs in different ways by the authors'®
and by Marché and Urbain'®. Using AC-
dependency pairs, we can easily show the AC-
termination property of AC-TRSs to which tra-
ditional techniques cannot be applied. We ex-
plain these two AC-dependency pairs and com-
pare two methods in the same framework. We
show that the notions of weak AC-reduction or-
ders and weak AC-reduction pairs play an im-
portant role on the method of AC-dependency
pairs.

Next, we introduce the argument filtering
method, which designs a weak AC-reduction or-
der and a weak AC-reduction pair. The origi-
nal idea of the argument filtering method for
TRSs without AC-function symbols was first
proposed by Arts and Giesl?>19. The method
was slightly improved by combining the sub-
term relation!?). We extend these methods to
AC-TRSs. Our extension designs a weak AC-
reduction order and a weak AC-reduction pair
from an arbitrary AC-reduction order. More-
over, in order to strengthen the power of the
argument filtering method, we improve the
method in two directions. One is the lexico-
graphic argument filtering method, which lexi-
cographically combines argument filtering func-
tions to compare AC-dependency pairs. An-
other one is an extension by AC-multiset ex-
tension. In the argument filtering method
on AC-TRSs, any argument filtering function
must be compatible with AC-equations. We re-
lax this restriction using AC-multisets. These
methods are effective for proving not only AC-
termination but also termination of TRSs.

Lastly, using AC-dependency pairs and the
argument filtering method, we analyze the dis-
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tribution elimination transformation!%)7,
2. Preliminaries

We assume that the reader is familiar with
notions of term rewriting systems®

Let o be a binary relation on a set A. We
write a; o ag instead of (a1, as) € o. The bi-
nary relation o is transitive if Vai, aq,a3 € A.
aioasAazoas = ajoag, reflexive if Va € A.aoaq,
irreflexive if Va € A.-(a o a), symmetric if
Yai, a2 € A. a1 0a3 = ag oay, and antisymmet-
ric if Vay, a0 € A. ajoasAasoa; = a1 = as. We
write the reflexive closure, the transitive closure
and the reflexive-transitive closure of o as o=,
ot and o*, respectively. A binary relation o is
well-founded if there exists no infinite sequence
such that a; cag caz o---. An equivalence re-
lation is a reflexive, transitive and symmetric
relation.

Let X be a finite set of function symbols, and
V an enumerable set of variables with ZNVY = 0.
The set of terms constructed from ¥ and V is
written as 7 (3, V). The set of variables in ¢ is
denoted by Var(t). Identity of terms is denoted
by =. A term t is linear if every variable in ¢
occurs only once. A substitution is a mapping
§:V — T(%,V). A substitution over terms is
defined as a homomorphic extension. We write
0 instead of 6(¢). A position of a term is a
sequence of positive integers. We denote the
empty sequence by €. The prefix order < on
term positions is defined as p < ¢ iff pw = ¢
for some w (# ¢). We recursively define (¢), as
follows:

(z)e =
(flte, - tn))e
(f(tla' "7tn))i~p =

A context is a term which has one special con-
stant [, called a hole. C[t], denotes the result
of replacing the hole with ¢ at position p. A
term s is called a subterm of ¢ if ¢ = Cls] for
some context C.

A binary relation > is a strict order if > is
transitive and irreflexive. A binary relation >
is a partial order if > is reflexive, transitive and
antisymmetric. A binary relation 2 is a quasi-
order if 2 is transitive and reflexive. The strict
part of a quasi-order 2, written by =, is defined
as 2 \ <. The equivalence part of a quasi-
order 2 is defined as 2 N <. Note that for all
quasi-order its strict part is a strict order and
its equivalence part is an equivalence relation.
A binary relation o on terms is monotonic if

{

z
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VC.sot = Cls] o C[t]. A binary relation o on
terms is stable if Vf.sot = sfotf. A congruence
relation is an equivalence, monotonic and stable
relation.

The set ¥, of AC-function symbols, which
have fixed arity 2, is a subset of ¥. The binary
relation ~ is the congruence relation generated
by f(f(z,y),2) =a f(z, f(y,2)) and f(z,y) =c
fly,x) for each f € T,c. A set {ti,ta,...} is
AC-umﬁable by 8 if t19 ~ t29 ~

A rewrite rule is a palr Cof terms written by
I'— r, with I € V and Var(l) 2 Var(r).
An associative—commutative term rewriting sys-
tem (AC-TRS) is a finite set of rules. If
AC-symbols ¥, is empty, it is said to be a
term rewriting system (TRS). The set of de-
fined symbols in R is DF(R) = {(I)c | | —
r € R}. An AC-reduction relation e is

defined as follows: s —> ¢ &3 Il —r e

R,AC| ],39,3:‘;0[19] /\t = Crf]. We of-

ten omit the subscript r/Ac when no confu-

sion arises. An AC-TRS R is AC-terminating

if — is well-founded. A strict order > is

an AC-reduction order if > is AC-compatible

(SAN s' >t = s > t), well-founded, monotonic
C

and stable.

Proposition 2.1 91314 Apn AC-TRS R is
AC-terminating iff there exists an AC-reduction
order > that satisfies { > r for all | — r € R.

One of the most popular reduction orders
is the recursive path order”. The recursive
path order >.,, is generated by a precedence
>, which is a strict order on . To extend the
reduction order to an AC-reduction order, flat-
ting terms were introduced® . The flatting term
of a term ¢, denoted by %, is the normal form of
t for the rules f(Z, f(7), Z) — f(&,7, ?) for each
AC-symbol f. Using flatting terms and the re-
cursive path order >, ,,, we define s >7!* ¢ by
5 >.,, t. However, this order >/'*' is not al-
ways monotonic. Therefore, we need a suitable
restriction on the precedence, as shown by the
following proposition.

Proposition 2.2% If all AC-symbols are
minimal in a precedence >, then the order >/!**
is an AC-reduction order.

For recent result, see 16).
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3. AC-Dependency Pair

In this section, we review the AC-dependency
pair, the weak AC-reduction order and the weak
AC-reduction pair.

3.1 AC-Dependency Pair

On TRSs, Arts and Gies! introduced the no-
tion of dependency pairs!)-®¥, which can of-
fer an effective method for analyzing an infinite
reduction sequence. The dependency pair was
extended to AC-TRSs by two different ways in
13) and 14). In this subsection, we introduce
these AC-dependency pairs. In order to com-
pare two methods in the same framework, the
latter method is expressed with minor modifi-
cation.

Definition 3.1 Let # : ¥ — £* be a mark-
ing function, where ©# is the set of fresh func-
tion symbols disjoint from VU X. We denote
#(f) by f#. We extend the marking function
# over terms as follows:

*¥ =
flt)* = flt,t2)*
if feXa
f(tl,...,tn)# = f#<t1,...,tn)
" if f¢&%ac
xz = 2
f(t17"'1tn)#f = f#(t?f,..‘,t,ﬁf
g(tlv"'7tm)#f = g(t17"'at‘m.)
if f#g

For each f € T.c, we regard f* as an AC-
Symbol, i.e., ch = EAC U {f# l f S ZAC}'

Definition 3.2 We define the AC-TRS
R* = {f*(f(z,y),2) — f*(f*(z,y),2) | [ €

T.c}. We denote by t|, the normal form of

tin — . We define s—t by 3t'. s —
r#/acC # R/AC
At .=t

Definition 3.3 A head subterm relation
$B,at is defined as 3C[ |p. [s l:-éC[t]jO A Vg < p.

(C)g = (t)e € T4c].

Example 3.4 Let ¥%, = {add, add*} and
t = add(s(add(z, y)), add(z,w)). Then,
t* = add*(s(add(z,y)), add*(z,w)),
t 5. add(z, w) and t* ,, add*(z,w).

Definition 3.5 Let R be an AC-TRS.
We define the AC-extended AC-TRS R*¢,
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the dependency pairs DP#(R) and the AC-
dependency pairs DP¥,(R) as follows:

R* =RU{f(lz) = f(r,2) |
l—=rcR, ()e=f€Zuct

DP*(R) = {{u*,v*) |
u— C[v] € R, (v)e € DF(R)}

DP#.(R) = DP*(R)U {f(l,2)* — f(r,2)* |
Il —-reR, ()e=f€Zac}
where z is a fresh variable.

The sets of unmarked dependency pairs and un-
marked AC-dependency pairs of R, written by
DP(R) and DP,s(R), are obtained by erasing
marks of symbols in DP#(R) and DP¥.(R), re-
spectively. The set DPZ,(R)\DP*(R) is called
extended dependency pairs of R.

Example 3.6 Consider the AC-TRS R =
{+(2,0) = z, +(z,s(y)) — s(+(z,y))} with
Yac = {+}. Then

RA° =R U
+(+(2,0),2) — +(z,2)

{+(+(m,s v),z) — +(s(+(z,9)).2)
DP#(RA€) =

(+*(z,8(y), +* (z,9))

(+#(+*(2,0), 2), +* (z, 2))

(+#(+#(z, 8(y)), 2), +* (s(+(2,9)),2))

(+#(+*(z, 8(y)), 2), +* (z,9))
DP}.(R) =

(+*(z,s(y), +* (z,9)

The notion of AC-dependency pairs was in-
troduced by two different ways. One introduced
by us in 13) corresponds to DP¥,(R) and an-
other one by Marché and Urbain in 14) corre-
sponds to DP#(R*°).

Proposition 3.7'% An AC-TRS R is not
AC-terminating iff there exist (uf,v}) €
DP#.(R) (i = 0,1,2,...) such that (v;6)*
—EEM(UPAG)# for each i. Here, we assume
that Var(uf) N Var(u?) = 0 for distinct i and
4 without loss of generality.

Proposition 3.8 An AC-TRS R is
not AC-terminating iff there exist (uf,v})
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€ DP*(R*°) (1 = 0,1,2,...) such that
(viﬁ)#i:c(uiﬂé)# for each i. Here, we as-

sume that Var(u?) N Var(uf) = 0 for distinct
¢ and j without loss of generality.

3.2 Weak AC-Reduction Order

In this subsection, we introduce the notion of
weak AC-reduction order, which plays an im-
portant role on the method of AC-dependency
pairs.

Definition 3.9 A quasi-order 2> is a weak
AC-reduction order if 2> is AC-compatible
(s ~t = s > t), monotonic and stable, and

AC

its strict part 2 is well-founded and stable.
A weak AC-reduction order > has the AC-
deletion property if f(f(x,y),z) 2 f(z,y) for
all AC-symbols f € £#_. A weak AC-reduction
order 2 satisfies the AC-marked condition if for
all f € Tac, f#(f(2,9),2) ~ f*(f*(2,9),2),

where ~ is the equivalence part of >.

An AC-reduction order > can be easily ex-
tended to a weak AC-reduction order by (>
U ~)*. On the other hand, an AC-reduction

oragr cannot be directly obtained from a given
weak AC-reduction order, because the strict
part 2 of a weak AC-reduction order > need
not have the monotonicity property.

Proposition 3.10'® Let R be an AC-TRS.
If there exists a weak AC-reduction order >
with AC-marked condition and AC-deletion
property such that

e [ 2> forall [ —r€R,

e u* 2 v* forall (u* v*)c DP%.(R),
then R is AC-terminating,.

Proposition 3.11 'Y Let R be an AC-TRS.
If there exists a weak AC-reduction order >
with AC-marked condition* such that

e [ 21 forall [ —reR,

o u* Zv* forall (u* v*)e DP*(RA°),
then R is AC-terminating.

Our AC-dependency pairs DP#.(R) is
smaller in number of pairs than Marché
and Urbain’s AC-dependency pairs D P#(R*°).

* This AC-marked condition is slightly modified, be-
cause their original definition cannot handle collaps-
ing rules, i.e., the rules whose right hand sides are
variables.
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Hence, our method is more efficient than theirs.
On the other hand, their method is more power-
ful than ours in theoretical, because our method
requests the AC-deletion property.

3.3 Weak AC-Reduction Pair

In order to analyze transformation methods
for proving termination, we extended the no-
tion of weak reduction order to that of weak
reduction pair'?. In this subsection, we extend
the notion to AC-TRSs.

Definition 3.12 A pair (2, >) of binary re-
lations on terms is a weak AC-reduction pair if
it satisfies the following conditions:

e > is AC-compatible (sAAét = s 2 t).
is monotonic and stable.
is stable and well-founded.

o >C> or >-ZC>. :
A weak AC-reduction pair (=, >) has the AC-
deletion property if for all f € %%,

o f(f(z,1),2) 2 f(z,y) or

F(Fy)2) S Flay).
A weak AC-reduction pair (2, >) satisfies the
AC-marked condition if for all f € ¥,
o fH(f(z,y),z) ~ [*(f*(2,y),2),

where ~ is the equivalence part of >.

)

IV VRV

In the above definition, we do not assume
that 2 is a quasi-order or > is a strict or-
der. This simplifies the design of a weak AC-
reduction pair. We should mention that this
simplification does not lose the generality of
our definition, because for a given weak AC-
reduction pair (Z,>) we can make the weak
reduction pair (2*, >7) in which >* is a quasi-
order and >V is a strict order.

Theorem 3.13 For any AC-TRS R, the
following properties are equivalent.

(1) AC-TRS R is AC-terminating.

(2) There exists a weak AC-reduction pair
(2,>) with AC-deletion property such
that VI — r € R. | 2 r and Y{u,v) €
DP,-(R). u>wv.

(3) There exists a weak AC-reduction pair
(Z,>) such that VI — 7 € R. | > r and
V(u,v) € DP(RA%). u > v.

(4) There exists a weak AC-reduction pair
(2,>) with AC-marked condition and
AC-deletion property such that VI — r €
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R.1 > rand V{u*,v*) € DP#,(R). uv* >
v¥.

(5) There exists a weak AC-reduction pair
(>,>) with AC-marked condition such
that VI — r € R. | 2 r and V(u*,v¥) €
DP#(R4°). u* > v*.

Proof. For the cases (1 = 2) and (1 = 3), we
define > by ( — U~)*,and s >tbys # tand

R/AC AC ac
s > Clt] for some C. Then, it is easily shown
that (=,>) is a weak AC-reduction pair with
AC-deletion property such that | 2 r forall | —
r € R and u > v for all (u,v) € DP(R*°) 2
DP,o(R). For the cases (2 = 4) and (3 =
5), it is easily shown by identifying f* with f.
For the case (4 = 1), it is easily proved from
proposition 3.7. For the case (5 = 1), it is
easily proved from proposition 3.8. |

For a given AC-terminating AC-TRS, it is
still open whether there exists a weak AC-
reduction order satisfying one of the conditions
in proposition 3.10 or 3.11. On the other hand,
the above theorem guarantees the existence of
a weak AC-reduction pair.

4. Argument Filtering Method

The original idea of the argument filtering
method for TRSs without AC-function symbols
was first proposed by Arts and Giesi?»19). In
this section, we extend the idea to AC-TRSs.
Our extension designs a weak AC-reduction or-
der and a weak AC-reduction pair from an ar-
bitrary AC-reduction order. Moreover, we im-
prove the method in two directions. One is
the lexicographic argument filtering method,
which lexicographically combines argument fil-
tering functions to compare AC-dependency
pairs. Another one is an extension on AC-
multisets. These methods offer useful means
to prove AC-termination of complicated AC-
TRSs.

4.1 Argument Filtering Method

Definition 4.1 An argument filtering func-
tion is a function 7 such that for any f € X,
m(f) is either an integer i or a list of inte-
gers [i1,...,4m) (m > 0), where those integers
i,91,...,4m are positive and at most arity(f).
We can naturally extend 7 over terms as fol-
lows:
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m(z) =z
(f(te, ... tn)) =n(ts) if w(f) =1
W(f(tla s fn)) = f(w(th): X W(tim))
if 7(f) = [i1,- - bm]

We denote by 7(6) the substitution defined as
7(9)(z) = w(6(z)) for all z € V.

We hereafter assume that if 7(f) is not de-
fined explicitly then it is intended to be

[1,...,arity(f)].

Definition 4.2 An argument filtering func-
tion 7 satisfies the AC-condition if for all f €
$#., w(f) is either [] or [1,2].

The above restriction is essential in AC-
TRSs, because it guarantees that the image
of the associative and commutative axioms for
f € S, are either f = f or themselves. We
define AC-function symbols after argument fil-
tering by Sf,, = {f € Ste | 7(f) = [1,2}.
We also write by ~ the AC-equation generated

by 2% .. The‘n,Aict follows that s:‘vct implies
7(s) ;‘\C/:ﬂ’(t).

Definition 4.3 We define the AC-extension

> .o of astrict order > by 2, = (>U~)"

~ac Ac
We define s =54 t by s Zac Clt] for some C,
and Z 5% by its strict part.
Let > be an AC-reduction order. Then 25¢
is a quasi-order and the strict part Zac of its
AC-extension 2, is also AC-reduction order.

Lemma 4.4 If a strict order > is AC-
compatible then Z,. = >7 e~
C

Proof. It is trivial. O

Lemma 4.5 Let > be an AC-reduction or-
der. Then 232 is well-founded.

Proof. We assume that there exists an infinite
decreasing sequence to 2532 t1 2ae t2 Zae *
Then, there exist C; (¢ = 1,2,...) such that
ti Zac Cirilti+1]. Here, Zac has the mono-

tonicity, because > and ~ have the monotonic-

AC
ity. Thus, to 2 ac Cl[tl} ZAC 01[02[t2H“'~

~

From the well-foundedness of > and lemma 4.4,
there is some k such that Cy[t] /:‘ccllcﬂ{tkﬂl

~ Cipoltksa] -+ where cl = Cil---Cif] - -
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Since ~ preserves the size of terms, there is
C

some m such that Cp,, = [0 Hence, it fol-
lows that #,_1 ~ t,,. It is a contradiction to
AC

tm—1 i”b tm.- 0

Definition 4.6 Let > be a strict order and
7 an argument filtering function. We define
s Zp t by m(s) Z,c (), and s >, t by
m(s) Zae w(t).

Lemma 4.7 Let > be an AC-reduction or-
der. Then the following properties hold:
e 52, t &> 7(s) >:-~7r(t)
© SZ tALZ, s &= T s)ANTr(t)
© s>,1 <> 3C. 7(s) > - ;;C{?T(t)]
IC £0. (s );;C[vr(t)}

Proof. It suffices to show implications from left
to right.

The first property is a direct consequence of
lemma 4.4.

Let s 2, t At 2, s. From lemma 4.4,
w(s) >= ”;‘c’,ﬂ'(t) > o~ 7r(s) If 7(s) 7671'( )
then 7(s) > -A~c7r(s). It is a contradiction to

the well-foundedness of >. Hence the second

property holds.
Let s >, ¢t

From lemma 4.4, n(s)

Then 7(s) Zac Clm(¢)].
>= ';vCC{ﬂ(t)}. Hence,
W(s)A«CIC[ﬁ(t)] or m(s) > -;:C[W(t)]. In the
former case, if C = O then n(s) ~ m(t). It is a

C
contradiction to 7(s) 2% w(¢). Hence C % [I.
Therefore the third property holds. o

Lemma 4.8 7(0)(7(t)) = =(t0)

Proof. We prove the claim by induction on
t. The case t € V is trivial. Suppose that
t = f(t1,...,tn). In the case w(f) = j, it fol-
lows that w(O)(m(f(t1,...,tn))) = w(0)(7(t;))

= 7(t;0) = 7(f(t1,...,tn)0). In the case
7(f) = [i1,. .., %m], the following relation holds;
O (f(ts, ... t)))

=m(O)(f(r(ts,), ..., 7(ti,,)))

= f(m(0)(w(t:,)), . .., w(O)(m(ti,.)))

= f(”r(til 9)7 77r(t'im9))

=7(f(t10,...,t,0))

= W(f(tl, cey tn)e) 0

Theorem 4.9 If > is an AC-reduction or-

Jun. 2000

der and 7 is an argument ﬁltermg function with
AC-condition then ( 2, ,>.) is a weak AC-
reduction pair with AC-deletion property.

Proof.

e (The AC-compatibility of 2_): It is a
direct consequence of the first property of
lemma 4.7.

¢ (The monotonicity of 2. ): Let s 2 t.

In the case that [0 does not occur

in w(C), it follows that =(Cls]) =
m(C) = 7(C[t])). Thus, Cls] 2, CIt
- holds. In the other case, it follows that

(8) Zac 7(t) = 7(C)[7 ()] Za 7(C)[m(2)]
= m(C[s]) 2 4c 7(C[t]). Thus, C[s] 2. C[t]
holds.

o (The stability of 2. ): From lemma 4.8,

8§ 2 b= m(8) Zao m(t) = 7(0)(n(s)) Zue

m(0)(m(t)) = 7(s0) 2, 7(t) = 56 2 th.

o (The stability of >,): Thanks to lem-

mas 4.7 and 4.8, if 7(s )gC[W(t)] then

ﬂ(SQ)/:vCC”[ﬂ(tG)} is trivial, where C'/ =

m(8)(C). Suppose that 7(s) > -%C[w(t)].
5>rt=7(s) > -;;C[?l’(t)]

= m(0)(m(s)) > - ~ 7(0)(Clr(t)])

= m(0)(n(s)) > - ~ C'[m(0)(n(t))]

where C' = 7(8)(C)
= 7(s6) > -;ch’[W(tQ)}

= 38 >, t0

e (The well-foundedness of >,): Assuming
that the existence of an infinite decreasing
sequence to >, t1 >x to >, ---, it follows
m(to) Za m(ta) 23 w(te) 2o o Tt is
contradiction to lemma, 4.5.

® (Zp - >xC>y): Let to 2, t1 >x to
From lemma 4.7, either n(ty) >= -~
AC

w(t1) > -~ Clr(ta)] or w(ty) >= -~

AC AC
'/T(Zf]_);éC[ﬂ'(lfg)] A C # 0O holds. In the
-~ C[ (t2)] from the
AC-compatibility and the transitivity of

>. Thus, it follows that tqg >, ty from
lemma 4.7. In the latter case, m(tg) >=
-ANCC[W(tg)] and C # . Thus, it follows
that tg >, ty from lemma 4.7.

e (The AC-deletion property): Suppose that

former case, 7 (tg) >

fe e Un(f) =] then w(f(f(z,y), 2))
=f= ﬂ(f(x, y)). Hence, it follows that
f((2y),2) 20 flzy). I a(f) = [1,2]

then ©(f(/(z,9),2)) = F(f(x,9),2) =
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Clr(f(z,y))] for C = f(O,2). Hence, it
follows that f(f(z,y),2) > f(z,y). O

In order to show the usefulness of the argument
filtering method, we prove the AC-termination
of AC-TRSs to which traditional techniques
cannot be applied.

Example 4.10 As an AC-reduction order
>, we use the order >/**. We also suppose that
for any AC-symbols f , f# is identified to f or

#(f*) = []. Hence, Z, trivially satisfies the
AC-marked condition. The AC-termination of
each R, is proved by using theorem 3.13 (4 = 1)
and theorem 4.9.

e Consider the following AC-TRS R; with

Eﬁc {g}-
—{HUG) — felf@), @)
DP (Rl =

)
{ {7 (7)), 1#(2))
(f*(f(2)), F#(9(f(2), f(2))))
Let m(g) = [} and fr>g. Then, I 2
for all | — r € Ry, and u* >, v* for all
(u#,v*) € DP#,(R1). Therefore R; is AC-

terminating.
e Consider the following AC-TRS Ry with

St = {h}.

U fG@) — flele)
R?‘{ g@) — h(f=), f(z))
F*(F(2)), F*(9(2))
DPE(Ry) =4 (f*(F@)), 9*(x))
(g% (2), # ()

Let 7r(h) I, f>g>hand fo>g* > f*
Then, [ 2, 7 for all | — r € Ry, and u* >,
v* for all (u*,v*).€ DP¥.(Rsy). Therefore
Ry is AC-terminating.
e Consider the following AC-TRS Rz with
c=19,h,h*}.

{ fla) — f(b)
b — g(h(a,a),a)
hMz,z) — =

, L

P
I

h#*(h*(z,z), 2), h*(x, 2))
Let 7(g) = [}, b* >a>b>gand f*>0%>h7%.
Then, [ 2 r for all | — r € Ry, and u* >
v# for all (u#,vﬂ € DP?#_(Rs3). Therefore
Rs is AC-terminating.

e Consider the following AC-TRS R4 with
%, = 1, f*,h}.
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n [ fex) = fb2)
4 b — h(a,a)
DP}.(Rs) =
#

(f*(a,z), f#(b, z))
f*(a, z),0%)
(F#(f% (@, @), 2), F#(F#(b.2), 2))

Let w(h) =[], a> b> h and a > b*. Then,
12, rforall—ré& Ry, and u* >, v* for
all (u*,v*) € DP%,(Ry). Therefore Ry is
AC-terminating.

As in the proof of theorem 4.9, it can be
proved that Z, is a weak AC-reduction or-
der for any given AC-reduction order >. For
designing a weak AC-reduction order, the ar-
gument filtering method is essentially a special
form of recursive program schema (RPS). In-
deed, Marché and Urbain proved a similar re-
sult in a general framework of AC-RPS'.

4.2 Lexicographic Argument Filtering
Method

By combining several argument filtering func-
tions, we can strengthen the power of the ar-
gument filtering method. In this subsection,
we propose the lexicographic argument filter-
ing method, which lexicographically combines
argument filtering functions to compare AC-
dependency pairs. The method presented here
offers useful means to prove AC-termination of
complicated AC-TRSs on which a single argu-
ment filtering function does not work.

In this subsection, we suppose that f* is iden-
tified to f or w(f#*) =[] for any AC-symbol f.
This restriction guarantees the AC-marked con-
dition of 2. and m((¢t0)*) = w(t*#) if ¢ is not
a variable. The same restriction was supposed
in example 4.10, because theorem 3.13 requests
the AC-marked condition.

Theorem 4.11 Let R be an AC-TRS, >
an AC-reduction order and 7 an argument fil-
tering function with AC-condition. Suppose
that VI — r € R. | 2, r and Y{u*v*) €
DP#.(R). u* 2, v* V u* >;v*. Then, R
is not AC—terminating if and only if there exist
(u¥,v¥) € DP¥_(R) (i =0,1,2,...) and a sub-
Smtumon 8, such that Vi. (v 9)# - > na(uir10)*
and {m(ud), n(ud), m(ut), n(v}),...} is AC
unifiable by m(0).

Proof. (<) It is trivial from proposition 3.7.
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(=) From proposition 3.7, there exist (u,v})
€ DPj.(R) (i =0,1,2,...) and a substitution
# such that Vi. (v19)#—;>2hd(ui+19)#. From

the assumption and the marked condition,
Vi, (wif)* 2, (v:0)* V (wi0)* >. (v;0)*. From
the assumption and the AC-deletion property,
Vi. (’1)2'9)# ,z,,r (ui+19)# \% (’1}16)# >n (’U;i_,_lg)#.
From the well-foundedness and lemma 4.7,
there is some number % such that all 7((u;0)*)
and 7((v;0)*) (¢ > k) are AC-equivalent. The
assumption f = f* or 7w(f*) = [] for any AC-
symbol f yields AC-equivalence among m(u¥6)
and w(v}) for all 4 > k. From lemma 4.8,
all w(uf)m(0) and w(v¥)m(d) (i > k) are AC-
equivalent.- Therefore, {m(uf), 7(v}), (uj,,),
7(Vj 1), - ..} is AC-unifiable by 7(6).

The following theorem gives a sufficient con-
dition under which the lexicographic argument
filtering method works well. In order to sim-
plify the discussion, we treat only two argument
filtering functions, though the following discus-
sion can be easily extended to the finite number
of argument filtering functions.

Theorem 4.12 Let R be an AC-TRS. If
there exist AC-reduction orders >! and >2 and
argument filtering functions 7; and my with AC-
condition such that

1 2
e [Z, rANILZ, T

forall | —r¢c R,

o u* i,lrl v vur >Loo#
for all (u*,v*) € DP#¥ (R), and
o u* >2 v*  forall (u* v*) € DP¥ (R)
such that mi(u*) and m (v*) are AC-
unifiable,
then R is AC-terminating.

Proof. We assume that R is not AC-
terminating. From theorem 4.11, there exist
(uf,v?) € DP#.(R) (i=0,1,2,...) and a sub-
stitution @, such that Vi. (v;0)* —;—> > a(ti4.10)*
and {m(uf), 71 (vg), mi(uf), m1 (v}), .. .} is AC-
unifiable. From | i; rforalll — r € R
and AC-deletion property of ( i; ,>2), it fol-
lows that (v;0)* i; (ui10)* or (uf)* >2,
(ui+10)* for any i. From u* >2_ o# for
all (u*,v*) € DP#.(R) such that m(u*)
and 71 (v*) are AC-unifiable, it follows that
(uif)* >2, (v;0)* for any i. It is a contradic-
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tion to the well-foundedness of >2 . i

In order to show the usefulness of the lexi-
cographic argument filtering method, we prove
the AC-termination of an AC-TRS to which not
only traditional techniques but also single argu-
ment filtering function cannot be applied.

Example 4.13 As an AC-reduction order
>, we use the order >/>*. Consider the follow-
ing AC-TRS Rs with ©%_ = {g, g% }.

f(z,0) — s(0)
Rs =< f(s(z),s(y)) — s(f(zy))
9(0,z) — g(f(z,z),2)
DPfC(R5):
f#(S(m),s;y))

Let m1(s) = m1(
f*>!s. Then, { i,lrl r for all | — » € R,
and w* 2. v* or u* >1 o* for all (u* v*) €
DP}.(Rs). Let ma(g) = ma(g9*) = [ and
f2%s Then | ijrz rforall |l - r € Rs and
J#(s(x),s(y)) >2 f#(z,y), which is an only
AC-unifiable AC-dependency pair after argu-
ment filtering by 7. From theorem 4.12, Rj

is AC-terminating.

It should be mentioned that traditional proof
techniques by simplification orders cannot be
directly applied to Rs even if there exist no AC-
function symbols, i.e., ¥, = 0. However, the
above lexicographic argument filtering method
also proves termination of TRS Rj.

Corollary 4.14 Let R be an AC-TRS. If
for any i = 1,2,...,n there exist AC-reduction
orders >' and argument filtering functions m;
with AC-condition such that

® li;ir for alli and [ — r € R,

o w* 2yt v oyt >ov* for all ¢ and
(u*,v*) € DP¥,(R) such that for any j <
i, mj(u*) and 7;(v*) are AC-unifiable,

o u* >r w* forall (u”,v*) € DP%(R)
such that for all j < n, m;(u*) and 7;(v*)
are AC-unifiable,

then R is AC-terminating.
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4.3 Extension by AC-Multisets

In this subsection, we design a new argu-
ment filtering method by using AC-multisets.
We first explain the notions of AC-multiset and
AC-multiset extension.

A multiset is a set of terms in which el-
ements may have multiple occurrences. We
use standard set notation like {s,s,t}. For
any multiset M = {t1,t3,...,tn}, We define
the AC-multiset M. = {[t1], [t2], - - ., [tnl},
where [t;] is the equivalence class of ¢; mod-
wo ~. We define 8 =40 T by Sic =

AC
TAC For eX&mple? {f(07 1)7 f(f(oa 1)7 2)} ~ac
{f(l 0), (0, f(1,2))} for AC-symbol f. Let
> be a quasi-order whose equivalence part is
equal to o~ We define its AC-multiset exten-

sion > byS>>T1ﬁ'V[[]] € Thae — Sac- EIM €
Sac — Tac. s 7 t. Note ’chat for any s’ € [s]
and ¢’ € [t], s > t implies s’  t', because the
equivalence part of the qua51-order > is equal

to ~.
AC

Proposition 4.15 9) For any quasi-order 2
whose equivalence part is equal to ~ its AC-

multiset extension > is a quasi-order. More-
over, if the strict part of 2 is well-founded then
so is the strict part of >.

An argument filtering function 7 cannot
preserve the AC-equivalence (i.e., s~t =
AC

7(s) ~ w(t)) without the AC-condition. Hence,
AC

we cannot treat an argument filtering function
x if 7(f) = 1 or w(f) = 2 for some f €
Yac, because w(f(z,y)) = w(f(y,z)) makes
z =y or y = z for the axiom of commutative
law f(z,y) =c f(y,z). This problem can be
avoided by defining #(f(z,y)) = {z,y}. In this
subsection, in order to treat such m, we intro-
duce the extension 7 of argument filtering func-
tion 7 over multisets by permitting 7(f) = 0 as
an exception for any f € X*.

Definition 4.16 We define the argument
filtering function # from terms to multisets as
follows:

t(z) = {z}
#(f(E) = #(t;) i w(f) =7 (F#0)
#(f(&)) = Vst (ts) i w(f) =0
®(F(E)) = {f(¥,) | 11, € #(t:,)}
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if ©(f) =1[i1,...,0m]
We also define the substitution 7#(6) from terms
to multisets as follows:

#(0)(2) = #(6(2))
FO)(FE)) = {FE) £ € 7(O)(t)}

We extend #(#) over multisets as follows:
#ONT)={t|t' €T, ter(O))}

For example, let w(f) = 0 and 6(z) =
f(a,b). Then, it follows that #(f(a,b)) =
{a,b} and #(8)(g(z, ) = 7(g(f(a,b), f(a,b)))
= {g(a,a),g(a, b), (b, ), g(b, 0) }.

Lemma 4.17 s~ t= #(8) =4c (1)
Proof. See Appendix A.1. |
Lemma 4.18 #(6)(#(t)) = 7(t0)
Proof. See Appendix A.2. O

Definition 4.19 Let > be an AC-reduction
order. We define >, by the AC-multiset ex-
tension of Z4c, >32 by the AC-multiset ex-
tension of Z:‘C”, and >>j;‘c” by the strict part of
250

Note that for any AC-reduction order > both
the equivalence parts of 2 4c and 234 are equal

to ~ and both the equivalence parts of >,
and > are equal t0 =4c.

Definition 4.20 We define s 2™ ¢t by
#(s) >, C#(t), and s >T¥ t by 7(s) >32
s

).

Theorem 4.21 If > is an AC-reduction or-
der and 7 is an argument filtering function with
AC-condition then (7w, >mul) satisfies the
conditions of the weak AC-reduction pair ex-
cept for the stability.

Proof.
e (The AC-compatibility of 27):
Let s ~ 1 From lemma 4.17, #(s) =ac 7(t).

Hence 1’0 follows that s =74 ¢,

e (The monotonicity of >m“l)
Let s 2™ t. We prove the claim by induc-
tion on C. It suffices to show the case C =
f(.. tic1, 0 tie1, .. ). Inthe casen(f) = j (#
0), if j # i then #(C[s]) >, #(CIt]) is trivial,
otherwise #(C[s]) = #(s) >, #(t) = #(C[t]).
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In the case 7r(f) =0, 7(C[s]) = U,z #1(t:)Uit(s)
2,0 Ui 7(ti) UA(t) = #(C[t]). In the case
7(f) = [t1, ..., im], if © & w(f) then it is trivial.
Suppose that ¢ € [i1,...,im] = 7(f). We de-
note 7(C) = {Cl,.. C’p} (8) = {31,..., 8}
and 7(t) = {tl, . } Then it is obvious that
#(Cls) = {Gilsj] [1<i<p 1<j<q
and 7(C[t]) = {C’z[tj} |1 <4 <p 1<
Jj < r}. For any i, from {1, ., 8} >0
{t},.. tr} it follows that {Cils1],. Ci[sq]}

> .. {Gilt1], ..., Ciltr]}, because both ~ and
°>° ac (= > Z;) have the monotonicity. Hence
it follows that #(C[s]) >, . #(C[t]).

e (The well-foundedness of >m4!):
From lemma 4.5, 23 is well-founded. Hence,
> s Well—founded by proposition 4.15.
Therefore, >™% is well-founded.

(>mul >mulg>mu1)
Let 7(to) >, #(t1) >3 #(t2). In the case
7(to) =ac *(t1) it is trivial that #(to) >
#(t2). Suppose that 7(to) #ac #(¢t1). From
ZacCzae, it follows that #(tg) >3 7(ty).
Since >0 is transitive by proposition 4.15, it
follows that @ (tg) >4 7 (ts). 0

Unfortunately, both >™% and >™* are not
stable. For example, let s = h(z), t = g(z, ),
7r(f) = 0and 0 = {2 = f(y,2)}. Us-
ing the order >{fl‘ff with the precedence h > g
as an AC- reductlon order, we trivially obtain

s >mul ¢ However, since 77(59) = {h(y), h(2)}
and 7(t0) = {9(v,9), 9(y, 2), 9(2,v), 9(z, 2)}, it
follows that s6 #™ul 9. Hence, we need a suit-
able restriction to assure the stablhty of Zmul
and >7v,

On the other hand, in general, for any ¢, ¢
#(t) and 0, we have

#(6)(d) 2 {#01, ..., 16,
for 61, ...,0, such that Vo € Var(t). z6;#(x0)
and Vz € Var(s). 6, = z. Moreover, if ¢ is
linear then the equlvalence holds, i.e.,

#(6)(E) = {01, ..., 80 }.
In the previous example letting § = h(z) €
#(s) and t = gz, x) € 7(t), it follows that

w(0)(8) = {591,302} and #(6)(¢) D {£0,, 162}
where 01 = {z =y} and 6y = {z := z}. Using
this fact we prove the following lemma.

Lemma 4.22 Let s and ¢ be terms such
that ¢ is linear for all [f] € #(t)sc — #(8)ac
Then s >m¥ t = 50 > ¢§ and s >mul ¢ =
50 >m"l 0.
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Proof.  (27u): It suffices to show that
7(6)(8) >, o Uit (0) (%) for any [3] € #(8)ac —
F(t) ac and [[tl]] € T(t)ac — 7(8)ac (1 <i <n)
such that 8 2 .c t;. We suppose {01,...,6m}
constructed by each substitution §; satisfying
VeeVar(s). 26; € #(20) and Yz gVar(s). z6; =
z. Then the following inclusion holds:
#(0)(8) 2 {36; | 1 < j <m}.

We suppose {6,...,60% } constructed by each
substitution 6? satlsfylng Vz € Var(t).z0)

#(z0) and Ve ¢ Var(t;).z0; = z. From the
hneamty of £; the following equation holds:

(9)@1) = {ttez [1<j<m}
Since § Zac t;, it follows that Var(s) 2
Var(t;). Thus, {6%,...,65,.} C {01,...,6m}.
Hence, the following inclusion holds:

U (0)(6:) € {£:8; |1 <i<m, 1<j<m}
From the stability of Z.., it follows that
80 Zac t9 for any j. Therefore, it follows
that 77(0)(§) 2,0 180 |1 <j < m} >,
{tib; |1<i<n, 1<j<m}>, Uﬂr(g)(tl)

(>m“‘) It suffices to show that 7(60)(8) >4
Ui (0)(t:) for any [§] € #(s)ac — ﬁ(t)Ac and
ﬂt}]} € @(t)ac — 7(8)ac such that § Z5u .
Thanks to the stability of 25+, as similar to
the proof for ™%, it fol lows that 7 7(0)(3) >sub

O

Wit (0)(4:).
Lemma 4.23 D4 C Zmul y smul,

Proof. Let s >p4t. From the definition, there
is a context C such that 8~ Cltlp and (C)4 =
C

(t)e € %, for all ¢ < p. In the case C = [J,
7(s) =ac #(t) by lemma 4.17. Thus s >mut ¢,
Suppose that C # [I. From the definition, there
is some term t’ and AC-symbol f such that
s ~ C[t] ;lvcf(t’,t) and f = (t) = (C).. From
lemma 4.17, #(s) =.c #(f(¢,t)). If 7(f) =[]
then #(f(t',t)) = {f} = #(t). Hence, it follows
that f(t’,t) Zmul ¢ 1f w(f) = [1,2] then #(s)
=Zac T(f(',1)) = {f(v,v) | v € 7(¥), v €

#(t)} >3ub {v | v e 7r(t)} = #(t). Hence, it
follows that s >mul ¢ If w(f) = 0 then #(s)
=ac 7(f(t, 1)) = fr(t’)ufr(t) > o T(t). Hence,

it follows that s >m% ¢, O

Theorem 4.24 Let R be an AC-TRS. If
there exists an AC-reduction order > and an
argument filtering function 7 with the AC-
condition such that

o [* is identified to f or 7(f#) =[]

for all AC-symbols f,

o 7 is linear
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foralll — r € Rand [f] € #(r)ac —7({) ac,
o [ 2muly for all [ —r <R, and
o u* >Muly# forall (u*,v*) € DPY.(R),
then R is AC-terminating.

Proof. Same as the proof of the case (4 = 1) in
theorem 3.13, use of theorem 4.21 and lemmas
4.22 and 4.23. ]

Note that in similar to the proof of theo-
rem 4.21, it can be proved that for any given
AC-reduction order >, >™* is a weak AC-
reduction order except for the stability. Un-
der the condition of lemma 4.22, the strict part
>m“l of >2™u is stable.

In order to show the usefulness of AC-
multiset extension, we prove the AC-termination
of an AC-TRS to which not only traditional
techniques but also single argument filtering
function and lexicographic argument filtering
method cannot be applied.

Example 4.25 As an AC-reduction order
>, we use the order >/!2*. Consider the follow-
ing AC-TRS Rg with Z)AC = {f}.

g(0, flz,z)) — =z
Rg = 9(z,s(y)) — 9(f(2,9),0)
g(s(z),y) — g(f(z,9),0)
g(f(z,1),0) — f(g(2,0),9(y,0))
DP#.(Re) =
(g% (z, s(y)), g% (f(=,y),0))
(9% (s(z),y), 9% (f(2,9),0))
(g*(f(z,v),0), g%(z,0))
(g*(f(z,9),0),9%*(y,0))

Let n(f) = 0 and s > 0. Then, | Zm¥ r

{(u*,v*) € DP¥.(Rg). From theorem 4.24, Rs
is AC-terminating.

Note that the above argument filtering
method by AC-multisets also proves termina-
tion of TRS Rg without AC-function symbols,
ie., Yuc = 0.

5. Distribution Elimination

Transformation methods, which transform a
given TRS into a TRS whose termination is
easier to prove than the original one, have
been proposed. Most famous methods are so-
called elimination methods. In 12), we showed
that the argument filtering method combined
with dependency pair technique gives a uni-
form framework why various elimination meth-
ods work well; however, the only exception was
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the distribution elimination transformation. In
this section, using AC-multiset extension of the
argument filtering method, we analyze the dis-
tribution elimination transformation.

Definition 5.1 (Distribution Elimination)
Let e be a symbol, called eliminated symbol.
A rule | — r is a distribution rule for e if [ =
Cle(zi,...,2,)] and r = e(Clzi],...,Clza])
for some non-empty context C' in which e
does not occur and pairwise different vari-
ables z1,...,2,. The distribution elimination
(DIS.) is defined as follows:

E, (t) =
{t} i teV
U, Ee(t:) if t=elty,... tn)
{F(s1,..,8 )IszEE(z ¥
if t=f(t1,...,tn) with f#e
DIS.(R) = {l—>r|l—-+r€Rlsnota
distribution rule for e, ' € E(r)}

For example, let ¢t = (0, g(1,e(2,3))), then
E.(t) = {0, g(1,2), 9(1,3)}.

Proposition 5.2 7 Suppose that each rule
| — r € R is a distribution rule or a rule in
which the eliminated symbol e does not occur-
nl. If DIS.(R) is terminating and right-linear
then R is terminating.

Here, DIS.(R) is right-linear means that r is
a linear term for any [ — r € DIS.(R).

Moreover, this result was extended to AC-
TRSs.

Proposition 5.3 '% Suppose that each rule
I — r € R is a distribution rule or a rule in
which the eliminated symbol e does not occur
inl. If DIS,(R) is terminating, right-linear and
e is only AC-symbol (i.e. T.c = {e}) then R is
AC-terminating.

Finally, we prove the following theorem that
includes propositions 5.2 and 5.3 as special
cases, i.e., Lac = 0 and .o = {e}, respec-
tively.

Theorem 5.4 Suppose that each rule | —
r € R is a distribution rule or a rule in which
the eliminated symbol e does not occur in I.
If DIS.(R) is AC-terminating and right-linear
then R is AC-terminating.

Proof. Let Rp be the AC-TRS constructed by
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all distribution rules in R, and Ry = R\Rp.
Let > be — — . Since DIS.(R) is AC-
DISe(R)/AC

terminating, > is an AC-reduction order. We
denote D Py dependency pairs constructed from
Ry, DP§* extended dependency pairs con-
structed from Ry, DPp dependency pairs con-
structed from Rp, and DP§* extended depen-
dency pairs constructed from Rp.

e arity(e) = 1: We choose 7(e) = 1.

It is trivial that 7(Ro) = DIS.(R) and w(l) =
7(r) for all { — r € Rp. Thus, if R is not AC-
terminating then there exists an infinite reduc-
tion £ - to = t3 R—> . However, Rp is triv-

ially AC termmatmg It is a contradiction.
e arity(e) > 1: We choose m(e) = 0.

First, we investigate non distribution rules.
It is obvious that #(l) = {I} and | — »' €
DIS¢(R) for any | — r € Rg and r' € 7(r).
Thus, | 2™ r and | >™“ ¢ for any rule
[l - r € Rg. It follows that s;nf implies

0
s 2mul ¢ because 2™ is monotonic and sta-
ble by the right-linearity of DIS,(R). More-
over, it follows that uf >™% vf for all § and
(u,v) € DP§*.

On the other hand, it is obvious that for any
(u,v) € DPy and v’ € #(v), #(u) = {u} and
u — CP'] € DIS:(R) for some C. Thus,
u >4y for any (u,v) € DPy. Since DIS,(R)
is right-linear, it follows that u§ >™% v for all
6 and (u,v) € DP,.

Next, we focus on the distribution rules.
For any distribution rule Cle(zi,...,2z,)] —

e(c[.’lfl} [xn]) € RD7 ﬁ-(c[e(mhaxn)])
= (Clzi),....Clenl} =H(e(Cla, .., Clzal)).
Thus, s——>t 1mphes s zmul ¢ Moreover,

fl:2)0 2 >mul f(r,2)0 for any (f(l,2), f(r,2))

€ DPF and 6. The dependency pair in
DPp can be denoted by (Cle(z1,...,2p)],v)
such that C'[v] = Clz;] for some i and C'.
Since 7(Cle(z1,...,2n)]) = {Clz1], ..., Clza]}
>4 {Clzi} = {C'v]}, it follows that

Cle(z1,...,2,)]0 >™% v for any 6.

Finally, we prove this theorem based on
the above properties. Assume that R
is not AC-terminating. From proposition
3.7, there exists an infinite AC-dependency
chain (uf,v¥)(uf,v¥) -+ and 6 such that
(v,-@)#—;»tf >0 (u410)* for some t; (i =
1,2,...).
to f ;0 _Z t; >

By supposing that f# is identified
B>, u; 160 for all i. We have
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already proved that v;6 277{“” ti, u; >mu
v;f for all (us,v;) € DPE, and wu;f >"“‘l
vif for all (us,v;) € DPic(R)\DPE From
lemma 4.23 and ZT“C>mul it follows that
t'i;éui—}—lg or t; >,rm“l u;+10. Hence there ex-
ists a number m such that (u;,v;) € DPE for
all ¢ > m. Moreover, there exists an infinite
AC-reduction sequence f(lg, 20)8 = f(ro,z0)0
D

’* S, z1) - f(?“1,21)9

RD (i =0, 1, ...). However, Rp is trivially AC-
terminating. It is a contradiction. O

- for some l; — r; €
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Appendix
A.1 Proof of lemma 4.17

Lemma 4.17 s~ t= #(8) =ac 7(t)

Proof. We prove the claim by induction on s.
The case s = z € V is trivial, becauset =z = s
by s~ 1. Suppose that s = f(s1,...,n). Be-
cause. of s ;;t’ the root symbol of ¢ is f. Thus
we denote t = f(t1,...,tn). If si;éti for all 4
then 7 (s;) =ac #(t;) for all 4 by induction hy-
pothesis. Hence it follows that 7(s) =.c #(t).
On the other hand, since =, is an equiv-
alence relation, it suffices to show #(s) =.c
#(t) for the cases f € X.c and either s =
f(s1,82) At = f(sa,81) or s = f(f(511, 512), $2)
At = f(s11, f(s12,82)). We have the following
three cases.

o m(f)=0:
T(f(s1,82)) = #(s1) U7
A(F(f(s11,512), 82)) =
7?'(811) U7T(512) (82)
= #(f(s11, f(s12, 82)))-
o m(f) =1[:

(s2) = #(f(s2,81)), and
7’%( (8117 312)) UW(SQ) =
fi(s11) URt(f(s12,2))

#(f(s1,82)) = {f} = #(f(s2,51)), and
#(f(f(s11,512),82)) = {f

= 7(f(s11, f(s12, 52)))

o (f) =[1,2]:

7AT(f(Sl,82)) {f(51,82) | & € 7(s))} =ac
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{f(82,81) | & € 7(se)}
and 7(f(f(s11,512), 82)) =
7 (f(s11,512)), 82 € 7(s2)} =

| 811 € 7(s11), d12 € 7(s12),
=ac {f(311, f(312,82)) | 311 €
#(s12), 82 € #(s2)} = {f(811, 84) | 811 € 7(s11),

34 € A(f(s12,92))} = T(f(s11, f(512,82))). O
A.2 Proof of Lemma 4.18

Lemma 4.18 #(0)(7(t)) = 7(t)

Proof. We prove the claim by induction on t.
In the case t = z € V, #(0)(7(z)) = #(0 {a:}
= #(zf). Suppose that t = f(t1,...,tn).
have the following three cases.

m(f) =J (#0):
O (F(ft1, - tn))

(tl) U (tn))
~U(0)(7(tn))

U ﬁ(tn9)

f(t16,...,tn0))

f(tl, costn)f)

[z,...,zm].

1
( )(;f(f( t)
= (O)({f(t],) | tz, € #(t:;)})
={t"|t eT, t" er(O))}
where T" = {f(t]) | ti, € #(t:,)}
={t" | t;, € 7(ts;), t" € T"}
where 7" = {f(tﬁ) | ts,

= {f(t7) | £, € 7(ts,), ti, € R(O)E,)}

= {f(&]) |t €T"}
where
T" = {t;7 | t;, € 7(ts,), ti, € 7(0)(t3,)}
= {f(t”) |t € W(Q)(W(ti,))}
= {f(t”) |17 € 7 (t,0)}
= #(f(t:9, .. .,tne))
= #(f(t1, ... tn)0) O
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