
Developing an e-business Application (INTERNET BANKING) for the IBM WebSphere
Application Server using J2EE technologies

Dr. Katsuji Tsukamoto Kandasamy Kandavel
Kogakuin University Kogakuin University
1-24-2 NishiShinjuku,Shinjuku-ku 1-24-2 NishiShinjuku,Shinjuku-ku
Tokyo 163-8677, JAPAN Tokyo 163-8677, JAPAN
tsukamoto@tsukaken.jp KANDAVEL@jp.ibm.com

ABSTRACT:
This article explores the several Java 2 Enterprise Edition (J2EE) technologies adopted in developing
the web based e-business application called INTERNET BANKING for IBM WebSphere Application
Server. The implementation part demonstrates various approaches and elaborates the best approach
followed in developing the Internet Banking e-business application.

Keyword: Java 2 Enterprise Edition(J2EE), Enterprise Java Beans(EJB), Servlet, Java
ServerPage(JSP), HTML, IBM WebSphere Studio Application Developer(WSAD), IBM WebSphere
Application Server(WSAS), Visual Age for Java(VAJ), Internet Banking(IBANK), IBM DB2 Universal
Database(UDB), E-Business Application Framework(EBAF), Model-View-Controller(MVC), EJB
Universal Test Client (UTC)

I. INTRODUCTION:
The explosive growth of the World Wide Web
over the last few years continues unabated. The
Web has evolved from sites that serve static
HTML pages to a global arena for recreation,
information, collaboration, and business
transactions. This article explores the process of
developing an e-business application: Internet
Banking. The development process uses the Java
technologies: Java Beans, Enterprise Java Beans,
Servlets and Java Server Pages. The process of
building servlet-based systems is maturing.
Building system using JSP and servlet is a fairly
new way of building Web applications, and there
are several design and implementation
approaches. The article explores the best
approach selected in developing the Internet
Banking. The design approach is based on the
IBM Application Framework for e-business,
commonly referred to as EBAF, in which the
application development follows the
model-view-controller (MVC) design pattern.
The Model/View/Controller (MVC) paradigm
that is popular in object-oriented programs
contains the following application parts:

Model: Encapsulates all the business logic and
rules and does the business processing. This is
implemented either using Java Beans or EJB.
View: Takes the result of the business processing
and constructs the response that is presented to
the user. This is implemented using JSP.
Controller: The component that manages and
controls all the interaction between the model
and view and the flow of application. This is
implemented by using servlet that receives the
user request and passes all the input parameters
to the model in which the actual work is done.
Finally the JSP is called to return the output.

II. DEVELOPMENT ENVIRONMENT:
The development was carried out on Windows
platform using IBM software tools: IBM
WebSphere Studio Application Developer and
Visual Age for Java. IBM WSAD is compliant
with J2EE specification, equips to build and
deploy state-of-the-art server-side applications
meeting Servlets 2.2, JSP 1.1 and EJB 1.1
specifications. The deployment and publishing of
application was done by using IBM WebSphere

5－171

5T3B-4 情報処理学会第65回全国大会

Application Server. The persistent data store was
implemented by using IBM DB2 Universal
Database. The Java 2 Runtime Environment used
was JVM 1.3.1.

III. JAVA 2 PLATFORM ENTERPRISE
EDITION (J2EE):
An end-to-end technical platform that enables
developing, deploying and managing multi-tier
server-centric applications. Some of the main
J2EE components that were used for IBANK
development are Java servlets and JavaServer
Pages, Enterprise Java Beans, Java Remote
Method Invocation and RMI-IIOP, Java Naming
and Directory Interface (JNDI) and Java
Database Connectivity (JDBC).

IV. IBANK APPLICATION DESIGN AND
IMPLEMENTATION:
IBANK design process is based on the following
categories:
a) Application Requirements:
Customers can avail the following features of
IBANK system:
! List of all types of account (Savings Account,

Checking Account, Payee Account etc)
! Account wise current balance
! Account wise history for a period (History

gives account transaction detail)
! Transfer funds between accounts
! Pay bills from account
! Manage the list of payees for bill payment
! Change of login password
b) System Requirements:
IBANK implements the following systems:
! Web server with application server

integration to publish the IBANK application
! Digital certificate recognized by the client

browsers
For customers to access IBANK system, the
following are the pre-requisites -
! The login user ID & transaction ID with

initial password from IBANK
! An Internet browser that supports the Secure

Sockets Layer (SSL)
! Access to the Internet

c) Analysis Object Model:
The IBANK object model contains four main
objects: Bank, Customer, BankAccount, and
TransactionRecord. The Bank entity contains
many customers who operate one or more
accounts that may contain zero or more
transactions. The E-R diagram of IBANK model
is given as below:

Figure 1

d) Subsystem Design:
The IBANK consists of eight subsystems that are
listed as below:
! Application Manager: Initializes the bank

and provides session management with
logout function

! Login: Authenticates the user
! Account Information: Provides account

balance and history
! Pay bill: Enables the user to pay bills to

corporations (Payees)
! Payee Setup: Manages the user's list of

payees
! Transfer funds: Enables the user to transfer

money between bank accounts
e) Security Model:
The IBANK security design is considered as
below:
! Access to the web server is controlled

through password
! Web server serves application pages using

SSL protocol
! Two level password checking for user logon

and transaction authentication
f) Architecture and Design:
The architecture of IBANK is defined by the
scope of the project: to build an Internet Banking

5－172

Application using IBM tools that runs on the
IBM WebSphere Application Server. Three
major design goals that were considered are as
below:
Access to the business model: A domain firewall
layer to separate the web application from the
business model implementation. The domain
firewall is an API that abstracts the object model
for the client that is implemented using Java
interfaces.
Controlling the Interaction between the Client
and Server: Servlets are used as controller that
adds another layer to the application beyond JSP.
User Interface design: Implemented using JSP in
which the programming logic resides in view
beans that are created by the servlet and placed in
the HttpSession or the HttpRequest object. Bean
tags are used to request information from view
beans.
g) Error Handling:
The error handling is carried out in the following
ways:
User errors: If user enters an incorrect value, an
appropriate message is displayed either on a
separate page or the page on which the entry was
made.
Application Errors: If the application detects an
error, for example, the bank or account is not
available, the callErrorPage method is called that
sends the user to a generic error page and lists the
error.
h) Implementation:
The IBANK implementation consists of the
following subsystems:
! Business model:

The business logic is defined in the EJB model
in which both CMP entity bean and session
bean are used. The CMP entity beans are used
to embody permanent business data and
provide methods to manipulate that data. The
EJB to RDB mapping was done using
bottom-up approach. The entity bean access is
implemented in the following ways:

a) Using Access Beans to entity beans
The direct access to entity beans was not
considered mainly due to the impact on the

performance of the application and to avoid
EJB programming in the client side. Compared
to copy-helper and Java wrapper access bean
methods, the rowset access bean method that
contains all the characteristic of both
copy-helper and Java Wrapper was found
suitable for the finder method
(findAccountByCustID) that returns multiple
result beans. This gives very good performance
particularly when the result contains minimum
rows. The code that implements is as below:
try {
AccountAccessBeanTable acctrows = new
AccountAccessBeanTable();
AccountAccessBean acct = new
AccountAccessBean();

acctrows.setAccountAccessBean(acct.findAcc
ountByCustId(new CustomerKey(custId));

try {
for (int i=0; i < acctrows.numberOfRows();
i++){
acct = acctrows.getAccountAccessBean(i);
System.out.println("AccountNo: " +
acct.getAccountNo() +
" AccountType: " + acct.getAccountType() +
" AccountBalance: " +
acct.getAccountBalance());
}
} catch (IndexOutOfBoundsException e){
System.out.println("End of list");
} catch (Exception e){
e.printStackTrace();
}
}

b) Using Session Façade to entity beans
This approach is used to implement most of the
business logic. The entity beans are accessed
via a stateless session bean that caches the
home and provides access to all the properties
of the bean in a single method. The
performance is very good here, as the number
of the remote method calls is limited and all
the method calls between the façade bean and

5－173

情報処理学会第65回全国大会

the entity bean are made locally (through the
local pipes). Session beans are created to
access set of entity beans that are accessed in
one application. The stateless session bean
code sample is as below:

Object objHome =
initialContext.lookup("BankxactHome");
BankxactHome bankxactHome =
(BankxactHome)
javax.rmi.PortableRemoteObject.narrow(objH
ome, BankAccountHome.class);
Bankxact trans;
java.util.Enumeration enum =
bankxactHome.findTransByAccountId(new
AccountKey(accId));
while(enum.hasMoreElements()){
trans = (Bankxact)
javax.rmi.PortableRemoteObject.narrow
(enum.nextElement(),Bankxact.class);
// From trans object the data items such as
TransId, TransType, TransAmount...
}
! Access to business model (Domain firewall):

This layer wraps up and instantiate all the
available session beans using Java Interfaces
and classes. The approach makes the client
code simple by avoiding EJB programming
and code reuse. The layer provides access to
all the functionality of the bank
implementation as well as providing initial
finder methods to locate and instantiate bank
implementation.
! Web application (Servlet and JSP

implementation):
The client programming to access session
beans (through domain firewall) is coded using
servlets and the result is passed to JSP through
view beans. This approach separated the web
page presentation and generation logic and
avoids the JSP scriptlet coding.

V. TESTING:
Initially the bean testing was carried out using

EJB UTC plug-in test tool of WSAD in the order
of entity bean finder methods first followed by
the session bean methods to access entity beans.
This was followed with the testing of domain
firewall code and servlet. Finally, the complete
integration testing was done using the HTML
and JSP pages. As part of testing, performance
comparison between access bean and session
bean to entity bean was carried out to access bulk
transactions of a particular account of a customer.
Both methods yield the same performance.

VI. DEPLOYMENT:
The EJB development is packaged in one JAR
file (IBANKEJB.JAR) and the web development
is packaged in one WAR file
(IBANKWEB.WAR). Both EJB project and
WEB project were assembled in one single
Enterprise application project (IBANKEAR) that
was deployed successfully to Web Server and
Application Server for publishing and opening
the IBANK application for e-business.

VII. CONCLUDING REMARKS:
Both Access beans and Session beans give very
good performance especially when the unit of
work contains more transactions. Servelet based
controller is found to be better when compared to
JSP as view and controller code are logically
separated.

VIII. REFERENCES:
[1] IBM Redbooks: EJB Development with
Visual Age for Java for Web Sphere Application
Server
[2] IBM Redbooks: Design and Implement
Servlets, JSPs, and EJBs for IBM WebSphere
Application Server
[3] IBM Redbooks: Servlet and JSP
Programming with IBM WebSphere Studio and
VisualAge for Java
[4] IBM Redbooks: VisualAge for Java and
WebSphere Studio

5－174

