Vol. 43 No. SIG 3(PRO 14) goooooooooooooooo Mar. 2002

ugoog

godgoooboogdgd
gooubogbuogobogogongoon

0O o o ot o o o off

gooo0o0oooooboOooooOobooooboooooooooooooOOoOoOobOObOOOOO
gooboooo0oooobooooooooboOoOoOobooOOoOooOOoboOOOOOO0Ob0O0OO0O0DOO00O0
gooOoooboO0O0ooOoOoO0O0O0O0OO0OO0OOO00O0O0O000G0O0O0O0COO0O0OOO0OO0O0OO0O0OO0
goboo0oo0o0ooooooOoo0ooooO0oooOooooooboOoooooooooooooooon
go0ooooO0OoObO0O0O00o0o0000ooo0oooooooooooooOOOO0O00O0OO0ODbOO0O0
0o000boO00ooooo0o0o0oO0OO00b0O000000000000O0O00000000000O0
goboooooooooooOoooboOoOoooOoOooUoOoooOOOoOOOOoOobObOOoOooboOoooOoo
g00000ooooo0ooboooooooooooooOoO0o0O0O00O00OO00000oo0oOoDO0000o
o0oo0oo0o0oooooooooOo0oooO00o0ooOoO0Oo0oocO0oO0oooOo0oOoOOO0O0000n0
goboooooooOooooOooooooooobooboOoooOooOooOoOObOOoOoOObOOOoboDOO
pooooooooOooboOoObOO0OO0O0000oOobOOoOobooDObOOOO0OOOOOODOODOObODbD
ooo0oO0oo0ooO00boO00OoOoOOO0OOO0O00000C0O0O00O0O000COO000000O00O0
update-in-place 0 00 0000 000000000000 O0O0O0OO0O0O0O0O0O0OOOOCOOO
gooooopooooo

Interface-based Optimizing Compilation for
Concurrent Logic Programs

Nor1io KATot and KAZUNORI UEDATt

We present a bottom-up method of extracting those fragments of concurrent logic programs
that can be executed sequentially, and we also propose a framework of optimizing compila-
tion of concurrent logic programs that uses sequential intermediate code generated with the
method. Implementation-level optimization, as opposed to source-level optimization, is im-
portant for the compilation of fine-grained concurrent languages. To perform this, a compiler
of concurrent logic programs needs to generate object code specialized for a particular way
of execution of processes. As code specialization includes elimination of nondeterminacy on
parallel execution and local choices, it is not straightforward to justify resulting object code by
source-level analysis. To formalize such specialization, we introduce the notion of interfaces
of a concurrent process. An interface represents the property of a process that, assuming
a particular input, it can produce a particular output and then behave as another process.
We show how bottom-up analysis of sequentialization using interfaces allows us to extract se-
quential fragments of programs and simultaneously to generate sequential intermediate code
efficiently. We also demonstrate that optimization on the intermediate code can give us
systematic, intermediate-code-level justification of various optimization techniques including
update-in-place and tag elimination.

oboo0o130100220000

t0o0o0O00b00oo0ooooooo
Graduate School of Science and Engineering, Waseda
University
tt00000b00oo0oooooo
Department of Information Processing, Waseda Univer-

sity

89



