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Interface-based Optimizing Compilation for
Concurrent Logic Programs

Nor1io KATot and KAZUNORI UEDATt

We present a bottom-up method of extracting those fragments of concurrent logic programs
that can be executed sequentially, and we also propose a framework of optimizing compila-
tion of concurrent logic programs that uses sequential intermediate code generated with the
method. Implementation-level optimization, as opposed to source-level optimization, is im-
portant for the compilation of fine-grained concurrent languages. To perform this, a compiler
of concurrent logic programs needs to generate object code specialized for a particular way
of execution of processes. As code specialization includes elimination of nondeterminacy on
parallel execution and local choices, it is not straightforward to justify resulting object code by
source-level analysis. To formalize such specialization, we introduce the notion of interfaces
of a concurrent process. An interface represents the property of a process that, assuming
a particular input, it can produce a particular output and then behave as another process.
We show how bottom-up analysis of sequentialization using interfaces allows us to extract se-
quential fragments of programs and simultaneously to generate sequential intermediate code
efficiently. We also demonstrate that optimization on the intermediate code can give us
systematic, intermediate-code-level justification of various optimization techniques including
update-in-place and tag elimination.
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