Vol. 43 No. SIG 3(PRO 14) goooooooooooooooo Mar. 2002

ugoog

JavaOUOUOOOOODOOoOooooooooobooo
ooboooogon

O o o of o o ot omm mt

000000000 0000000O000000O00D0000000O00D0O000O0DDO
0o0o0oooO0o0oO0o0o0oOoO0ooO0o0oO00O0OO0O00O0O0O0OO0O0O0DODO0OOOOOOOODOO
poooooOoo0bO000000O00O0000000000D0000000000Doug Leal
FJTask O Cilk O work-stealingO OO0 0000 JavaOOOOO JavaOOOOOOOODOOOOO
000000000000o0o00 cikoo coooooooooooooooooooooooo
0o0o0oo0DoO00000oO00000000000000D000 FIJTaskOOODOOOOOODOO
po0oo0oooO0o0oOo0O0o00O00O0O0oO0oOoO0O0O00o0oO00o0ooO0oO00DOoOoO0ODoo
goooooooOooooO0oDO0o00o0oO0O0o0oOUO0oOU0OoOooUOoDoOoDOoOooOoooooO
O0FRJTaskO0OO0OOOOOO0DOOOODOOODOOOOOOODOOOOOOOOOOOOO
00o0o0oo0o0oooooo00o0o0oOo0DOo0Oo0O0o0oO0Oo0ooOO0oDOoOO0ODoDoo0
O Classic VMO OOOO JvMOOOOOOOOOOOOOOOOO

Problems of the Fine-grain Multithread Framework on Java

KENICHI NISHIKAWA,t KEN WAKITAT and MASATAKA SASSAT

Generally, fine-grain thread packages are capable to produce a huge number of threads and
mapping them to massively parallel processors. This feature releases the programmer from
management of thousands of processing units offered by the massively parallel machines.
Doug Lea’s FJTask package is a fine-grain multi-thread framework that implements the work-
stealing algorithm firstly implemented for the Cilk system. An advantage of FJTask package
in comparison with the previous work is the architectural independence from the underlying
platforms. However, the effectiveness in terms of actual execution efficiency is question-
able. The authors have measured the execution efficiency of the FJTask package through
a number of benchmark programs and identified some of the problems with the design and
implementation of FJTask. Most importantly, because each fine-grain thread is represented
by a heap-allocated object, massively parallel execution can incur enormous overhead to the
memory allocator and the garbage collector of the Java runtime system. The bottleneck of
FJTask is examined in detail and an alternative implementation is proposed. In the proposed
implementation dead objects are found and reused so that most of the memory management
overhead are eliminated. Our proposal is compared with the Lea’s original proposal on a
variety of platforms.

oob01Bo702roooOO

t000000000000000000
Department of Mathematical and Computer Sciences,
Tokyo Institute of Technology

84



