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Problems of the Fine-grain Multithread Framework on Java

KENICHI NISHIKAWA,t KEN WAKITAT and MASATAKA SASSAT

Generally, fine-grain thread packages are capable to produce a huge number of threads and
mapping them to massively parallel processors. This feature releases the programmer from
management of thousands of processing units offered by the massively parallel machines.
Doug Lea’s FJTask package is a fine-grain multi-thread framework that implements the work-
stealing algorithm firstly implemented for the Cilk system. An advantage of FJTask package
in comparison with the previous work is the architectural independence from the underlying
platforms. However, the effectiveness in terms of actual execution efficiency is question-
able. The authors have measured the execution efficiency of the FJTask package through
a number of benchmark programs and identified some of the problems with the design and
implementation of FJTask. Most importantly, because each fine-grain thread is represented
by a heap-allocated object, massively parallel execution can incur enormous overhead to the
memory allocator and the garbage collector of the Java runtime system. The bottleneck of
FJTask is examined in detail and an alternative implementation is proposed. In the proposed
implementation dead objects are found and reused so that most of the memory management
overhead are eliminated. Our proposal is compared with the Lea’s original proposal on a
variety of platforms.
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