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A Cache-conscious Adaptive Tenuring Policy for Generational GC

TAKAHIDE YOSHIKAWA,! KENJIRO TAURATt
and TAKASHI CHIKAYAMAT

In generational GC schemes, objects are allocated to the young generation area and are
advanced to the old generation area after surviving a small number of collections. This ad-
vancement is called tenuring. Tenuring too late makes some short-lived objects that some
of them have already become garbage and long-lived objects reside together in the young
generation, making memory reference locality worse. On the other hand, tenuring too early
makes it impossible to collect short-lived objects in the young generation; its mark/cons ra-
tio becomes worse and, as short-lived objects are moved to the older generation, more older
generation GCs will be required. For the best performance, we should adjust tenuring tim-
ings dynamically according to programs and their execution phases. Many adaptive tenuring
policies have been proposed. However, most of them aim at improving mark/cons ratio of the
younger generation and improvements in cache performance are not proven with experimen-
tal evidences. In this work, we (1) measure object lifetime distributions on several programs,
and how cache misses and execution times vary with different tenuring timings, (2) make
a simple analytical model to estimate an appropriate young generation size, (3) propose a
cache-conscious adaptive tenuring policy, and (4) implement dynamic young generation size
adjustment mechanism with this policy into KLIC and compare its execution time to one
with conventional generational GC on several programs.
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