Vol. 43 No. SIG 8(PRO 15) goooooooooboooooooo Sep. 2002

good

OO0 GCOUObOoobuoonoboooogd
Joooobbogoggon

0O O o of oo oooff o o 0t

oo GCOOoOoooooooooooooooooobooo Gecoooooooooooooo
gooooooO0o0oO00ooO0oOo0boOoO0o0O0O0O00000O000C0O000O0C0O00000O000O0
000000000000 00O00000O000000000 Geooooooooooooooo
ooo0oo0ooO0o0oo0oo00ooooooOo0oooooooooooooooooono geoo
oooooobooboOo GeoooooooooooOoooO0o0oO0o0oOo0obo00o0o0ooooDon
gol1000oo0oooooOoOooOoboOoboO0odooOoobo0oOooUooboobobOOobobOoOoboooooooo
goo0ooooOoooOoO0ooOoooo00ooOo0oooo0ooooooO0o Geooooooooo
g0o0o0000o0o0o00oO0Ob0oOoOo00o0O0b0O0000b0O000000O0000O000000O0
go0o0o00o0oO0o00oO0O0O00oo0o0oooooooooooOo0oOobooO0oOoooOoooOooOooOOoon
gooooooooooooooooooooooooooboooooOoOoOOOOODbOOODOOODO
gooooOooooOoboOooO0oboO0oooO0OoOO0OO0OO00OO00O0OOOOOOOOOO0O0O000O0O0
go0o0o0ooboooooooooooooooOoooOoOoOobObOOOOObOOO0OO0000oOoonoa
GCU0OO0OO000O0oooooooo KLICoooooooooooooooooooooooo
GgCooooooooooo

A Cache-conscious Adaptive Tenuring Policy for Generational GC

TAKAHIDE YOSHIKAWA,! KENJIRO TAURATt
and TAKASHI CHIKAYAMAT

In generational GC schemes, objects are allocated to the young generation area and are
advanced to the old generation area after surviving a small number of collections. This ad-
vancement is called tenuring. Tenuring too late makes some short-lived objects that some
of them have already become garbage and long-lived objects reside together in the young
generation, making memory reference locality worse. On the other hand, tenuring too early
makes it impossible to collect short-lived objects in the young generation; its mark/cons ra-
tio becomes worse and, as short-lived objects are moved to the older generation, more older
generation GCs will be required. For the best performance, we should adjust tenuring tim-
ings dynamically according to programs and their execution phases. Many adaptive tenuring
policies have been proposed. However, most of them aim at improving mark/cons ratio of the
younger generation and improvements in cache performance are not proven with experimen-
tal evidences. In this work, we (1) measure object lifetime distributions on several programs,
and how cache misses and execution times vary with different tenuring timings, (2) make
a simple analytical model to estimate an appropriate young generation size, (3) propose a
cache-conscious adaptive tenuring policy, and (4) implement dynamic young generation size
adjustment mechanism with this policy into KLIC and compare its execution time to one
with conventional generational GC on several programs.

Ooo14010200000

fO000oooooooooo

Graduate School of Engineering, University of Tokyo
tt000000000000000O0
Graduate School of Information Science and Engineer-
ing, University of Tokyo
ttt 000000000000 O00D0OO0

Graduate School of Frontier Sciences, University of
Tokyo

111



