Vol. 44 No. SIG 2(PRO 16) goooooooooboooooooo Feb. 2003

good

gooudbbuoooooood
OO000b00oboooob OorgelUODODODOOOO

0O o o of o o o of
O O O of 0O 0o Of

0000000 Orgel0000DO0OD0OOOrgel0000/00000000O0OODOOOO
0000000000000 000000000000000000O000O000Orgel0DDOOOO
goo0ooooobooobooooooooOoOOOOOOODOOOO0O00000O00000000
g0oo0o0ooooooooooooOoOO0oboO0O0bOO0OboObOoOO0OO0000b0000B00000
00000000000000000000 OrgelJ0O00O000O0OO0DOODOOOOOOOOOO
goooooooooobooooOooOOoobo0ooooooOooooooOoOoobooboOoOooooOoog
000000000000 0000o0oo0ooo0oo0OrgelDOODOODOOODODOBOOOODBODO
goo0o0oooo0ooo0oOooooo0ooO0OoOo0O00b0O0oO0oO0OoOoOoOooOoO0OOobcOoO0b0OO0n0O
gooooooobooooboooOoooooooobooOoOooobOOoOoOoOoOooOoboOooooboOoOoOooobooDg
gooooooooO0obOO0O0O0O0OOO0OO0O0O0O0O0O0O0ODOOO0O0O0ODOO0O0O0O0O0OO000O0DOOO
gooo0oooo0o0oo0ooboooOoOoO0O0OoOO0OO0O0O0OO0O0O00000O0O0COCOCOOO0O0
gooooooboooooooboOooooOoooOoOoOoUobOOoOoOoOoOoOoOoooooOooOoOOooODbOboboo
gooooooooooooOoOoooooooOoOoOoOOObOOOOObOOO0OOO000O000O00000
odo0oboboO0oo0oO0obooOo0ooboOo0O0OoOO0oO0boO00OO00O0b000000Bb000000008O0
00000014 0000000000000000 OrgelOOOOOOOOODOOOOOOOOO
O0o00000D0O00 1.700000000000AO

Scheduling of Agent-oriented Parallel Language Orgel
Using Static Analysis and Dynamic Processing

TASUKU FUKANO,* SHIGEHIRO YAMAMOTO,! KAZUHIKO OHNOt
and HIROSHI NAKASHIMAT

We are developing a parallel language called Orgel. In the execution model of Orgel, a set
of agents are connected with abstract communication channels called streams. The agents
run in parallel sending asynchronous messages through the streams. In an Orgel program,
each unit of parallel execution is specified as an agent by the programmer. The connections
among agents and streams are declaratively specified. Thus, parallel execution model is clear
and the highly accurate static analysis is possible. Utilizing these features, we propose an
optimization scheme that minimizing the dynamic overhead. If the complete structure of the
whole program is known at compile time, static optimization will be sufficiently effective.
However, in Orgel, the number of agents and structures actually generated are not always
static, because recursive connection is supported. Moreover, although a communicating pairs
of agents are known at compile time, the number of messages and the granularity of agents are
known only at runtime. Therefore, it is difficult to balance loads on the processor by whole
static scheduling. Thus, in our scheme the compiler outputs an analysis result to instruct the
runtime how to allocate and/or schedule an agent when its quantitative attributes are known.
Considering the number of processors and the present load of each processor, the runtime
uses this information for optimization; it allocates agents balancing loads and minimizing
inter-node communication. It also schedules agents on each node considering dependencies.
We designed and implemented the system. As the result of evaluation using 14-Queen solver,
we obtained 170% speed-up.

oo00O14080 210000

t00o000o00ooooooon
Department of Information and Computer Sciences,
Toyohashi University of Technology

47



