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Scheduling of Agent-oriented Parallel Language Orgel
Using Static Analysis and Dynamic Processing

TASUKU FUKANO,* SHIGEHIRO YAMAMOTO,! KAZUHIKO OHNOt
and HIROSHI NAKASHIMAT

We are developing a parallel language called Orgel. In the execution model of Orgel, a set
of agents are connected with abstract communication channels called streams. The agents
run in parallel sending asynchronous messages through the streams. In an Orgel program,
each unit of parallel execution is specified as an agent by the programmer. The connections
among agents and streams are declaratively specified. Thus, parallel execution model is clear
and the highly accurate static analysis is possible. Utilizing these features, we propose an
optimization scheme that minimizing the dynamic overhead. If the complete structure of the
whole program is known at compile time, static optimization will be sufficiently effective.
However, in Orgel, the number of agents and structures actually generated are not always
static, because recursive connection is supported. Moreover, although a communicating pairs
of agents are known at compile time, the number of messages and the granularity of agents are
known only at runtime. Therefore, it is difficult to balance loads on the processor by whole
static scheduling. Thus, in our scheme the compiler outputs an analysis result to instruct the
runtime how to allocate and/or schedule an agent when its quantitative attributes are known.
Considering the number of processors and the present load of each processor, the runtime
uses this information for optimization; it allocates agents balancing loads and minimizing
inter-node communication. It also schedules agents on each node considering dependencies.
We designed and implemented the system. As the result of evaluation using 14-Queen solver,
we obtained 170% speed-up.
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