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Essentially Algebraic Structure for Kleene Algebra with Tests

and Its Application to Semantics of While Programs

Hitoshi Furusawa† and Yoshiki Kinoshita†

Kozen and Smith showed existence of Kleene algebra with tests freely generated by a pair
(B, Σ) of finite sets. Their key idea is the construction of Kleene algebra PB,Σ with tests.
We show existence of free algebra without assuming the finiteness of B and Σ. Moreover, we
give a construction of Kleene algebra QB,Σ with tests for any sets B and Σ, and show that
whenever PB,Σ is defined (that is, whenever B is finite), QB,Σ is isomorphic to PB,Σ. We use
QB,Σ in an interpretation of while programs and we argue that it is really an interpretation
by sets of runs.

1. Introduction

Kozen12) introduced Kleene algebra with
tests and applied it to algebraic semantics of
while programs. Later, Kozen and Smith10)

showed existence of the free Kleene algebra with
tests generated by a pair (B, Σ) of finite sets us-
ing universal algebraic technique. Given a pair
(B, Σ) of a finite sets, they gave an explicit con-
struction of a Kleene algebra with tests PB,Σ

and showed that an image under a canonical
homomorphism into PB,Σ is freely generated
by (B, Σ).

Kozen and Smith’s construction of free alge-
bra is valid only for finite B’s because PB,Σ is
defined only for such. In fact, they also assumed
Σ is finite but that is not necessary.

We shall first show that the finiteness condi-
tion, however, is not necessary at all because
the structure for Kleene algebra with tests can
be described by a finite limit sketch (FL sketch)
in the sense of Barr and Wells1),2). An algebra
freely generated by any pair (B, Σ) of sets ex-
ists; B and Σ do not have to be finite. We
already reported this result 7),8) but we shall
present it more in detail here.

We shall also study PB,Σ, which plays the
same role as Lang(A), the Kleene algebra con-
sisting of the set of words over A, does in the
theory of Kleene algebra and regular expres-
sions. The definition of PB,Σ, however, is quite
involved and it would be natural to ask why
such a construction works. To give a (partial,
at least) answer to this question, we provide
another Kleene algebra with tests QB,Σ for any
pair (B, Σ) of (not necessarily finite) sets and
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we shall show that QB,Σ is isomorphic to PB,Σ,
whenever the latter is defined; note that PB,Σ

is not defined for infinite B. Moreover, QB,Σ

is given by means of standard constructions
such as coproducts and adjunctions from a pair
(B, Σ) of sets.

We introduce the notion of while algebra 9)

as an algebraic structure for while programs
and develop functorial semantics of while pro-
grams in arbitrary while algebras. Then we
construct a faithful functor I from the category
Kat of Kleene algebras with tests to the cate-
gory While of while algebras so that while
programs are interpreted in a Kleene algebra
with tests. Specifically, an interpretation in
QB,Σ is a semantics by sets of runs.

2. FL Sketch

We shall give an overview of FL sketch follow-
ing Barr and Wells1),2), to the extent we need
in the rest of this paper.
Definition 2.1 A reflexive graph G con-
sists of a pair of sets G0, G1 together with three
functions src, tgt: G1 → G0, i: G0 → G1 satis-
fying src ◦ i = tgt ◦ i = idG0 . Elements in G0,
G1 are called nodes and edges, respectively.
Functions src, tgt, and i are called source func-
tion, target function, and loop function. Re-
flexive graphs are two sorted algebra with three
operations and two equational constraints. A
homomorphism of reflexive graphs is defined
to be a homomorphism of two sorted algebras.
In the sequel, we mean reflexive graphs by writ-
ing “graphs”.
Definition 2.2 Let H and G be reflexive
graphs. A diagram in G of shape H is a ho-
momorphism D: H → G of reflexive graphs.
D is called a commutative diagram if H has
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two distinguished nodes s and d, two paths from
s to d, and all edges are part of either paths.
If H is equipped with one distinguished node p
and a family of edges P = ( Px: p → x | x ∈
H0 \ { p } ), and, for each edge f which is not
in the image of P , neither the source nor tar-
get is p, the triple (D: H → G, p, P ) is called
a cone in G of shape H. The image D(p) of
the distinguished node p is called the pivot of
the cone and D(Px) is called its projection to
D(x). If each edge of H is either a projection
or loop, the cone is called discrete.
If H is finite, the diagram D: H → G is called a
finite diagram. Similarly we use terms such as
finite commutative diagrams, finite cones and
so on.
Definition 2.3 An FL sketch (finite limit
sketch) S is a triple (G, C, Γ) of a reflexive graph
G, a set of commutative diagrams C, a set of
finite cones Γ. Edges of G are called operators
in S.
Definition 2.4 Let f : a → b be an operator
in an FL sketch S = (G, C, Γ). If Γ contains
a discrete cone (γ: H → G, p, P ) for which P
takes p to a and all other nodes to b, f is called
an n-ary operator on b in S, where n is the
number of elements of H0 \ { p }.
The arity is in general not uniquely determined
since an operator can be 4-ary and 5-ary at the
same time, for instance. We shall use the term
“arity” for convenience, although it is not well-
established notion.

If M is a model M of S, the following def-
inition of models forces M(a) to be an n-fold
product of M(b) and M(f) to be a function
M(f): M(b)n →M(b).
Definition 2.5 Let S = (G, C, Γ) be an FL
sketch. A reflexive graph homomorphism M
from G to the underlying reflexive graph of
the category Set is called a model of S if the
following conditions hold: for each node a of
G, M takes the loop i(a) to the identity map
on M(a); for each commutative diagram D in
C, M(D(fn)) ◦ · · · ◦M(D(f1)) ◦M(D(f0)) =
M(D(gm)) ◦ · · · ◦M(D(g1)) ◦M(D(g0)), where
f0f1 · · · fn and g0g1 · · · gm are the two distin-
guished paths of D; and for each cone γ in Γ,
M ◦ γ is a limit cone in Set. A homomor-
phism α from M to M ′ is a G0-indexed family
of maps (αx ∈ Set(M(x), M(x′)) | x ∈ G0)
which satisfies M ′(f)αx = αyM(f) for each
edge f : x → y of G. The models of an FL
sketch S and homomorphisms between them
give rise to a category which we shall denote

by Mod(S ).
By replacing Set above by any category Z with
finite limits, we obtain a more general definition
of models, but we shall use only models in Set,
so the above definition suffices.
Example 2.6 Consider an FL sketch 2 whose
graph has exactly two nodes 0 and 1 and all
edges are loops, which has no commutative dia-
grams and no cones. It is obvious that Mod(2)
is isomorphic to Set× Set.
Definition 2.7 A category C is FL sketch-
able if there exists an FL sketch, category of
whose models is equivalent to C.
Barr3) has shown the following theorem which
tells us the relationship between logical presen-
tation and FL sketches.
Theorem 2.8 (Barr3)) The category of mod-
els of a equational Horn theory is FL sketchable.
Definition 2.9 let S = (G, C, Γ) and S′ =
(G′, C ′, Γ′) be FL sketches. A morphism
h: S → S′ of FL sketches is a reflexive graph
homomorphism which takes commutative dia-
grams and cones in G to commutative diagrams
and cones in G′, respectively, i.e., h ◦ D ∈ C ′
for each D ∈ C and h ◦ γ ∈ Γ′ for each γ ∈ Γ.
The following theorem appears in Barr and
Wells1). See also Gray4).
Theorem 2.10 If h: S → T is a morphism
of FL sketches, then a functor h∗: Mod(T )→
Mod(S ) given by composing each model of
T with h has a left adjoint h�: Mod(S ) →
Mod(T ).

3. Kleene Algebra

The following definition is classical.
Definition 3.1 A semiring is a set S
equipped with nullary operators 0, 1 and bi-
nary operators +, ·, subject to the following
conditions.
( 1 ) (S, 0, +) is a commutative monoid.
( 2 ) (S, 1, ·) is a monoid.
( 3 ) The operator · distributes over + on both

sides, i.e.,
x · (y + z) = x · y + x · z and
(x + y) · z = x · z + y · z.

( 4 ) x · 0 = 0 = 0 · x.
A semiring is said to be idempotent if + sat-
isfies the law of idempotency x + x = x.
Remark 3.2 An idempotent commutative
monoid is a semilattice. It is well-known that,
in a semilattice, a partial oder ≤ is induced
from the binary operator by

x ≤ y ⇐⇒ x + y = y.
In the sequel, the partial order ≤ shall be used
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in this sense.
Definition 3.3 (Kozen 11)) A Kleene al-
gebra is a tuple (K, 0, 1, +, ·, ∗), where
(K, 0, 1, +, ·) is an idempotent semiring, ∗ is a
unary operator on K which satisfies the follow-
ing:

1 + (p · p∗) = p∗
1 + (p∗ · p) = p∗

q + (p · r) ≤ r =⇒ p∗ · q ≤ r
q + (r · p) ≤ r =⇒ q · p∗ ≤ r

Kleene algebras, Boolean algebras, and idem-
potent semirings can be axiomatized by equa-
tional Horn theory (in fact, all except for the
first can be axiomatized by equational theory!),
so, the categories of these algebras are all FL
sketchable by Theorem 2.8. For instance, the
FL sketch KLEENE = (G ,C , Γ) for Kleene al-
gebras may be defined in the following way. G
has one distinguished node a. It has two nullary
operators (in the sense of Definition 2.4) 0 and
1, one unary operator ∗ and two binary oper-
ators + and ·. The diagrams in C and Γ are
determined by these arity conditions and Horn
clause axioms, in the way described by Barr3).

4. Kleene Algebra with Tests

Kozen 12) defined Kleene algebra with tests
as a Kleene algebra whose base set includes
Boolean algebra, sharing the addition and mul-
tiplication. The inclusion requirement, how-
ever, is rarely used in application, so we define
Kleene algebra with tests as follows.
Definition 4.1 A Kleene algebra with
tests is a triple (B

j→ K), where B =
(B, 0B, 1B, +B, ·B,¬) is a Boolean algebra，
K = (K, 0K , 1K , +K , ·K , ∗) is a Kleene algebra,
and j: B → K is a map from B to K which pre-
serves 0, 1, + and ·. Elements of K are called
commands, elements of B are called tests.
Kozen’s Kleene algebra with tests is a special
case where j is an inclusion.

We shall denote by Kat the category of
Kleene algebras with tests and their homomor-
phisms. Kleene algebras with tests are axiom-
atized by an equational Horn clause, so an FL
Sketch KAT for Kat exists by Theorem 2.8.

KAT may be described as follows. The re-
flexive graph of KAT has two distinct nodes B
and K. B has two nullary operators 0B, 1B,
a unary operator ¬ and two binary operators
+B, ·B. There are commutative diagrams and
cones which make (B, 0, 1,¬, +B, ·B) axioma-
tize a Boolean algebra. K has two nullary oper-

ators 0K , 1K , a unary operator ∗ and two binary
operators +K , ·K . There are commutative dia-
grams and cones which make (K, 0, 1, ∗, +K , ·K)
axiomatize a Kleene algebra. Finally, there
are commutative diagrams which express that
j preserves 0, 1, + and ·.

We define the notion of free Kleene algebra
with tests by means of the forgetful functor
Kat→ Set× Set.
Definition 4.2 A free Kleene algebra
with tests generated by a pair (B, Σ) of sets
B and Σ is defined to be a Kleene algebra
with tests F (B, Σ) = (B

j→ K) and a map
ηB : B → B0 from B to the base set B0 of B,
map ηΣ: Σ→ K0 from Σ to the base set K0 of
K which satisfy the following universality prop-
erty:

for each Kleene algebra with tests
TK′ = (B′ j→ K′) and maps f : B →
B′, g: Σ→ K ′ there is a unique arrow
(f̂ , ĝ): F (B, Σ) → TK′ in Kat such
that f = f̂ ◦ ηB and g = ĝ ◦ ηΣ.

Theorem 4.3 Let B and Σ be sets. Then
there is a free Kleene algebra with tests gener-
ated by (B, Σ).
Proof Recall that an FL sketch 2 which ap-
peared in Example 2.6. Let i be a homomor-
phism of FL sketches from 2 to KAT which
takes 0 and 1 to B and K, respectively. Since
Mod(2) ∼= Set× Set and Mod(KAT) ∼= Kat,
a functor i∗: Kat→ Set× Set induced from i
has a left adjoint i# by Theorem 2.10. There-
fore, if two sets B and Σ are given, then
a Kleene algebra with tests i#(B, Σ) and a
morphism η(B,Σ) = (ηB, ηΣ) from (B, Σ) to
i∗(i#(B, Σ)) in Set×Set are determined. It is
trivial that these data have the universal prop-
erty.

Kozen and Smith10) gave a result equivalent
to Theorem 4.3 assuming B is finite. They also
assumed that Σ is finite, but that is not neces-
sary even for their construction. Theorem 4.3
claims that B is not necessarily finite.

5. Quantale

Kozen and Smith10) introduced Kleene alge-
bra PB,Σ with tests to show the existence of
free Kleene algebra with tests. This section
and the next are devoted to show that the con-
struction of PB,Σ is not ad hoc but composi-
tion of standard constructions such as coprod-
uct and adjoint functors. This section briefly
reviews quantales. As the second author ar-
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gued 5),6), it is very important in the theory of
Kleene algebras that the set of languages on a
set of alphabets gives a Kleene algebra. This
Kleene algebra happens to be the unital quan-
tale freely generated by the set of alphabets.
In this section we show that there is a faithful
functor from the category UQuant of unital
quantales to the category Kleene of Kleene al-
gebras. Also existence of coproduct in UQuant
is given.

5.1 Unital Quantale and Kleene Alge-
bra

Definition 5.1 (Mulvey14)) A unital quan-
tale is a tuple (Q, e, ·, ∨) which satisfies the fol-
lowing conditions: (Q, e, ·) is a monoid, (Q,

∨
)

is a complete upper semilattice, and
∨

dis-
tributes over ·, i.e.,

∨{a · bi | i ∈ I} = a ·∨{bi |
i ∈ I} and

∨{bi · a | i ∈ I} =
∨{bi | i ∈ I} · a

hold for each element a ∈ Q and family (bi |
i ∈ I) of elements of Q.
Remark 5.2 Since a quantale is a complete
upper semilattice, it always has the greatest ele-
ment � def=

∨
Q and the least element ⊥ def=

∨ ∅.
Moreover, x·⊥ = ⊥ = ⊥·x holds by distributive
law.
Example 5.3 If (M(X), ε, ·) denotes the free
monoid generated by a set X, Lang(X) def=
(P(M(X)), {ε}, ◦, ⋃) is a unital quantale.
Where P (M(X)) is the power set of M(X),
◦ is defined by pointwise extension of ·, i.e.,
L ◦ L′ def= {σ · σ′ | σ ∈ L, σ′ ∈ L′}, and

⋃
is

sum of sets.
The base set of Lang(X) is the set of all lan-
guages on set X of alphabets.
Proposition 5.4 By taking unital quantale
(Q, e, ·, ∨) to (Q,⊥, e,

∨
, ·, [x �→ ∨{xn | n ∈

ω}]), a faithful functor E: UQuant→ Kleene
from UQuant to Kleene is determined.
Also, unital quantales are related to idempo-
tent semirings. The following proposition will
be used later.
Proposition 5.5 The forgetful functor UUI

which takes a unital quantale (Q, e, ·, ∨) to an
idempotent semiring (Q,⊥, e,∨, ·), ∨ being de-
fined by a ∨ b

def=
∨{ a, b }, has a left adjoint

FIU .
It is well-known that the forgetful functor

UB: Bool→ Set has a left adjoint and so does
UI : ISR → Set. The situation of those func-
tors which appeared in Proposition 5.4, 5.5 are
depicted in Fig. 1.
Remark 5.6 Kat may be defined as the
comma category (UBI ↓ UKI), so a Kleene alge-

Fig. 1 Adjunctions around Kleene.

bra with tests is a idempotent semiring homo-
morphism (arrow of ISR) of the shape UBI(B)
→ UKI(K) for some Boolean algebra B and
Kleene algebra K.

5.2 Coproduct of Unital Quantales
We show that coproduct of unital quantales

exist. Since the category SetT of T-algebras
is cocomplete for each monad T1), it is suffi-
cient to show that the functor UU is monadic
(tripleable).
Proposition 5.7 The functor UU : UQuant
→ Set creates coequalizer for those pair of
parallel arrows f, g in UQuant for which
UU (f), UU (g) has a split coequalizer in Set.
Proof Consider unital quantales Qi =
(Qi, ei, ·i,

∨i) (i = 1, 2) and homomorphisms
f, g: Q1 → Q2 between them and assume the
diagram

Q1

UU (f)�
UU (g)

�
�

t

Q2

q ��
s

X

is a split fork. Maps ·X : X × X → X and∨X : P (X) → X are defined by a ·X b
def=

q(s(a) ·2 s(b)) for a, b ∈ X and
∨X A

def=
q(

∨2 s(A)) for A ⊆ X. It is a routine to
show that (X, q(e2), ·X ,

∨X) is the unique uni-
tal quantale such that q becomes a unital quan-
tale homomorphism and q is the unique co-
equalizer of f and g.

By Beck’s (precise tripleability) theorem1),13)

and Proposition 5.7, the functor UU is monadic.
It is known that C is complete and cocomplete
if a functor U : C → Set is monadic. (See Barr
and Wells1).) Therefore, we obtain the follow-
ing Proposition.
Proposition 5.8 UQuant is complete and
cocomplete.
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In particular, any pair of unital quantales has
a coproduct.

6. Kozen-Smith construction

We introduce a Kleene algebra with tests
QB,Σ by using standard constructions of ad-
junctions appeared in Fig. 1 and coproducts, in
order to show that the construction of PB,Σ

given by Kozen and Smith 10) is not ad hoc.
Moreover, we show QB,Σ is isomorphic to PB,Σ,
whenever the latter is defined.
Construction 6.1 (QB,Σ) Let B and Σ be
sets. We construct the Kleene algebra with
tests QB,Σ as follows. Let η be the unit of ad-
junction FUI � UUI and ι: FIUUBIFB(B) →
FIUUBIFB(B) + FU (Σ) be the canonical injec-
tion. Consider the idempotent semiring homo-
morphism UKIE(ι) ◦ ηUBIFB(B):

QB,Σ
def=




UBIFB(B)

UUIFIUUBIFB(B)
ηUBIFB(B)�

UKIEFIUUBIFB(B)

�

UKIE(FIUUBIFB(B) + FU (Σ)
UKIE(ι)�




We define QB,Σ to be this Kleene algebra with
tests. (See Remark 5.6.)
Remark 6.2 The adjunction FUI � UUI pro-
vides bijective correspondence between QB,Σ

and ι since UUI = UKI ◦ E.
Kozen and Smith introduced PB,Σ in their

proof of existence theorem of free Kleene alge-
bra with tests, but our proof of Theorem 4.3
uses neither PB,Σ nor QB,Σ.
Construction 6.3 (PB,Σ

10)) Let B be a fi-
nite set and Σ be a (possibly infinite) set. Let
A(FB(B)) be the set of all atoms in the Boolean
algebra FB(B):

A(FB(B)) def=
{x ∈ FB(B) | 0 ≤ y ≤ x =⇒y = 0 ∨ y = x }.

Then

CB,Σ
def= (P (X), A(FB(B)), �,

⋃
)

is a unital quantale, where
X = {α1p1 · · ·αn−1pn−1αn |

αi ∈ A(FB(B)) ∧ pi ∈ Σ},
P (X) being the power set of X, and �: P (X)×
P (X) → P (X) being defined by C � D

def=
{xαy | xα ∈ C ∧ αy ∈ D ∧ α ∈ A(FB(B))}.

Define a map j from UBFB(B) to UKE

(CB,Σ) by j(b) def= {x ∈ A(FB(B)) | x ≤ b }.
Then (FB(B)

j→ E(CB,Σ)) is a Kleene algebra
with tests. We shall denote by PB,Σ. By Re-
mark 5.6 PB,Σ may be described as follows:

PB,Σ = UBIFB(B)
j−→ UKIE(CB,Σ).

Lemma 6.4 The unital quantale CB,Σ which
consists of commands of PB,Σ is a coproduct of
FIUUBIFB(B) and FU (Σ).
Proof Let the unital quantale homomor-
phism i1 from FIUUBIFB(B) to CB,Σ be the
unique extension of an idempotent semiring ho-
momorphism j in Construction 6.3 and let the
unital quantale homomorphism i2 from FU (Σ)
to CB,Σ be the unique extension of a map
p �→ {αpβ | α, β ∈ A(FB(B))} from Σ to
UU (CB,Σ).

FIUUBIFB(B) i1−→ CB,Σ
i2←− FU (Σ)

is a coproduct diagram. In fact, given a
unital quantale Q and unital quantale ho-
momorphisms g1: FIUUBIFB(B) → Q and
g2: FU (Σ) → Q, h defined as follows is the
unique unital quantale homomorphism subject
to gj = h ◦ ij (j = 1, 2):
• h(C) def= eQ, if C = A(FB(B)).
• h(C) def=

∨{ g1(α1)g2(p1) · · · g1(αm) |
α1p1 · · ·αm ∈ C}, otherwise.

Theorem 6.5 PB,Σ is isomorphic to QB,Σ

whenever PB,Σ is defined.
Proof The Boolean algebras of PB,Σ and
QB,Σ are exactly the same. Their Kleene al-
gebras are isomorphic by Lemma 6.4. Let the
canonical isomorphism be k; it is the mediating
arrow of the coproduct FIUUBIFB(B)+FU (Σ)
with respect to i1, i2. Moreover the following
diagram commutes since i1 = k ◦ ι.

UBIFB(B) ===================== UBIFB(B)

UKIE(FIU UBIFB(B) + FU (Σ))

QB,Σ (= UKIE(ι) ◦ ηUBI FB(B))

� ∼=
UKIE(k)

� UKIE(CB,Σ)

PB,Σ (= j)

�

7. Semantics of While Programs by
Sets of Runs

In this section we introduce while algebras as
an algebraic structure of while programs and
give a functorial semantics of it. Also note that
there is a faithful functor I from the category
of Kleene algebras with tests to the category
of while algebras and by using I while pro-
grams are interpreted in each Kleene algebra
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with tests. In particular, considering interpre-
tation in QB,Σ, it is semantics by sets of runs.

7.1 While Algebra
Definition 7.1 A while algebra is defined
as follows as a many sorted algebra. For short
we use description of algebraic specification lan-
guages such as CASL, OBJ and so on.
sort Test,Com.
op abort, skip: → Com.
op ;, []: Com×Com→ Com.
op if : Test×Com×Com→ Com.
op while: Test×Com→ Com.
op tt,ff : → Test.
op ¬: Test→ Test.
op ∧,∨: Test×Test→ Test.
infix ;, [],∧,∨.
eq equations which show

(Com, skip, ;) is a monoid.
eq equations which show

(Com,abort, []) is a semilattice.
eq c;y [] c;z = c;(y [] z ).
eq abort;c = abort = c;abort.
eq if(tt, c, c′) = c. eq if(ff , c, c′) = c′.
eq while(b, c) = if(b, c;while(b, c), skip).
eq equations which show

(Test,ff , tt,∨,∧,¬) is a Boolean algebra.
In other words while algebra W is an algebraic
equipped with two base sets WTest, WCom,
structure of Boolean algebra whose base set is
WTest, structure of idempotent semiring whose
base set is WCom, and connections if , while
between the structures. Homomorphisms of
while algebras are defined as homomorphism
of many sorted algebras, i.e., a while algebra
homomorphism f from W to V is a pair of
a Boolean algebra homomorphism fTest from
WTest to VTest and an idempotent semiring ho-
momorphism fCom from WCom to VCom which
preserves if and while.

Since axioms of while algebras are given by
only equations, for any two sets B and Σ there
exists the free while algebra F (B, Σ) generated
by (B, Σ). That is, for each while algebra W,
maps f1 : B → WTest and f2 : Σ→ WCom are
always extended to a while algebra homomor-
phism (f̂1, f̂2): F (B, Σ)→W.

An element of F (B, Σ) is a equivalence class
with respect to a congruence which express
“equivalence of programs” of while programs
whose atomic tests are elements of B and whose
atomic commands are elements of Σ. Thus we
call elements of F (B, Σ) while programs.

The category While is defined to be the cate-
gory of while algebras and homomorphism be-

tween them. The free construction we men-
tioned above can be translated as follows.
Theorem 7.2 An forgetful functor U : While
→ Set× Set which takes a while algebra to a
pair of base sets of it has a left adjoint.
Definition 7.3 A while algebra homomor-
phism from F (B, Σ) to while algebra W is
called an interpretation in W of while pro-
grams whose atomic tests belong to B and
whose atomic commands belong to Σ
By Theorem 7.2, an interpretation in W of
while program is determined uniquely by a pair
of maps from B to WTest and from Σ to WCom.

7.2 Models in Kleene Algebra with
Tests

Let (B
j→ K) be a Kleene algebra with tests.

By define values in Kleene algebra with tests of
sort Test by B, operators tt, ff , ¬, ∧, ∨ by 1B ,
0B , ¬, ·B, +B , respectively, values of sort Com
by K, operators abort, skip, ;, [], if , while
by 0K , 1K , ·K , and +K [(b, c, c′) �→ j(b) ·K
c+K j(¬b) ·K c′], [(b, c) �→ (j(b) ·K c)∗ ·K j(¬b)],
we obtain a while algebra. A faithful func-
tor I: Kat → While is determined by taking
(B

j→ K) to the while algebra. We define an
interpretations in Kleene algebra with tests by
using Definition 7.3 and I.
Definition 7.4 Let T be a Kleene algebra
with tests. We call an interpretation in a while
algebra I(T) of while program an interpreta-
tion in T.
This interpretation coincides with interpreta-
tion of while programs given by Kozen 12). By
Theorem 7.2 an interpretation in T is deter-
mined by a pair of maps from B to B and from
Σ to K.

Since states of while programs are com-
pletely determined by value of prepared tests,
we may consider propositions over B as states
of a system. On the other hand, words over Σ
may be considered as state transitions of a sys-
tem. Therefore if we consider interpretations in
a Kleene algebra with tests QB,Σ, we obtain in-
terpretation of while programs by sets of runs.
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