5s-07

Replacing Objects in Proxy Server’s Cache

Based on Two Criteria

Qusar Abuein

Susumu Shibusawa

Department of Computer and Information Sciences
Faculty of Engineering, Ibaraki University

1 Introduction

In this paper a replacment algorithm for cache objects
based on two criteria is presented. It is important to
choose the object to be replaced with a new object that
does not reduce the hit ratio or has the probability to
be requested in the near future so as not to refetch
it again, while keeping an object with less probabil-
ity to be requested in the near future. Previous work
proposed an algorithm to choose a set of objects to re-
place a new object based on some criteria such as age
or popularity[1].

By providing documents from its local disk cache
without actually connecting to the remote host, the
proxy server is an effective place to cache web objects
which otherwise experience long network latencies. It
also helps reducing the network traffic and distributing
the server load since the object only needs to be trans-
ferred once to the proxy, and subsequent requests can
be handled from the proxy|[2].

Since the proxy has limited amount of storage space
we should only keep the objects that will be requested
frequently in the future[1], this is also going to be our
aim in this paper since that also increases the hit ratio.

An object is any item retrieved by a URL, such as a
textfile, image, or an audio file, ...etc. A hit is serving
the client from the proxy cache. Miss is not serving the
client from the proxy cache[3].

In this paper we are going to compare the replace-
ment policies by simulating various replacement poli-
cies, such as FIFO, Least Recently Used (LRU), Least
Frequently Used (LFU), then compare it to our algo-
rithm that takes'in consideration more than one crite-
rion in replacing the object, such as size and number
of requests, or size and last time accessed.

2 Defenition of the algorithm

Lets take into consideration the size of the document
and number of requests. If the objects in the cache are
stored according to a criterion, let it be the size, and a
new object is comming, consider the following example:
01,09,...,05 are stored in a cache according to that
criterion, where 01 is objectl, 05 is object2, and so on,
and a new object 0, arrived to the full cache, then

Less Value

[
ol 02 o3 o4 o5
Ornew

Figure 1: An example of a replacement object.

NO. Size NO. of requests
ol 100 200
02 100 100
o3 200 50
o4 250 300
o5 500 50

Figure 2: An example of a replacement object based
on two criteria.

it must be replaced, in the traditional caching scheme
01 will be selected to make room for the new object,
as shown in Figure 1. Consider the same example in
addition to another criterion, let it be the number of
requests, as shown in Figure 2. When chosing o, to
replace 0ney then we are removing the object that is
more popular which has a No. of requests equals to 200,
which is the higher probability to be requested in the
future, so taking into consideration another criterion
(No. of requests), o2 will be removed which it has less
number of requests (200), and that might increase the
hit ratio, since the probability of 0; to be requested in
the future is more than the probability of os.

When using the BACK button of any browser to
browse a previous page, if it is not in the cache either
the proxy’s or the user’s local cache, it must be fetched
again and it consumes time, which makes the user to
wait and that what he does not like, so it is important



to keep the object that will be frequently requested in
the future.

2.1 Replacement algorithm based on
two criteria

We devided the cache into n parts according to the size
of the objects. The first part is for the objects with size
less than s; byte, the second part is for the objects with
size between s; byte and sy byte, the last part is for
the objects with size more than s,_; byte. One advan-
tage of deviding the cache is to make the competition
for replacement between the objects of the same size,
another advantage is to make the sorting mechanism
easier and faster to perform as will be shown in the al-
gorithm’s steps. Of course we need to replace an object
only when the cache is full.

In order to implement a fully functional web proxy
cache, a cache architecture requires several compo-
nents:

e A storage mechanism for storing the cache data.

e A mapping mechanism to establish relationship
between the URLs to their respective cached
copies.

e Format of the cached object content and its
metadatal[4].

In our paper we are going to concentrate on the stor-
age mechanism and sort the objects in the cache based
on the two criteria, the first one is considered as the
primary key, the second is the secondary key.

So the example shown in Figure 2 becomes as shown
in Figure 3. After sorting it based on size(primary key),
and No. of requests(secondary key). If the request is a

NO. Size NO. of requests
02 100 100
ol 100 200
o3 200 50
od 250 300
o5 500 50

Figure 3: objects stored in the cache based on size and
No. of requests.

hit then that object’s No. of requests is increased, so
we need to resort the objects of the part of the cache
again. As mentioned before the resorting is easier and
faster when dealing with cache as more than one part.

step 1 If hit then resort objects in that part of the
cache.

step 2 Find an object equal to or greater than the
new object 0peq in the cache part.

step 3 replace the 0,¢,, with the found object (since
the found object has the least No. of requests value
between the objects in that part of the cache, and its
size is equal t0 0.y then 0y.q is replaced in its place
and no need to resort the objects again).

We define the hit ratio as follows:

) ) # of requests served from cache
hit ratio =

total # of requests

The hit ratio is then increased while the objects re-
quested are still in the cache, and that the removed ob-
ject is not requested more than the existed ones, taking
into consideration the object is still up to date, means
that the property If-modified-since is less than the date
in which the request is done.

From the example showed, we can notice that if there
are objects equal in size, differ in No. of requests, our
algorithm can choose the proper object to replace.

3 Conclusion

By this algorithm it can be sure that the object with the
appropriate size and with the least number of requests
(least popular ) is removed and that the objects which
are more popular remained, and when requested it can
be served to increase the hit ratio.

We are going to make a simulation program to test
our algorithm, compare the result to other replacement
schemes by analysing logfiles.

References

[1] Ilhwan Kim, Heon Y.Yeom, Joonwon Lee, Anal-
ysis of Buffer Replacement Policies for WWW
Proxy, Proc. of 13th Int. Conf. Information Net-
working (ICOIN 98).

A. Chankhunthod and P.B.Danzing, A hierarchial
Internet Object Cache, Harvest Cache Project,
Nov. 1995.

Stephen Williams, Marc Abrams, Charles
R.Standridge, Ghaleb Abdulla, Edward A.Fox,
Remote Policies in Network Cache for World-
Wide Web Documents, Computer Communication
Review, ACM SIGACOMM, Vol.26, No.4, Oct.
1996.

(4]

Ari Luotonen, Web Proxy Server, Prentice-Hall,
1998.



