55-05

Ordered Delivery of Message

in Object-Based Systems *

Takao Komiya, Youhei Timura, Katsuya Tanaka, and Makoto Takizawa
Tokyo Denki University ¥
Email : {komi,timura, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

In a distributed application like a teleconference,
multiple processes are cooperating to achieve some ob-
jectives. A message is required to be delivered to all
the destinations of the message. The group protocol
using the vector clock [1,2] totally implies O(n?) com-
putation and communication overheads for the num-
ber n of the processes in the group. The overheads can
be reduced if only messages required to be ordered by
the applications have to be causally and atomically
delivered. An application is realized by a collection
of processes each of which manipulates data like files
in the computers and exchanges messages with other
processes. Processes manipulating the data, are en-
capsulated in an object and the computation is per-
formed by a message-passing mechanism.

An object in a computer sends a message to one
destination, i.e. unicast or multiple destinations, i.e.
multicast. In addition, some object can invoke multi-
ple methods in parallel, i.e. parallel invocation. Here,
different messages are simultaneously sent to different
destinations. Objects wait for multiple responses after
multiple methods are invoked in parallel. There are
conjunctive and disjunctive ways to receive multiple
messages. In the conjunctive receipt, the computer
waits for all the messages. Hence, even if the com-
puter sends a message while receiving these messages,
there is no causally precedent relation between the
message sent and the messages received. In the dis-
junctive receipt, the computer waits for only a mes-
sage which arrives at the computer earlier than the
others. The computer is not required to receive all
the other messages. In this paper, we discuss a new
type of causally precedent relation among messages
in a system where messages are unicast, multicast,
and parallel-cast, and received by single-message and
multi-message receipt.

2 Object-based Systems

The objects are distributed in computers intercon-
nected with reliable networks. A computer supports
a collection of objects and does not necessarily mean
a physical computer.

A group G is composed of computers supporting
objects o1, ..., 0, and transactions. A transaction is
initiated in one of the computers and invokes methods
on an object in the group G. The objects are coop-
erating with each other in the group G. This means
every method on an object invokes only methods on
objects in the group G.

Methods are invoked in a nested manner in
object-based systems. There are synchronous,
asynchronous, and one-way invocations of a method
with respect to how an invoker, e.g. transaction waits

ATV 27 VREICBIT ANV EESaban
UNE B, TA R, B, W A
TR EAR

for the response of the method. In the synchronous
invocation, the invoker waits for a response of the
method. In the asynchronous one, the invoker is be-
ing performed without blocking while eventually re-
ceiving the response of the method. In the one-way
invocation, the invoker does not wait for the response.

There are serial and parallel invocations of mul-
tiple methods. In the serial invocation, at most one
method is invoked at a time. On the other hand,
multiple methods can be simultaneously invoked in
the parallel invocation.

3 Delivery of Messages in Objects

3.1 Transmission

An object sends messages by invoking the transmis-
sion methods ucast, mcast, and pcast of the com
object. The messages sent by the object are trans-
mitted in a network by the computer. For example, if
an object o in a computer p; multicasts a message m
by mcast(m,(p:, p,)), the computer p; sends a pair
of message instances mj; and ma of m to two com-
puters p; and p,,, respectively. We discuss how these
message instances transmitted in the network to be
related. Suppose an object in a computer p, sends a
pair of messages m; and ms. The messages m; and
ms transmitted in the network are related according
to the following relations depending on through which
transmission method the object sends the messages
my and ma:

1. Multicast: m; and my are multicast (my = mg)
iff m; = mo and m;y is sent to multiple destina-
tions, i.e. m, and mq are instances of a message
m and m is sent by mcast.

2. Parallel-cast: m; and mg are parallel-cast (m;
= my) iff m; and mo are to be sent at a same
time, i.e. my and mo are sent by pcast.

3. Serial transmission: m; is serially sent before
ma (my << mg) iff my is to be sent before ma by
ucast.

3.2 Receipt

Each object receives a response after sending a re-
quest to an object. In addition, an object parallely
invoked methods. Here, the object waits for response
messages from multiple objects. There are multiple
ways to receive messages; single-message and multi-
message receipts where an object waits for only one
message and multiple messages, respectively. The
com object supports three types of primitive meth-
ods for receiving messages: 1l.srec(p;). 2.crec(pi,
wey k) (K > 1). 3.drec(pi, ..., pg) (k > 1). By
invoking the method srec(p;) on the com object, one
message is received from an object in a computer pi,
i.e. single-message receipt. By invoking crec and
drec methods, an object receives messages from mul-
tiple objects. There are two further ways to receive
multiple messages from multiple computers; conjunc-



tive and disjunctive ones. The conjunctive receipt
method crec(py, ..., px) means that messages are re-
ceived from all the computers pi, ..., px. That is, a
method instance invoking the method crec waits for
messages from all the computers py, ..., pg. The dis-
junctive receipt method drec(py, ..., px) means that
one message is received from at least one computer
out of the computers p1, ..., px- A method inst ance
invoking drec blocks until a message is received from
at least one of the computers. Suppose an object in a
computer p, receives multiple messages my, ..., myg
by invoking one multi-message receipt crec or drec
[Figure 1]. Here, let M(m;) be a collection of mes-
sages {m1, ..., mg} to be received with a message m;
at a multi-message receipt. For every message m; in
M(m;), M(m;) = M(m;). In the conjunctive receipt
crec, suppose the computer p, finishes receiving the
messages in M(m;) on when p; receives a message mg
after receiving all the other messages in M(m;). Here,
my is referred to as most significant for the messages
mi, ..., mg in M(m;) for crec. Suppose the com-
puter p; receives a message mj before all the other
messages in M (mq). The message m; is referred to
as the first message in M (my). On the other hand, in
the disjunctive receipt drec, p; finishes receiving the
messages myq, ..., mg only if p; receives the first mes-
sage m; before all the other messages. The message
my is most significant for the messages in M (m;) for
drec. Here, the other messages mo, ..., mg are not so
significant that the computer p; is required to receive
the messages. Suppose that a computer p; receives a
Py Py
1 m

crec \ drec
-y )

m

m, e

1
/

time time

(1) Conjunctive (2) Disjunctive

m—emp- :most significant message

Figure 1: Multi-message receipt.

pair of messages my and mg in a network. Let “m;y
< mg” show that p; receives mj before ma.
3.3 Receipt and transmission

We discuss a causally precedent relation (—) among
messages sent and/or received in a computer p;.
[Definition] A message m; sent precedes another
message Mo sent in a computer ps (my — ma) if m;
< mg and one of the following conditions holds:

1. my and mqy are sent through different transmis-
sions methods by a same method of an object in
the computer p;.

2. m1 and mo are sent by different methods ¢; and
t3 of an object in the computer p;, respectively,
and t; and to conflict.

3. my — m3 and m3 — my for some mg. O

Definition] m; received precedes mqy received in p,
my1 — mg) if one of the following conditions is satis-

fied:
1. my received by srec:
a. my is received by srec.
b. mo is received by crec and m; < m3 for

the most significant message mg in M(ma).
c. mo is received by drec, my < ma, and mq
is the most significant in M (mg).

2. my is received by crec:
a. mg is received by srec and mg < mo fo r
the most significant message ms in M{m;).
b. mq is received by crec and mg < my for
the most significant messages m3 and my in
M (my) and M (mz), respectively.
3. my is received by drec:
a. my is received by srec, m; < ma, and my
is the most significant message in M (m;)
b. mo is received by crec, my is the most
significant message in M(m;), and m; <
mg for the most significant message mg in
M(mg)
4. my — ms and mg — mgy for some mg. O

[Definition] m; received precedes mq sent in ps (ma
— ma) if one m; < mgy and one of the following con-
ditions is satisfied;

1. mo is unicast by ucast:

a. m; is received by srec.

b. m; is received by crec and mg < ms for the
most significant message ms in M(mq).

c. my is received by drec and my is the most
significant in M (m.).

2. mo is multicast by mecast or parallel-cast by
pcast:

a. my is received by srec and m; < mg for
some message mg such that mg ~ mg or mo
= mg.

b. my is received by crec and mg < my for the
most significant message mg in M(m;) and
some message my such that mg &= my or mq
= My4.

¢. mq is received by drec and m; < my for the
most-significant message m; in M(m;) and
some message my such that mo &= my of my
= my.

3. m; — mg and m3 — my for some mg. O

4 Concluding Remarks

In the object-based system, methods are not only
serially but also in parallel invoked and responses are
received in various ways. An object multicast one
message to multiple destinations, i.e. multicast and
different messages are parallel-cast to multiple desti-
nations. Objects receive multiple messages in con-
junctive and disjunctive receipt ways. We defined
new types of causally precedent relations among mes-
sages transmitted by multicast mcast and parallel-
cast pcast and received by conjunctive crec and
disjunctive receipts drec in addition to unicast and
single-message receipt srec.

References
[1] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Multi-
cast,” ACM Trans. on Computer Systems, Vol.9,
No.3, 1991, pp.272-314.

[2] Mattern, F., “Virtual Time and Global States
of Distributed Systems,” Parallel and Distributed
Algorithms (Cosnard, M. and , P. eds.), North-
Holland, 1989, pp.215-226.



