5S—03 Quorum-based Locking Protocol for Replicas in
Object-based Systems *

Katsuya Tanaka and Makoto Takizawa '
Tokyo Denki University *
e-mail {katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

Objects are replicated in order to increase the re-
liability, availability, and performance in distributed
object-based applications [3]. In the two-phase locking
(2PL) protocol [1], one of the replicas for read and all
the replicas for write are locked. In the quorum-based
protocol [2], guorum numbers N, and N,, of the repli-
cas are locked for read and write, respectively. The
subset of the replicas is a quorum. Here, a constraint
“N, + N, > a” for the number a of the replicas has to
be satisfied. An object is an encapsulation of data and
methods for manipulating the data. A pair of methods
of an object conflict if the result obtained by perform-
ing the methods depends on the computation order.
Suppose a pair of update methods ¢ and u are issued
to replicas z; and z3 of an object z. The method ¢
may be performed on one replica z; and » on another
zo if t and u are compatible. Here, the state of z;
is different from z;. The newest version of z, and z,
can be obtained by ezchanging methods ¢ and u. The
authors [4] discuss a version vector to identify which
methods are performed on each replica. However, it
implies larger overhead. In this paper, we discuss a
simpler protocol to exchange methods among replicas.

In section 2, we overview the quorum-based protocol
and discuss the exchanging procedure in the object-
based systems. In section 3, we evaluate the quorum-
based protocol in terms of the number of messages
transmitted compared with the traditional quorum-
based protocol.

2 Object-Based Quorum Protocol
2.1 Quorum-based Replication

Suppose there are three replicas z;, z2, and z3 of
an object z which supports a method ¢. A transaction
issues a request £ to a quorum @, i.e. a subset of repli-
cas to which the request ¢ is issued. In the quorum-
based protocol [2], write and read requests are issued
to some numbers N,, and N, of replicas of z, respec-
tively. Here, N, + N, > 3. Each replica z; has a
version number b;. b; is incremented by one each time
write is performed on z;. If a request ¢ is issued, a
replica z; whose version number b; is maximum in a
quorum @, is found. If the request is read, the value
v; of z; is read. If the request is write with a value v,
v is written into the replica z;. The version number b;
is incremented by one. Then, b; is sent to the replicas

in Q.
2.2 Extension of quorum concept

A transaction invokes a method ¢ by issuing a re-
quest ¢ to an object z. Then, the method ¢ is per-
formed on the object # and then the response is sent

ATV 2y MY AT LSBT B LT A Mo~ BREEET R
T 5t R
PRURERR R

back to the transaction. Here, the method ¢ may in-
voke other methods, i.e. nested invocation. A method
t is compatible with a method wu iff the result obtained
by performing ¢ and u on z is independent of the com-
putation order. Otherwise, t conflicts with u.

Let us consider a counter object ¢ which supports
three types of methods increment (inc), decrement
(dec), and display (dsp). Suppose there are four repli-
cas ¢y, Cp, c3, and c4 of the counter object ¢, i.e. the
cluster R. is {c1, c3, c3, c4}. According to the tra-
ditional quorum-based theory, inc and dec are con-
sidered to be write methods because they change the
state of the object c. Hence, Nin. + Naec > 4, Nasp
+ Nipc > 4, and Ngsp + Ngec > 4. For example, Nip.
= Ng.c = 3 and N4, = 2. Since dsp conflicts with
tnc and dec, Ngsp + Nine > 4 and Nggp + Ngee > 4
in our protocol. However, inc and dec are compatible
because the state obtained by performing inc and dec
is independent of the computation order. Hence, N;p.
+ Ndec S 4) €.g. Ninc = Ndec = 2.

Quorums of an object z have to satisfy the following

constraint. .
[Object-based Quorum (OBQ) constraint] If a

pair of methods ¢ and u conflict, N; + N, > a where
a is the total number of the replicas. O

2.3 Exchanging procedure

A log Lj, is supported for each replica z; where a
sequence of update methods performed on z; are kept
in record. Initially, Ly is empty, i.e. Ly = (]. Sup-
pose a method ¢ is issued to the replica z,. If £ is an
update method, ¢ is stored in Ly, i.e. Ly = (t]. Here,
let L;, be a sequence of update methods {tp1, ..., thm]
(m > 1). Suppose an update method ¢ is issued to
zy. If t is compatible with every method in Ly, ¢ is
enqueued into Ly, i.e. Lp = (ta1, .- ., thm, t] and then
t is performed on z;. Thus, every pair of methods
in L, are compatible. Suppose ¢ conflicts with some
method tny and is compatible with every method %3,
(g9 > f) in Ly. There might be a replica z; whose
log Ly includes some method #x; which is compatible
with every method in L but conflicts with ¢, and is
not performed on . Such a method #z; is required
to be performed before ¢ is performed on z;. Here,
another replica z; has a log Ly = (tg1, ..., txi] and
t is issued to z;. The method ¢ conflicts with some
method £, and is compatible with every method %,
(g > u). According to the OBQ property, every pair
of methods tz; in L, and tz; in L are compatible.
Here, t; in Ly is referred to as missing method for a
method ¢ on a replica zy, iff t3; is not performed on z4
and t; conflicts with ¢ [Figure 1(1)]. Here, every miss-
ing method tz; in Ly for the method ¢ is required to
be performed on the replica z; before t is performed.
Then, t is performed on z;. All the methods conflict-



(1) Lh : <th1; ey thf, .oy thm} t
Ly : (tkla ,tk]/, o Lkl

(2) Lh . (thl, “eey *thf, ey thm; tk]’, t]
Figure 1: Exchanging procedure.
T z; o w’J T :Ei"'mj"'mk

/ \f IS
Sl
\

time time

(1) No conflict (2) Conflict

Figure 2: QB protocol.

ing with ¢ are marked * in L and t is enqueued into

L;, [Figure 1(2)]. Every pair of unmarked methods in a

log are compatible. If an update method ¢ is marked in

every log, ¢t was performed on every replica and some
method conflicting with ¢ has been performed after ¢.

Hence, t is removed from every log.

A transaction T issues a request ¢ to the replicas in

a quorum @y:

1. If every method in L is compatible with the
method ¢, ¢ is enqueued into L if ¢ is an update
one and Ack (acknowledgment) is sent to T. If T
receives Ack messages from all the replicas in @,
T sends Do to the replicas and then ¢ is performed
on the replicas.

2. If there is some method in L which conflicts with
t, Ly is sent to the transaction 7.

3. T collects the logs sent by a replica zp, i.e. L = L
U Lp. If T receives responses from all the replicas,
T sends a log Ly, = {t' | ¢’ € (L — Ly) and ¢
conflicts with ¢}, i.e. missing methods for ¢ on zj
to each replica z,. A method in Lj’ is performed
on z;. Then, t is performed on z;. Every method
conflicting with ¢ in Lj is marked.

In Figure 2, a transaction T issues a reuqest t to
replicas zy, ..., &, in the quorum @;. Figure 2 (1)
shows that the method ¢t is compatible with methods
in every log. Figure 2 (2) indicates that ¢ conflicts with
methods in some log.

3 Evaluation

We evaluate the QB protocol in terms of messages
transmitted compared with the traditional quorum-
based protocol. Figure 3 shows a graph where each

node shows a method and link between nodes indicates
a conflicting relation. For example, tnc conflicts with

dsp but is compatible with inc and dec in Figure 3(1).
In the traditional quorum-based protocol, inc and dec
are considered to be write and dsp is read. Figure 3(2)
shows a mapping of the conflicting relation of methods
to the read /write conflicting one. Here, a double circle
shows write and a single circle indicates read. In this
evaluation, we assume a method is write if the method
conflicts with itself. The quorum is decided so as to
minimize N; + --- + N;. For example, Qin. = Qqec
=2 and Qg4,, = 3 for a = 4 in the QB protocol. On
the other hand, Qinc = Qgec = 3 and Qg;p = 2 in the
traditional protocol.

A sequence of methods is randomly generated for !
= number of method types. For each [, possible con-

(1) inc

(2) C@ (dsr) dec 3

Figure 3: Conflicting relation.
flicting relations are obtained. For each conflicting re-
lation, read/write conflicting one is obtained as shown
in Figure 3.

Suppose M,,, and M,,. show the number of mes-
sages transmitted in traditional protocol and object-
based quorum protocol, respectively. Figure 4 shows
%—:: for the number of replicas (nr). In this evalua-
tion, we assume there are three types of methods, inc,
dec, and dsp and conflicting relations among the meth-
ods are obtained as shown in Figure 3. In traditional
protocol, “%- 4 1” replicas are locked for each request.
In object-based quorum protocol, the quorum for each
method is constructed with satisfying the OBQ con-
straint. Figure 4 shows 1}&:"; for the number of replicas.
Here, it is shown that only 62 to 87 percent of messages
are transmitted in object-based quorum protocol.

! MM, %

0.9
0.8
07
206
Sos
0.4
03
0.2
0.1

0

a
)
S
au
)
o

)

2 3 4 5 6 7 8 9 10
Number of replicas

Figure 4: Mo/ My,
4 Concluding Remarks

This paper discussed how multiple transactions invoke
methods on replicas of objects. The object supports

a more abstract level of method than read and write.
It is not required to perform every update method in-

stance on the replica which has been performed on
the other replicas if the instance is compatible with
the instances performed. By using the quorum-based
(QB) locking protocol with the exchanging procedure,
the number of messages transmitted can be reduced
compared with traditional quorum-based protocol.

Reference

[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, 1987.

[2] Garcia-Molina, H. and Barbara, D., “How to As-
sign Votes in a Distributed System,” JACM, Vol
32, No.4, 1985, pp. 841-860.

[3] Silvano, M. and Douglas, C. S., “Constructing Re-
liable Distributed Communication Systems with
CORBA,” IEEE Comm. Magazine, Vol.35, No.2,
1997, pp.56-60.

[4] Tanaka, K., Hasegawa, K., and Takizawa,
M., “Quorum-Based Replication in Object-Based
Systems,” Journal of Information Science and
Engineering(JISE) Vol. 16, No. 3, 2000, 317-331.



