
Vol. 44 No. SIG 16(PRO 20) IPSJ Transactions on Programming Dec. 2003

Regular Paper

A Concurrent Real-time Garbage Collector

Ikuo Takeuchi,
†1

Yoshiji Amagai,
†2

Masaharu Yoshida
†3

and Kenich Yamazaki
†4

In this presentation, we report on the microprogramming implementation and its evalua-
tion of a concurrent real-time garbage collector (GC) for the rea-time symbolic processing
system TAO/SILENT. Our real-time GC is implemented as a set of GC processes which run
concurrently with other Lisp processes. It is based upon a sort of well-known incremental
update algorithm, and it brings in only a little overhead to Lisp primitives. We embedded
a scheduling mechanism that is specific to GC process scheduling, since it is indispensable
to devise a good cooperation scheme between the operating system kernel and concurrent
GC. We also developed a good deal of tiny techniques to make the GC processes as swift as
possible. As a result, our concurrent GC achieves a very small response delay for external
events, that is, when an interrupt event takes place, the corresponding urgent Lisp process
can wake up in less than 131 microseconds for the worst case where more than ten thousand
memory-consuming Lisp processes are concurrently running, and surely in less than 50 mi-
croseconds if those Lisp processes are made with real-time consciousness. These figures are
more than a hundred times as good as most of those appeared in the literature. Our GC can
be said “transparent” in the sense that real-time processes would not be aware of the GC
whether it runs or not, at least with respect to response delay.

1. Introduction

The necessity of real-time garbage collector,
or simply real-time GC ☆, that is bearable to
hard real-time applications has long been ad-
vocated in literature. A lot of real-time GC
techniques have been developed for a variety
of contexts and problem domains 1)∼16). How-
ever, to the authors’ knowledge, a few of them
seem truly applicable to hard real-time appli-
cations that need microsecond order response
time. Hard real-time systems that involve sym-
bolic processing have been classified as a big
challenge 17).

Hard real-time symbolic processing has to as-
sure that no given deadline is ever violated,
where “deadline violation” may include too
early fulfilling before deadlines; nothing special
is added in the context of symbolic processing.
Note that, in an application, there may coexist
real-time processes that should meet deadlines
strictly, and non real-time, or at least, soft real-
time processes whose failure in meeting dead-
lines is not fatal. We use the word real-time
process for those which have severe mission for
real-time response.

In the literature of Lisp languages, the GC

†1 The University of Electro-Communications
†2 NTT
†3 NTT-IT
†4 NTT DoCoMo

is often called an obstacle for Lisp to get being
widely used in real-time systems. The pause
time caused by the GC is only the first half of
the response delay, and the computation per-
formed by a real-time process before it actually
responds to an event should be taken into ac-
count for the second half of the response delay.
We will call the first half a wake-up delay (of the
real-time process) in the paper. It is still a big
problem how to accommodate in real-time sys-
tems sophisticated symbolic processing which
takes unpredictable time ☆☆. This problem is,
however, related to a sort of pragmatics, out-
side the scope of a real-time symbolic process-
ing system design. But it is, at least, important
to guarantee the performance figures of sym-
bolic processing primitives, with which users
can deliberately design their real-time applica-
tion profile. That is, if a real-time GC imposes
much overheads on these primitives, a real-time
process suffers from the poor performance for
its actual computation even if it is waken up
very quickly by an urgent event.

A real-time symbolic processing system
should have the following four features:
• powerful multiprogramming capability,

☆ Hereafter we occasionally use the word GC for both
garbage collection and garbage collector.

☆☆ This is the reason why we do not dare to call our
system hard real-time.

41

42 IPSJ Transactions on Programming Dec. 2003

• interrupt handling facilities that can handle
external events and internal clocks etc.,

• no long inseparable sections inside the sys-
tem, and

• real-time garbage collector.

There may be long inseparable sections in
some sophisticated symbolic processing primi-
tives. For example, automatic rehashing of a
hash table equipped in Common Lisp may be a
long inseparable section; that is, in the course
of rehashing, no process would be able to access
to the hash table if it is implemented without
being aware of real-time processing. Such in-
separable sections should be broken down into
as fine fractions as possible, allowing other pro-
cesses quite often interleave with them with-
out destroying the system integrity. We will
call such breaking down “grinding up an insep-
arable section.” For the worst case, at least,
use of lengthy inseparable sections should be re-
stricted by the runtime system parameters for
serious real-time applications.

The GC also may contain long inseparable
sections inside. The time needed for those is
called pause time in the literature, because no
proper symbolic processing can be done for its
duration. In a real-time GC, at least, on a sin-
gle processor system, these inseparable sections
should be ground up into finer program seg-
ments, thereby they can be interleaved quite of-
ten with other processes, called mutators, that
consume and modify data objects. In other
words, the GC should be incremental because it
is impossible to finish all the collection at once.
In addition, the GC should have a reasonable
speed of collecting unused (unreferenced) data
objects so that it can always supply enough
fresh memory to mutators.

In this paper, we describe the GC imple-
mented by microprogram on the real-time sym-
bolic processing system TAO/SILENT devel-
oped by us. As we explain later, this GC is in a
sense almost transparent to real-time processes.

2. TAO/SILENT

Before describing our GC, we introduce
the TAO/SILENT system very briefly because
some of its features are closely related to the
GC.

SILENT whose CPU LSI was fabricated in
1993 is a dedicated symbolic processing ma-
chine, or it may be simply called a Lisp ma-
chine, which is a direct successor of the ELIS

Lisp machine that was also developed by us in
mid 80’s 18). TAO 19) is a symbolic processing
language based on Lisp with multiple program-
ming paradigms such as object-orientation and
logic programming. TAO is also a successor of
the multiple paradigm language TAO 20) on the
ELIS machine. It inherits the name, but it is
entirely re-designed to be more elegant and ef-
ficient with respect to real-time programming.
But it is enough in this paper to consider TAO
as a Lisp dialect equipped with a rich variety of
data types and multiprogramming capability.

SILENT is a micro-programmable 40 bit
word machine; 8 bits for tag, and 32 bits for
pointer or immediate data. The MSB (most
significant bit) of the car’s 8 bit tag is used for
the GC mark bit. SILENT has 80 bit wide bus
to read/write a cons cell at once.

SILENT is equipped with a 256 K word hard-
ware stack memory. For each 128 word block,
there is a 2 bit dirty flag, each bit of which is
set to 1 when something is written in a word
within the block. We will call the 128 word
block a D-block.

The SILENT machine cycle is 30 nanosec-
onds; that is, the system clock is 33 MHz, which
is considerably slow compared with the current
microprocessors on the market. For the sake of
real-time processing performance, it has no vir-
tual memory mechanism; that is, SILENT is a
real memory machine.

The operating system kernel, or micro-kernel,
is written fully in microcode. It can control up
to 64 K concurrent processes. The shortest life-
time of a process, that is, the minimum time
needed to create a process, give it a null task to
run, and leave it to stop, is 17µsec. The short-
est possible process switching time is 4µsec 21).

Processes can have a priority from 0 to 63
and a protection level from 0 to 3, where
bigger number corresponds to higher priority
and protection level, respectively. The micro-
kernel makes use of a preemptive priority-based
scheduling with round-robin CPU rotation.

One of the important jobs of the micro-kernel
is to manage the efficient usage of the hardware
stack; that is, it has to swap in or out a process’s
stack between the hardware stack memory and
the main memory when processes’ stacks are
going to collide.

For the stack management, four contiguous
D-blocks are grouped as a stack block. In a
stack block, only one process’s stack can ex-
ist. Thus, roughly speaking, if the sum of all

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 43

active processes’ stack sizes is reasonably less
than 256 K words, all of them can coexist on
the hardware stack memory and enjoy fastest
process switching.

There are, however, a few long inseparable
sections in the micro-kernel, mainly for swap-
ping stacks. Long ones take about 70 µsec at
maximum. It is important to note here that
we assume that real-time process does not use
much stack, and thereby a real-time process
itself will not load the micro-kernel down so
much.

3. Basic GC Strategy

The basic strategy of our GC is characterized
by the following four features:

• incremental update with write-barriers,
• mark-sweep,
• no compaction, and
• a set of very concurrent GC processes.

The details of our incremental update write-
barrier algorithm will be described in Section 4.
Roughly speaking, write-barriers check every
pointer modification in order to protect newly
written reference from being out of the GC’s
sight, when it is to be written in a data ob-
ject that the GC has already traversed in a
mark phase. Write-barriers notify the GC of
the overwriting reference that would otherwise
be collected as garbage.

As was depicted in 22), incremental up-
date write-barrier algorithm is better in various
aspects than snapshot-at-the-beginning write-
barrier algorithm 14). For example, it is less
conservative, i.e., more garbages are likely to
be collected, and thereby the cost of traversing
readily to-be-garbage objects is reduced. Write-
barriers are also better than read-barriers, since
modifying data objects is less often than deref-
erencing pointers in most application programs.

In the context of an incremental update GC,
copying method, an alternative to mark-sweep
method, is more often adopted in the present
real-time GCs. There may be pros and cons to
both methods in various conditions, but mark-
sweep is obviously more appropriate for real
memory machines like SILENT.

Compaction is desirable if memory fragmen-
tation is a serious concern. However, we did
not incorporate it in the current implementa-
tion because it would deteriorate real-time per-
formance of our GC and we estimated that the
fragmentation problem is not so serious in our

real memory environment.
A remarkable feature of our GC is that it con-

sists of eight processes that run concurrently
with mutators. We have two marking processes
main and post which run complementarily in
a mark phase, and six mutually independent
sweeping processes each of which corresponds
to a data type category such as cell (two field
data unit), vector (data unit of arbitrarily vari-
able size) and buddy (system data unit of 2’s
power size) ☆.

The main marking process, or main marker
for short, traverses data objects from system’s
root such as the global symbol package list and
the active process table. When starting from
the active process table, it first marks the data
object that represents a process and then scans
its stack. The post marking process, or post
marker for short, marks data objects that have
been notified by write-barriers. Both processes
have their own marking stacks. The GC pro-
cesses are also registered in the active process
table, but their stacks will never be scanned, of
course.

In the literature, contrary to our approach,
sweeping is often embedded in memory alloca-
tion primitives in an incremental manner. How-
ever, in order not to load symbolic processing
primitives with GC overheads, almost all GC
jobs are detached from mutator primitives and
loaded to the separate sweeping processes that
can be very easily interleaved with mutators.
This raises, however, some complication in our
GC.

4. GC Structure

In this section, we describe the GC structure
in some details. Its scheduling will be described
in the next Section 5.

With respect to the GC, there are three
phases: GC-off, mark, and sweep. We call the
mark and sweep phases GC-on phase generi-
cally. In a GC-off phase, the GC processes are
all sleeping. When one of the six data type cat-
egories is detected to be short, then the the GC
wakes up into a GC-on phase. Memory short-
age is detected by memory allocation primitive
such as cons and make-vector. The remaining
amount of free memory is compared with water-
line of the data type category, that is, a fraction
☆ We use the word “data type category” to denote a

generic data type whose basic structure is the same
but differently tagged to represent various derivative
data types.

44 IPSJ Transactions on Programming Dec. 2003

of the total memory amount of that data type
category, which can be adjusted dynamically by
system parameters.

4.1 Mark Phase
When the GC wakes up, the phase is changed

from GC-off to mark, and the main marker and
post marker start running concurrently among
other mutators.

As was described in the previous section, the
main marker begins traversal from the root of
the system to find and mark all data objects
that are reachable from the root. The most im-
portant roots with respect to the real-time GC
are the active process table and runnable pro-
cess queue. The former is a 64 K entry table
which represents the set of the current active
processes. Each entry is either empty or an
active process which is either running, or en-
queued in the runnable queue waiting for the
CPU resource, or waiting for something that
wakes it up to runnable state. Every active pro-
cess has its own stack except for those which are
just to get started. The runnable process queue
is a 64-level priority queue, each entry of which
is a process queue represented by a (shrinkable)
cyclic list; therefore, enqueuing a process may
invoke cons.

After marking some other small system roots,
the main marker scans the active process ta-
ble sequentially from the top to the bottom. It
marks each active process as a data object, then
goes to scan its stack. When it finishes mark-
ing a process, it advances a pointer to the active
process table, called activeT-front.

When it finishes scanning the active process
table, the first mark phase is finished and the
second mark phase is started. Here, a num-
ber of processes may have run during the first
mark phase. Under the principle of incremen-
tal update, it is enough to scan (maybe again)
the stack of the process which has run after the
activeT-front pointer has passed, or when it
stays just at its entry address in the active pro-
cess table. We call such a process “clobbered”
after the Lisp Machine Lisp Manual 23). Note
that even in the second mark phase, newly clob-
bered processes will appear one after another.

In the second mark phase, the main marker
traverses clobbered processes again and again
until it catches up with all clobbered processes
so that no clobbered processes remain untra-
versed. Clobbered processes are sought in a
1K cell bit-table of clobbered processes called
clobBiT, each bit of which corresponds to an

active process table entry. Since scanning of
this bit-table may comprise a big inseparable
section, there is another 16 cell bit-table called
clobBiTBiT, which is a bit-table of the former
bit-table; if at least one bit of a clobBiT 64 bit
cell is set, the corresponding bit is set 1 in a
clobBiTBiT cell. Catching-up is detected by
knowing the number of clobbered processes be-
comes zero. Bits in these bit-tables are set
by the micro-kernel in a mark phase, and are
cleared by the main marker. Note that the
micro-kernel closely cooperates with the GC on
these bit-tables.

To make clobbered process marking quick,
hardware stack dirty flag is used to decide
whether or not a D-block should be scanned
again. If the dirty flag of the D-block is not set,
it is safe to say that nothing has been changed
in the D-block since the last scan, and thereby
its scan can be omitted. The two dirty flags
for a D-block work independently for different
purposes; the other one is used to omit unnec-
essary swapping from the D-block to the main
memory.

4.2 Write-barriers in Mark Phase
In a mark phase, fields of an object already

traversed and marked may be changed to ref-
erence to another data object instead of what
it has been referencing. If nothing special is
done here, the newly written reference will not
be known by the GC, and the newly referenced
object would be collected as garbage. Write-
barrier is a well-known mechanism to prevent
such accidental reclamation. By virtue of dirty
flags, write operation on stack memory does not
need a write-barrier.

In the TAO/SILENT microprogram, modifi-
cation of a field of a data object is done, in
principle, by a micro-subroutine call, classified
as wcad routines. There are about thirty write-
barrier subroutines that can fit a variety of
conditions about registers and field positions,
mainly for the sake of performance optimiza-
tion. For simplicity, we describe them with a
little abstraction, and unless otherwise stated,
here we restrict data objects only to cons cells.

As was described in Section 2, the mark bit of
a cell is the MSB of the car’s tag. Hence, which
modification, car or cdr, matters. In a mark
phase, the modification of cdr, wcd is a little
simpler than that of car, wca, because it need
not care about marking bit preservation. The
details of wcad routines in the mark phase is
described in Fig. 1, where shallowly markable

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 45

(wca addr data) =
(cond ((marked? addr) ; preserve the mark bit

(write-car-with-mark addr data)
(shallow-mark data)) ; do shallow mark
(:else (write-car-without-mark addr data))))

(wcd addr data) =
(seq (write-cdr-without-mark addr data)

(shallow-mark data))
(shallow-mark data) =

(cond ((no-need-to-mark? data) (nop)) ; immediate data or the like
((marked? data) (nop))
((shallow-markable? data) (mark data))
(:else (make-mark-bit-on data)

(enter-to-GC-post data)))

Fig. 1 wcad routines in the mark phase.

data include those which can be marked quickly,
say, within 1 or 2µsec: 64 bit double floating
numbers, bignums, complex numbers, charac-
ter strings, etc. If an unmarked data object
written into a field is not shallowly markable, it
is reported to the post marker by posting it to a
data buffer called GC post. The GC post is sim-
ply a stack to which write-barriers push some-
thing and from which the post marker pops it
off. When the post marker gets CPU, if its own
stack is empty, it pops off from the GC post
a new data object to be marked, otherwise it
continues its own marking with its own stack.
Note that the GC post and the post marker’s
stack are independent.

Posted data is marked before being posted.
In the well-known “tricolor” terminology 4),
posted data objects can be said colored gray,
but it is seen as black from write-barriers, since
the mark bit is set. To sum up, there are two
marking processes and there is another stack
that stores gray objects.

4.3 Sweep Phase
When both markers finish their work ☆, the

GC enters a sweep phase, and six sweeping
processes, or sweepers for short, start running.
The six sweepers correspond to the TAO data
type categories: cons cell, vector, buddy, string
body, symbol, and binary program blocks called
dytes. Sweepers are mutually independent and
they are scheduled in a round-robin manner,
being interleaved with mutators. Each sweeper
sleeps as soon as the corresponding data type
category is completely swept.
☆ At the last stage of a mark phase, the main marker

and the post marker run consecutively to finish the
mark phase with a minimum interference by muta-
tors.

Sweeping proceeds from the top to the bot-
tom for every data type category. Each sweeper
has a pointer variable representing its sweep
frontier. It should be noted that free memory
blocks (or chunks) can exist ahead of the fron-
tier, because the GC starts when quite a few
amount of chunks still remain and some chunks
may be concurrently created by explicit deallo-
cation by the system.

4.4 Write-barriers in Sweep Phase
With our concurrent sweepers, write-barriers

are needed also in a sweep phase to prevent
live objects from being collected as garbage, be-
cause modifying a field of a data object may
destroy the mark bit information. Moreover,
newly allocated data objects should also be pre-
vented from being collected as garbage.☆☆ The
latter may not be, in general, called a write-
barrier, but we include it here because the pur-
pose is the same.

In a sweep phase, the modification of car, wca
has to preserve the modified data’s mark bit,
because if it has been set, the corresponding
sweeper does not scan it yet. But the modifica-
tion of cdr needs no check as shown in Fig. 2.

The allocation of a new data object ahead
of the corresponding sweep frontier has to set
the mark bit, which will be soon erased by the
sweeper. For example, cons sets the mark bit
of a newly cons’ed cell if it is ahead of the cell
sweep frontier. Note that cons in a mark phase
never sets the mark bit, so that very short lived
cons cells created in a mark phase are more
likely to be collected as garbage in the succeed-
ing sweep phase.

☆☆ Recall that our GC does not do copying or com-
paction.

46 IPSJ Transactions on Programming Dec. 2003

(wca addr data) =
(if (marked? addr)

(write-car-with-mark addr data)
(write-car-without-mark addr data))

(wcd addr data) = (write-cdr-without-mark addr data)
Fig. 2 wcad routines in the sweep phase.

4.5 Bypassing Write-barriers
Some write operations in the system mi-

crocode do not need write-barriers. We have
nine rules for omitting write-barrier check in
order to get rid of the write-barrier overhead.
For example, if it is known that a write opera-
tion writes only immediate data in the cdr field
(or equivalently, writes immediate data into a
vector — See Section 4.6), it is sure that no
shallow-mark is needed in a mark phase. We
listed eight of such typical rules as the mi-
crocoding standard. The ninth rule, however,
only says “if it can be proved that no write-
barrier is needed here, omit it with a proof com-
ment.” An example of the ninth rule applica-
tion can be found in process queue handling in
the micro-kernel. Processes of the same prior-
ity are enqueued in a (shrinkable) cyclic list of
cons cells. When a process is to be dequeued
from the queue, an operation like (setf (cdr
x) (cddr x)) is done.☆ This has to be checked
by a write-barrier, in general. But one can eas-
ily prove that no danger will be incurred by
omitting the check. A number of small opti-
mization techniques like this are piled up here
and there to minimize the micro-kernel over-
head.

4.6 Grinding up the GC
Both markers can be ground up into very

fine program segments as can be easily under-
stood, considering parallel marker implementa-
tion with a tricolor marking model. Coloring
a white object gray, or coloring a gray object
black is a simple separate action, and retain-
ing such an invariant that no white object is
directly pointed to solely from black object(s)
does not involve much computation. Either the
first and second mark phases, or stack mark-
ing and post marking make no difference with
respect to marker grinding.

It is a little harder to grind up the sweepers
as fine as the markers, however. The difficulty

☆ We borrow the expression from Common Lisp for
explanation convenience. In TAO, it is written as
(!(cdr x) (cddr x)) or (!!cdr !(cdr x)).

arises from the facts that variable-size data such
as vectors involve a little complicated memory
management and that such basic constant-size
data as cons cells should be reclaimed as big a
chunk as possible for the sake of efficiency, as
will be described below.

Variable-size data type categories: vector,
buddy, string body, and dytes may be explic-
itly deallocated by the system microcode if the
system knows that the data object has been ref-
erenced by only one pointer, which is often the
case in TAO/SILENT. Hence, these sweepers
simply share the code of explicit deallocation.
This implies that each time a data object of
these types is collected as garbage, everything is
neat with respect to the memory management
status. Hence, it is a simple matter to grind
up these sweepers to some fine grain. However,
because it needs some bounded amount of com-
putation to merge newly reclaimed data into
adjacent free chunk(s), it is difficult to grind
them up equal to the granularity of the mark-
ers. Free chunks of these variable-size data type
categories are classified according to their sizes,
in a table whose entries correspond to roughly
2’s power sizes so that allocation does not in-
volve search in the chunk chain.☆☆

For cells, it is not as simple as could be imag-
ined. A simple-minded implementation would
collect each unused cell and link it to free cell
chain one by one. In that case, it is quite
simple to grind up the cell sweeper. However,
this simple-minded implementation suffers from
poor performance, because it invokes memory
write operation for every reclaimed cell.☆☆☆

Our cell sweeper, instead, collects contigu-
ous free cells as one free chunk as long as
the sweeper is not preempted by the sched-
☆☆ It is also easy to grind up the symbol sweeper. TAO

collects symbols as garbage if they are not likely to
be referenced any more. For the symbol GC, each
symbol has two marking bits, one of which is set
only via its symbol package. But we do not go into
further details, because it is not much relevant to a
real-time GC.

☆☆☆ Write operation takes more machine cycles than
read operation in SILENT.

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 47

N first chain pointer cell area
block info

@

@

@

(N-1) free chain pointer

(N-2) free chain pointer

free cell chunk
begins from
here ...

... ...

1 free chain pointer

N’ free chain pointer ... to here

... ...

(N’-1) free chain pointer

... ...

1 free chain pointer

0 free 0
last free cell
in this cell
area block

Fig. 3 Internal structure of a free cell area.
A cell area is a 32 K cell memory block. Its
header contains the link to the first free chunk
below. All but the last cell need not be initial-
ized since a register that points to the first free
cell serves as a cache. Of course, this is trivially
realized in a copying or compactifying GC.

uler. Only one write operation is performed
per chunk in a time slice (See Fig. 3). For ev-
ery live cell, however, the sweeper must clear its
mark bit. An experiment shows that if the cell
sweeper writes something in every reclaimed
cell, it slows down by a factor of two.

Free chunks that have been existing before
the GC starts can be easily merged with those
newly reclaimed. From the allocator’s view
point, the free cell pointer into a chunk can
be cached in a register, and typically, cons has
only to advance the free cell pointer and de-
crease the remaining size of the chunk, which is
also cached in another register, without refer-
ring to the contents of free cells unless it reaches
the last cell of the chunk. This is the “no write
as far as possible” principle prevailing in the
TAO/SILENT implementation.

This straightforward improvement brought in
some complexity in the logic of cell sweeper
grinding, because the cell sweep frontier and
free cell pointer can arbitrarily interfere each
other by racing caused by interleaving. This
was the most complicated and hard-to-debug
part in our GC. The algorithm and its cor-
rectness proof are big enough and deserve to be
explained in an independent paper.

4.7 No Write as far as Possible
The “no write as far as possible” principle is

applied everywhere in our GC. Typical one in
the cell sweeper was described in the previous

section.
Each vector has only one mark bit at its

head’s car. The cdr of the vector head con-
tains the vector size. Writing into a vector el-
ement need not care about mark bit. That is,
vector element assignment needs only wcd type
write-barrier that is lighter than wca. It also
makes the GC possible to omit reading or writ-
ing mark bits in vector elements. By virtue of
the vector size description in the head’s cdr, the
vector sweeper can skip lightly from one vector
(or chunk) head to a vector (or chunk) head
immediately below.

Each buddy has only two mark bits at its
head cell’s car and its last cell’s car. Buddy has
a size of 2’s power and is used for various system
internal data types. Pointer to a buddy con-
tains its size information embedded in the tag
or the address part so that no header informa-
tion is needed to be stored in the buddy itself.
This saving gives an advantage of lighter write-
barriers. On the contrary, the buddy sweeper
has to know the size of live buddy by examining
the estimated last car’s mark bit by doubling
the size estimation every time until it meets the
answer, i.e., corresponding marked last cell’s
car.

To make variable-size data sweepers fast, the
contents of variable-size data are not cleared
when it is reclaimed, except for some minimal
administrative information at chunk’s bound-
ary such as forward/backward free chain point-
ers. Hence, chunks may contain obsolete data
references inside. When they are to be reused
by later allocation, these useless and dangerous
references should be hidden from the marker’s
accidental traversal. Such an accident can, of
course, be simply circumvented by allocation
time initialization. But the initialization would
take arbitrarily long time if, say, a newly allo-
cated vector is very large. Hence, a big vec-
tor or buddy can have an “under initializa-
tion” state so that the markers do not go fur-
ther into the vector or buddy elements. Thus,
large data block initialization with no non-
referencing data can be safely interleaved with
other processes.

4.8 Hardware Support and Coding
Techniques

SILENT has no very special hardware fea-
ture devoted to the GC except for the hardware
dirty flags described in Section 4.1. Some of its
symbolic processing architecture, however, con-
tribute to enhance the GC performance.

48 IPSJ Transactions on Programming Dec. 2003

Write-barriers are implemented as a micro-
subroutine which is called, say, by the following
microinstruction form:☆

(<ALU operation ... > (bsr gcm wca))

where bsr denotes multiple entry subroutine
call to wca. One of the three entries of a
wca routine will be selected by the condition
gcm, which is an alias of psw3-2, which means
bit 3 and bit 2 of PSW (processor status word).
The SILENT PSW has four user definable bits
(bit 3-0). Our GC uses bit 3-2 to represent one
of the three phases of the GC, and uses bit 1
to distinguish the GC-off phase from the GC-
on phase. This implies that no explicit check
action beforehand is needed to know in which
phase it is at present. If the gcm condition is
used with a simple multi-way branch instruc-
tions br and bsr, the phase check is completely
transparent (i.e., overhead-less) when no spe-
cial action for the GC is needed.

Multi-way branch instructions are more or
less essential to implement a dynamic language
like TAO. Our GC enjoys its functionality
extensively to dispatch the marking disposal
according to about sixty data types in TAO.
In the microcode of the markers (including
the shallow marker), 64-way branch case state-
ments appear at seven places for efficiency,
which are very similar to each other but def-
initely different in some portion. This is a sort
of “inline code” optimization.

With the aid of such inline coding, the inner-
most loop for stack scan consists of only two
dynamic steps if it finds no-need-to-mark ob-
ject in a stack word. Hence, there is no room
to check hap-interrupts (described soon later)
in the loop. In a rare case in which there is no
data object reference in a 128 word D-block, 256
micro-steps (7.7µsec) will run without being in-
terleaved; this is one of the longest inseparable
sections in our GC.

There are a number of other small coding
techniques around our GC. For example, to
grind up the cell sweeper thoroughly, the main
sweep loop, rather big one, is duplicated with
alternating register assignments, because if only
one set of register assignment is used, regis-
ter value update needs superfluous one micro-
cycles. By this loop duplication, the (short-
est) interrupt check interval is shortened by one
micro-step to 4 micro-steps.
☆ As can be seen, microprogram itself is written in the

S-expression

5. GC Scheduling

The scheduling policy is one of the most cru-
cial points in a concurrent real-time GC. In this
section, we describe how the GC is invoked, and
how GC processes are scheduled among muta-
tors.

Eight GC processes are scheduled slightly dif-
ferently from mutators. Mutators are given
the CPU time by a priority-based preemptive
scheduling with round-robin rotation. Each
process in the same priority queue is given an
8 millisecond quota. On the other hand, the
GC processes are not enqueued in the priority
queues, and they are scheduled by the degree of
memory shortage (called GC urgency), instead.
The priority of all GC processes is set to 4, an
apparently lower priority which does not hin-
der important process scheduling even when it
is referred for priority comparison.

5.1 General Flow of Interrupt Dis-
posal

Before going further, we had better introduce
here some peculiar points on the SILENT inter-
rupts. SILENT has two level interrupts: micro-
interrupt and hap-interrupt. The former is a
usual low-level hardware interrupt that takes
over the control from currently executed mi-
croinstruction. Maskable micro-interrupts are
caused typically by timer overflow and exter-
nal device requests. As can be easily under-
stood, micro-interrupts cannot directly invoke
the process scheduler, because they can happen
anywhere in the system’s inseparable primitive
microcode.

The hap-interrupt is not a genuine hardware
interrupt, where hap stands for “happen.” It
is notified to the system by setting the corre-
sponding PSW bit and detected by an explicit
hap check in a microinstruction, which can be
done in parallel with usual arithmetic micro-
operation. The causes of hap-interrupts are
stack overflow, machine-cycle counter down-to-
zero, special communication channel requests,
and user raised hap-event. The last one is called
simhap (stands for “simulated hap”), which can
be set by a special instruction field in a microin-
struction.

Thus, an external event first causes a micro-
interrupt, then its disposal routine sets simhap
condition if necessary, and eventually some hap
check detects the event at a timing in which
there remains no dangling pointer or halfway
computation. If a hap urges process scheduling,

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 49

then the micro-kernel selects the next process
to run and, if necessary, swaps its stack into
the hardware stack memory before passing the
control to the process.☆

The time between the first micro-interrupt
acceptance and the first microinstruction exe-
cution of the process waken up by the interrupt
is the first half of the response delay, i.e., wake-
up delay defined in Section 1.

5.2 GC Invocation
The GC processes first get started at boot-

strapping and immediately go to sleep. When
the free memory of any one of six data type
categories is detected to become short by the
corresponding allocation routine such as cons
and make-vector, a small subroutine is called
to set simhap condition for invoking the GC.
Soon, a hap check detects the simhap and calls
the scheduler. This indirection for calling the
scheduler is necessary since the allocation rou-
tine mostly detects the memory shortage deep
in an inseparable section.

Checking the memory shortage itself is an
overhead to the allocation routine, however;
it is not negligible if the routine is very light
as cons which takes typically only 5 micro-
cycles. Hence, cons does the check only when
the free cell pointer is to go across the bound-
ary of a 32 K cell memory block. That is, the
check is done with the probability far below
one thousandth; thereby the overhead is neg-
ligible. Other data type categories have bigger
allocation routines so that the waterline check-
ing overhead is buried in the allocation bureau-
cracy.

It is an important issue how high each water-
line should be set to detect the memory short-
age. If memory consumption rate is high, wa-
terline should be also high for the GC to catch
up with mutators as will be show in Section 6.3.

5.3 GC Urgency
In a GC-on phase, GC processes are sched-

uled according to parameters representing the
urgency of the GC. The GC urgency is clas-
sified into 4 degrees depending on the amount
of remaining free memory. Roughly speaking,
for the lowest urgency, GC processes run at ev-
ery 9th scheduling, but for the highest urgency,
GC processes run at every second scheduling;
that is, GC processes and mutators run alterna-
tively, unless urgent real-time processes of pri-

☆ During swapping-in, another process of higher pri-
ority may preempt the process, of course.

Table 1 GC urgency.

urgency criterion GC frequency
0 1 > F > 1/2 every 9th
1 1/2 ≥ F > 1/4 every 5th
2 1/4 ≥ F > 1/8 every 3rd
3 1/8 ≥ F every 2nd

ority more than 47 are waiting for the CPU
time. Defaulted quota given to the GC pro-
cesses is 15.5 milliseconds. Thus, in most ur-
gent situation, the GC get twice as much CPU
time as mutators. In a GC-on phase, the GC
urgency is updated every time a GC process is
about to run.

The rule about the GC urgency, which was
determined empirically, is shown in Table 1,
where F means the ratio of two measures of the
data category whose shortage has invoked the
GC: the amount of available free memory and
the waterline. The GC frequency denotes an
approximate scheduling chance of GC processes
among mutators.

In this setting, we observed that the busiest
GC scheduling occurs only a few percents of
runs of GC processes around the tansition from
mark phase to sweep phase in a GC invocation,
even in severest tests. Some of concrete data
will be presented below.

6. Evaluation

We evaluated the GC performance in two
ways: counting the overhead micro-cycles in-
duced by this concurrent GC, and measuring
the time (in fact, counting micro-cycles) of
benchmark program execution.☆☆

6.1 Overhead Micro-cycles
Dynamic steps for write-barriers are the main

overhead brought in to Lisp primitives in our
implementation. Table 2 shows the number of
machine-cycles for write-barriers that are not
needed in a stop mark-sweep GC.
where a range m–n means that m is the mini-
mum overhead and n is the maximum overhead,
i.e., the overhead for the worst case in which ev-
ery branch goes to longer code path and every
memory access misses the cache. Writing into
an object slot and vector element has the same
overhead as rewriting cdr as was described in

☆☆ SILENT has a micro-cycle counter and a number of
other statistics counters of a micro-cycle resolution.
Fluctuation of the time measurement arises from the
asynchronicity of external interrupts and periodical
DRAM refreshing that delays main memory access
3 or 4 cycles.

50 IPSJ Transactions on Programming Dec. 2003

Table 2 Overhead for write-barriers.

GC-off mark sweep
cons 0 0 1–2
rewriting car 1 5–37 5–11
rewriting cdr 1 3–26 1

(defun fib (n)
(if (<= n 1)
1
(+ (fib (1- n)) (fib (- n 2)))))

Fig. 4 Fibonacci function.

Section 4.5.
There is no overhead in access or assignment

to a local variable, function call, or such read
access primitives as car, cdr, and vector-ref.

As was described before, waterline check
overheads are negligible.

Only a small overhead is incurred in the
process management of the micro-kernel. For
example, in a GC-on phase, additional four
machine-cycles are needed to make a runnable
mutator run because of the GC urgency check.
However, setting the bit-tables for a clobbered
process takes 40 to 50 machine-cycles every
time a clobbered process releases the CPU; this
is the worst overhead incurred in the micro-
kernel.

6.2 Benchmark Programs
We used the following two types of scalable

benchmark programs to evaluate the actual GC
performance: mfib-loop and cell-eater.

(1) mfib-loop

This is a benchmark written in TAO mainly
for measuring wake-up delay in most severe con-
ditions (See Appendix A.8). It looks a lit-
tle complicated, but it is a simple extension
of recursive definition for Fibonacci function in
Fig. 4.

Every recursive call is replaced by a pro-
cess spawning and two returned values are
passed from the spawned processes by a mail-
box, which is a primitive data type for block-
ing interprocess communication with an un-
bounded buffer. This simple extension does
not consume cells so much other than those for
runnable process queue and mailboxes. So a
simple trick is embedded to waste more cells
and enlarge the marking root.

(2) cell-eater

This is a benchmark to measure the GC
speed rather than its response time (See Ap-

Table 3 Result of (mfib-loop 17 200 120 70).

time [µsec] percentage
elapsed time 1,149,427,948 100.00
net computation 556,703,988 48.43

micro-kernel (1) 149,980,058 13.05

GC processes (2) 442,743,902 38.52

main marker (3) 344,893,464 30.00

post marker (4) 5,973,642 0.52
cell sweeper 78,826,828 6.86
vector sweeper 2,038,127 0.18
buddy sweeper 8,242,238 0.72

(1) management of processes and stacks
(2) sum of all GC processes’ CPU time
(3) big root in this benchmark
(4) small in this benchmark

pendix A.9). cell-eater calculates the sum of
integers from 1 to n. There is only one mutator
which wastes cells at its full speed. However, we
imposed it a reasonable condition that it must
access at least once to every cell it has cons’ed.
The more are live cells, the more difficult is the
GC to catch up with the mutator because a
mark phase takes more time and the mutator
takes less time to use up remaining free cells.
Hence, the cell waterline should be raised if the
number of live cells is raised. We measured the
marginal percentage of live cells for given cell
waterline.

6.3 GC Speed
We first show the GC speed for both bench-

marks. We did a lot of experiments with vary-
ing parameters, but the performance figures can
be well represented by the following results.

(1) (mfib-loop 17 200 120 70)

This benchmark holds a big marking root
(processes and their stacks), but does not use
so much cells (Table 3). Here we set the size
of cell area 544 K cells to make the time for
GC-off phases and GC-on phases even. In this
setting, one GC invocation has to scan as much
as 1.6M words in mutator stacks, 95% of which
are swapped out into the main memory when
they are scanned. Stack dirty flags save 38% of
D-block scanning. The number of GC invoca-
tions is 753 and the total number of spawned
processes are 1,038,363. Here, figures for some
sweepers are omitted.

In this somewhat GC burdening benchmark,
each GC invocation behaves quite differently.
Some need only less than 40 runs of GC pro-
cesses with the lowest GC urgency, but a few
others (below 5 percents of the entire GC’s)
need more than 150 runs of GC processes with
three to five out of them running in the high-

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 51

Table 4 Result of (cell-eater 1000000 1000 live).

time [µsec] percentage
elapsed time 795,993,783 100.00
net computation 604,767,619 75.98

micro-kernel (1) 1,859,869 0.23

GC processes (2) 189,366,296 23.79

main marker (3) 2,023,024 0.25

post marker (4) 107 0.00

cell sweeper (5) 186,869,769 23.48
vector sweeper 30,655 0.00
buddy sweeper 18,422 0.00

(1) nearly zero, of course
(2) about 1/4 of elapsed time
(3) little
(4) further little
(5) speed of cell reclamation

est GC urgency. The curve of GC urgency
history in a GC invocation takes a gradual
mountain-like shape whose summit is located at
the boundary of the mark phase and the sweep
phase where the GC and mutators compete
most critically. A typical GC urgency history is,
say, 0(7), 1(30), 2(55) in mark phase and 2(8),
1(1), 0(4) in sweep phase where m(n) means
urgency m runs n times in a row. Scheduling
based on the GC urgency certainly resolved the
well-known problem of the transition from mark
phase to sweep phase in a concurrent GC.

For bigger n, say 22, the GC still catches up
with those mutators, where the maximum num-
ber of concurrent processes is 34,817. We once
ran concurrently a set of this benchmarks with
varying parameters, giving bigger loop count
for each benchmark. The program ran over 100
days without trouble.

(2) (cell-eater 1000000 1000 live)

For live = 0 and 8 M free cell area, we have
the result shown in Table 4. The number
of GC invocations is 116, and the number of
spawned process is 1. It shows that the speed
of cell reclamation is about 3 times as much as
cell consumption in this simple setting.

Figure 5 shows the marginal percentage of
live cells for given cell waterline (in percentage).
As can be seen, even in this pathological situ-
ation, our concurrent GC can tolerate nearly
50% of live cells.

6.4 Wake-up Delay
Response delay is measured by running con-

currently a trivial real-time process which only
receives the interrupt signal with the time
stamp of its arrival to SILENT, and calcu-
lates the time difference from the current time,
i.e., wake-up delay in our terminology. In this

Fig. 5 Marginal live cell percentage in cell-eater.

Fig. 6 Distribution of wake-up delays in GC-off
phase.

Fig. 7 Distribution of wake-up delays in GC-on
phase.

measurement, external events are raised every
33.3 milliseconds from the front-end processor
of SILENT, having animation graphics in mind.

(1) (mfib-loop 17 200 120 70)

Totally, 33,963 interrupts take place. In the
setting described in Section 6.3, about a half of
them take place in GC-off phases, and the other
half in GC-on phases. Figures 6 and 7 show
the distribution of wake-up delays.

Table 5 summarizes the resulted delay in

52 IPSJ Transactions on Programming Dec. 2003

Table 5 Resulted delay for mfib-loop.

samples average σ worst
delay delay

total 33,963 14.998 13.890 119.070
phase

GC-on 15,944 11.280 6.393 87.510
GC-off 18,019 18.289 17.447 119.070

Table 6 Resulted delay for cell-eater.

samples average σ worst
delay delay

total 23,590 11.039 1.319 19.320

µsec, where σ denotes standard deviation.
Contrary to most people’s intuition (but so

we anticipated), the average wake-up delay
is smaller in GC-on phases than in GC-off
phases. The reason is obvious; GC grinding-
up achieves much finer grain than the micro-
kernel, which contains at worst 70µsec insepa-
rable stack swapping.

However, the worst wake-up delay does not
depend on the GC phases. Several all day long
measurements with finer logs reported that the
worst measured wake-up time was 130.3 µsec.
We found that in that case there is a hap-
interrupt check 8 steps before. So we can more
or less safely estimate the worst wake-up delay
is around 131 µsec for this benchmark, which
is the severest one conceivable with respect to
wake-up delay.

(2) (cell-eater 100000 1000 0)

As can be easily imagined, this test brings
in much better result with respect to wake-up
delay, because process switching time is best
possible in this benchmark. If the user wants
a truly real-time application on TAO/SILENT,
he/she surely designs the system configuration
not so far different from this. In Table 6 (wake-
up delay in µsec), we do not discriminate GC-
off and GC-on phases, since they make little
difference.

The reason for this small delay is that this
benchmark does not contain lengthy insepara-
ble sections. Our principle to microcode TAO
primitives is “do not write inseparable section
that needs more than 30 µsec.” If this is strictly
obeyed, about 50 µsec wake-up delay would be
guaranteed in practical situations.

6.5 GC-post Capacity
The post marker accepts “gray objects”

posted by write-barriers. It is important to
make sure that the GC-post will not overflow
even in the worst case. The following program

is conceivably a most malicious one:

(defun write-barrier-teaser (count)
(let ((x (list 0)))

(dotimes count (!(car x) (list 1))
(!(car x) (list 2))
(!(car x) (list 3)))))

With 8 M cells and count=100,000,000, the
observed maximum usage of the GC-post was
about 40,000 words, which is smaller than the
intuitively designed GC-post size, 64K words.
We can say the GC-post is tolerable against this
malicious write-barrier teaser. It is, of course,
possible to make further worse setting against
the GC-post, but we may not care about such
pathological cases.

7. Concluding Remarks

In the last of Section 1, we said that our GC
is transparent to real-time processes. Now, it is
clear why we could say so. If real-time processes
do small urgent work without consuming much
amount of resources, its wake-up delay is the
main concern, since in our GC, even in a GC-on
phase, Lisp primitives such as car and cons do
not suffer from GC overheads. We showed that
major wake-up delays may not be derived from
GC but from the micro-kernel and lengthy Lisp
primitives. In other words, real-time processes
will seldom be aware of the GC; they can see
only the overheads of the micro-kernel and Lisp
itself, however. This is exactly what we mean
by the phrase “our GC is transparent.”

The wake-up delay of the figures, 50–
160 µsec, not milliseconds, turned out to be
more than order of magnitudes smaller than
other related researches, known up to 1999 ex-
cept for those done by Roger Henriksson 7),
when we finished the implementation. Note
that the machine on which we implemented
the GC is considerably slower than the cur-
rently available processors; it’s clock is only
33 MHz. We wonder why this simple idea based
upon incremental update with write-barriers
has not been fully and thoroughly realized so
long. Nothing very special and novel is involved
in our basic algorithm and implementation.

Here we have to mention Henriksson’s out-
standing work which achieved a comparable
wake-up delay with our GC. His real-time
GC is, as he called, a semi-concurrent GC, in
which the incremental GC work is interleaved
only with low-priority processes, and gets be-

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 53

Appendix
(defun mfib-loop (n k i j)

(let ((v (mfib n i j)) (c 0))
; The meaning of :until and :while may be obvious.
(loop (:until (= c k) ’congratulation)

(:while (= v (mfib n i j)) c) ; make sure the result is correct.
; “(!” ≈ “(setf”
(!c (1+ c)))))

(defun mfib (n i j)
(if (<= n 1) 1

; (make-process 20 0) for priority 20, protection level 0.
(let ((p1 (make-process 20 0))

(p2 (make-process 20 0))
; The following line ≈ multiple-value-bind of Common Lisp.
; make-mailbox returns two values: the output port and input port.
; Two dots .. designate that two values will be received.
; mbo for output port and mbi for input port.
((mbo mbi) ..(make-mailbox)))

; (make-chore fn args) makes a chore: pair of a function and its arguments.
; (task proc chore) gives a process a chore to be executed.
(task p1 (make-chore #’mfib+ (list i mbo (1- n) i j)))
(task p2 (make-chore #’mfib+ (list j mbo (- n 2) i j)))
(+ (receive-mail mbi) (receive-mail mbi)))))

; check the sum
(defun mfib+ (m mb n i j)

(if (= (sigma-2 (mfib+sub m mb n i j)) (sigma m)) #t (error)))
; call mfib when the process’s stack grows at maximum — make the marking root bigger,
; nevertheless, returned value is the series sum.
(defun mfib+sub (m mb n i j)

(if (= m 0)
(block (send-mail mb (mfib n i j)) (list (list 0)))
(cons (list m) (mfib+sub (1- m) mb n i j))))

; get the sum of series embedded in a cell wasting list.
(defun sigma-2 (list) (if (empty? list) 0 (+ (caar list) (sigma-2 (cdr list)))))
; normal series summation for reference
(defun sigma (n) (if (= n 0) 0 (+ n (sigma (1- n)))))

Fig. 8 A process spawning Fibonacci function.

(defun cell-eater (p q r)
; (make-deep-list r) makes a deep list structure consisting of exactly r cells.
(let ((live-list (make-deep-list r)) (c 0) (k (sigma q)))

(loop (:until (= c p) #t)
(:while (= k (sigma-list (list-n q))) (error))
(!c (1+ c)))))

(defun list-n (n)
(if (= n 0) (list (list (list (list (list (list (list (list 0))))))))

(cons (list (list (list (list (list (list (list n)))))))
(list-n (1- n)))))

(defun sigma-list (lst)
(if (empty? lst) 0 (+ (caaaar (caaaar lst)) (sigma-list (cdr lst)))))

Fig. 9 Cell eater.

54 IPSJ Transactions on Programming Dec. 2003

hind when a limited number of high-priority
processes run in order to assure quick response
for them. That is, low-priority processes and
high-priority real-time processes are dealt sepa-
rately with respect to memory allocation. Hen-
riksson’s approach is akin to ours in pursuing a
minimal response delay, but different in the de-
gree of concurrency. Our GC is very conscious
of the GC performance as well as the response
time as could be seen in our overloading experi-
ments, while his prototype implementation and
experiments were not.

The following can be said as the reasons of
the remarkable performance of our GC:

(1) Inseparable sections can be easily ground
up by virtue of two stage interrupt handling.

(2) The GC and the operating system,
namely the micro-kernel, are cooperating so
intimately that the GC can have its own
scheduling policy and enjoy the light-weight
process mechanism.

(3) Our GC is simple; it does not employ
compaction.

(4) A number of tiny but non-trivial pro-
gramming techniques are piled up.

(5) A few hardware features assist the imple-
mentation.

Among all, we would like to emphasize the
effectiveness of the cooperation of the GC and
the operating system. The GC is another kind
of virtual memory mechanisms, which provides
an inexhaustive fountain of recycled memory
though there is only a finite amount of memory
in a machine. In other words, the GC can be
said a time-axis virtual memory, while the usual
one is space-axis virtual memory; the latter has
long been one of the main issues of operating
systems research. Why not for GC? We insist
that the GC, especially real-time GC, should be
one of the most important topics in the operat-
ing systems research.

Some of the above-mentioned reasons and re-
marks may not be directly applicable to other
GC implementations on the current stock ma-
chines. Considering the astonishingly growing
speed of micro-processors, however, we believe
that the techniques of this simple-minded but a
little tough-to-implement GC can be applied to
future symbolic processing systems with much
higher performance figures.

References

1) Appel, A.W., Ellis, J.R. and Li, K.: Real-time
Concurrent Collection on Stock Multiproces-
sors, ACM SIGPLAN Notices, Vol.23, No.7,
pp.11–23 (1988).

2) Henry, G. and Baker, J.: List processing in
real time on a serial computer, Comm. ACM,
Vol.21, No.4, pp.66–70 (1978).

3) Boehm, H.-J., Demers, A.J. and Shenker,
S.: Mostly parallel garbage collection, ACM
SIGPLAN Notices, Vol.26, No.6, pp.157–164
(1991).

4) Dijkstra, E.W., Lamport, L., Martin, A.,
Scholten, C. and Steffens, E.: On-the-fly
garbage collection: An exercise in Coopera-
tion, Comm. ACM, Vol.21, No.11, pp.966–975
(1978).

5) Henriksson, R.: Scheduling real time garbage
collection, Technical Report LU-CS-TR: 94-
129, Department of Computer Science, Lund
University (1994).

6) Seligmann, J. and Grarup, S.: Incremental
Mature Garbage Collection Using the Train
Algorithm, Proc. ECOOP’95, Ninth European
Conference on Object-Oriented Programming,
Lecture Notes in Computer Science, Vol.952,
pp.235–252 Springer-Verlag, New York, NY,
USA (1995).

7) Henriksson, R.: Scheduling Garbage Col-
lection in Embedded Systems, Technical
Report LUTEDX/(TECS-1008)/1-164/(1998),
Department of Computer Science, Lund Insti-
tute of Technology, Lund University (1998).

8) Huelsbergen, L. and Winterbottom, P.: Very
concurrent mark-&-sweep garbage collection
without fine-grain synchronization, Proc. First
International Symposium on Memory Manage-
ment, pp.166–175, ACM (1998).

9) Johnstone, M.S.: Non-Compacting Memory
Allocation and Real-Time Garbage Collection,
Ph.D. Thesis, University of Texas (1997).

10) Jones, R. and Lins, R.: Garbage Collection,
John Wiley & Sons (1996).

11) Kung, H. and Song, S.: An efficient parallel
garbage collection system and its correctness
proof, Proc. Eighteenth Annual Symposium on
Foundations of Computer Science, IEEE, Prov-
idence, Rhode Island, USA, IEEE, pp.120–131
New York, USA (1977).

12) Lim, T.F., Pardyak, P. and Bershad, B.N.:
A memory-efficient real-time non-copying
garbage-collector, Proc. First International
Symposium on Memory Management, pp.118–
129, ACM Press, Vancouver (1998).

13) Nilson, K.D. and Schmidt, W.J.: Hardware-
Assisted General-Purpose Garbage Collection

Vol. 44 No. SIG 16(PRO 20) A Concurrent Real-time Garbage Collector 55

for Hard Real-Time Systems, Technical Report
ISU TR 92-15, Iowa State University (1992).

14) Yuasa, T.: Real-time garbage collection on
general-purpose machines, Journal of Systems
and Software, Vol.11, pp.181–198 (1990).

15) Robertz, S.G.: Applying priorities to memory
allocation, ACM SIGPLAN Notices, Vol.38,
No.2s, pp.108–118 (2003).

16) Endo, T. and Taura, K.: Reducing pause time
of conservative collectors, ACM SIGPLAN No-
tices, Vol.38, No.2s, pp.119–131 (2003).

17) Stankovic, J.: Real-Time Computing Systems
— The Next Generation, IEEE Tutorial on
Hard Real-Time Systems, Stankovic, J. and Ra-
mamritham, K. (eds.), pp.14–37, IEEE (1988).

18) Hibino, Y., Watanabe, K. and Takeuchi, I.: A
32-bit LISP Processor for the AI Workstation
ELIS with a Multiple Programming Paradigm
Language TAO, Journal of Information Pro-
cessing, Vol.13, No.2, pp.156–164 (1990).

19) Yamazaki, K., Amagai, Y., Takeuchi, I. and
Yoshida, M.: TAO: an object orientation ker-
nel, Proc. First JSSST International Sym-
posium on Object Technologies for Advanced
Software, Nishio, S. and Yonezawa, A. (eds.),
Lecture Notes in Computer Science, Vol.742,
pp.61–76 New York, NY, USA, Springer-Verlag
(1993).

20) Takeuchi, I., Okuno, H.G. and Ohsato, N.:
A List Processing Language TAO with Multi-
ple Programming Paradigms, New Generation
Computing, Vol.4, No.4, pp.401–444 (1986).

21) Takeuchi, I., Amagai, Y., Yamazaki, K.
and Yoshida, M.: Lightweight processes in
the real-time symbolic processing system
TAO/SILENT, Advanced Lisp Technology,
Yuasa, T. and Okuno, H. (eds.), pp.135–154
IPSJ, Taylor & Francis (2002).

22) Wilson, P.R.: Uniprocessor garbage collec-
tion techniques, Technical report, University
of Texas (1994). Expanded version of the
IWMM94.

23) Weinreb, D., Moon, D. and R.M.S.: Lisp Ma-
chine Manual, fifth edition system version 92
edition (1983).

(Received May 20, 2003)
(Accepted July 8, 2003)

Ikuo Takeuchi received his
B.S. and M.S. degrees in mathe-
matics in 1969 and 1971, respec-
tively, and Ph.D. of engineering
in 1996, all from The University
of Tokyo. He had been working
for Nippon Telegraph and Tele-

phone Corporation since 1971 till 1997, and
now is a professor of the University of Electro-
Communications.

Yoshiji Amagai received
his B.E. and M.E. degrees in
1983, 1985 in computer science
and communication engineering
from the University of Electro-
Communications. He has been
in Nippon Telegraph and Tele-

phone Corporation from 1985, and is currently
working at NTT Network Innovation Laborato-
ries.

Masaharu Yoshida received
his B.E. degree in electrical en-
gineering in 1976 and his M.E.
degree in electrical engineering
in 1978, all from Chiba Univer-
sity. He has been in Nippon
Telegraph and Telephone Cor-

poration from 1978, and is currently working
at NTT-IT Corporation.

Kenichi Yamazaki received
his B.E. and M.E. degrees
in 1984 and 1986 respectively,
all from Tohoku University,
and his Ph.D. degree in 2001
from the University of Electro-
Communications. He had been

working for Nippon Telegraph and Telephone
Corporation since 1986, and is currently work-
ing for NTT DoCoMo Incorporation, Network
Laboratories.

