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Low-intrusion Debugger for Python and Ruby
Distributed Multi-thread Programs

YAsusHI IToH, KAZUHIRO NAGAI,t KEISUKE KOSUGA,t
MAsAMITSU OGURAt and NORIO SATOf 1t

Major scripting languages provide with multi-thread features that could improve response
time as for network programming etc. We propose a new multi-thread debugger extended
with “low-intrusion” model. With this model, we can control individual threads without
suspending a whole process, whereas existing debuggers with “high-intrusion” or “stop-the-
world” model cannot. We present the features and implementation of a debugger we have
developed for Python and extended for Ruby. The debugger consists of server and client parts
to handle communicating processes via network. Both parts are coupled with asynchronous
messages encoded by a common format. This allows for developing the client part in com-
mon, while the server parts are implemented for individual languages. The client part can
catch more than one process at the same time, and provides users with full GUI support
to facilitate the handling of multiple threads inside of the processes. We have implemented
the server parts with extension modules: a native code reinforcement, a dedicated thread
listening to debug commands coming from the client part, and functions call-backed by in-
dividual debugged threads. We present typical threading patterns for which low-intrusion is
effective. We compare high- and low-intrusion models, propose an integrated environment of
both models including realtime tracing.
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