Vol. 45 No. SIG 12(PRO 23) goooooooooooooooo Nov. 2004

good

PythonD Ruby OO OO ODOOOOOOOODOOOO
ogooooboogod

0 0 ot o o o ot o o o oft
O O O oft o o o obtt

0000000000000 000000000000000000O00O0D00000O000O0
0000000000000 0000000O0low-intrusion0000000000000000O00O0
gooooooooo0ooO00O0O000O0bOO0O00O00bO00000O0000O00O0O0DO0O0000
00000000stop-the-world 0000 high-intrusion0 0000000000 0OOODOOOOO
0o00oo0oo00o0O00o000000000n PythonOODOOO RubyOOOOODODOOO
gooooo0oo0O0o0O0000000b00O000000000000O0O0D0OO000O0O0O0
00o0o0DO0o0o000000000D00000000000000000O0D0O0O00DO0O00O0
goooooooooo0oooOo0o0o0oooO0O00DoODOo0o0oooO0oo0oooDOn0 GUIO
0o0oo0ooDo0o00ob00O00000 APIODOOOOO0ODOOOOODOOOOOO0OOOOO0DOO0
000000000000 000000000000000O00D0000000DO0O00DO0O00O0
00oo0o0o0o0o0oooOooOo0o0Oo0o0oOOooOo0O0OoOOoOOoDOooOOoooOooOO
goooooooo0ooOooOo0ooOO0bOO0ObOOO0O0ObOO0OO0ObOOOOO0O0D00O0

Low-intrusion Debugger for Python and Ruby
Distributed Multi-thread Programs

YAsusHI IToH, KAZUHIRO NAGAI,t KEISUKE KOSUGA,t
MAsAMITSU OGURAt and NORIO SATOf 1t

Major scripting languages provide with multi-thread features that could improve response
time as for network programming etc. We propose a new multi-thread debugger extended
with “low-intrusion” model. With this model, we can control individual threads without
suspending a whole process, whereas existing debuggers with “high-intrusion” or “stop-the-
world” model cannot. We present the features and implementation of a debugger we have
developed for Python and extended for Ruby. The debugger consists of server and client parts
to handle communicating processes via network. Both parts are coupled with asynchronous
messages encoded by a common format. This allows for developing the client part in com-
mon, while the server parts are implemented for individual languages. The client part can
catch more than one process at the same time, and provides users with full GUI support
to facilitate the handling of multiple threads inside of the processes. We have implemented
the server parts with extension modules: a native code reinforcement, a dedicated thread
listening to debug commands coming from the client part, and functions call-backed by in-
dividual debugged threads. We present typical threading patterns for which low-intrusion is
effective. We compare high- and low-intrusion models, propose an integrated environment of
both models including realtime tracing.

oob1e0 30 180000

t0o0o0o0oooooboooooo
Graduate School of Information and Computer Science,
Kanazawa Institute of Technology
tt0o0ooo0oboooooo
Department of Information and Computer Science,
Kanazawa Institute of Technology

97



