TR 5 63 [(PRl 13 AF) 2EARS

DSR*-tree: Building and Retrieving

6 X—8

Yaokai Feng, Masaaki Kubo, Akifumi Makinouchi

Graduate School of Information Science and Electrical Engineering,
Kyushu University

1 Introduction

In order to efficiently manage multi-dimensional data,
one efficient index is very necessary. At present, R-
tree family, especially its famous variant, R*-tree [1],
is regarded as being among the most popular hierar-
chical structures for multidimensional indexing and is
widely used in multimedia and spatial databases.

An R*-tree used for point objects is a hierarchy
of nested d-dimensional MBRs (minimum bounding
rectangles). Each non-leaf node of the R*-tree con-
tains an array of entries, each of which consists of a
pointer and an MBR. The pointer refers to one child
node of this non-leaf node and the MBR is the mini-
mum bounding rectangles of one child nodes referred
to by the pointer. Each leaf node of the R-tree con-
tains an array of entries, each of which consists of an
object identifier and its corresponding point.

NN (Nearest Neighbor) search and range search
are very popular in multimedia database (Find simi-
lar images) and spatial database (Find closest cities).
According to our investigation, for a given database,
the degree of clustering of objects in leaf nodes is a
very important factor on the performance of the NN
search and the range search. However, in R-trees,
the objects are not well-clustered in the leaf nodes,
especially when they are used to index skewed data
in high-dimensional space. Some packing algorithms
such as Hilbert Sort algorithm for R-trees have been
proposed. However, these packing algorithms try to
pack the same number of objects in each leaf node.
It may not always lead to a good clustering. In order
to improve the clustering degree, An attempt combin-
ing clustering technology and R-trees (called NSBR*-
tree) is proposed by Y. Feng et al. [2]. However,
its dynamic performance is not good. In this paper, a
new structure called DSR*-tree (Dynamic SOM-based
R*-tree) with a better dynamic performance is pro-
posed.

2 NSBR*-tree

In NSBR*-tree, the clusters discovered by SOM are
directly used to form “leaf nodes”, which are con-
tained in an array-like structure (called ArrayPart.
All the MBRs of the clusters are used to build its

TreePart (an R*-tree). Then, the TreePart and the
ArrayPart are linked to form the NSBR*-trce.

However, the dynamic performance of the NSBR*-
tree is not very good. After some object is inserted
in or deleted from an NSBR*-tree, the ArrayPart and
its link to the TreePart have to be rebuilt.

3 DSR*-tree

The dynamic performance of NSBR*-tree is not very
good is because of its ArrayPart. In order to improve
the dynamic performance, the DSR*-tree does not
employ the ArrayPart of the NSBR*-tree any longer.

Building algorithm

Let m and M refer to the minimum bound and the
maximum bound of the number of entries in each leaf
nodes of R*-tree, respectively.

e step 1: By SOM, the clusters of objects are
discovered.

step 2: Repeatedly scan all the clusters until the
small clusters whose cardinalities are less than m
do not exist any longer. For each small cluster
like these, merge it with its nearest neighboring
clusters.

e step 3: Scan all the clusters. For each large
cluster whose cardinality is larger than M, invoke
the SplitCluster algorithm to split it.

e step 4: Calculate the MBR for each cluster and
employ all the cluster MBRs to build an R*-tree,
which is the first part (called R* Part) of the
DSR*-tree. The leaf node of the R*-Part is called
p-node.

e step 5: The objects in each cluster are intended
to be placed in one node (called cluster-node).

step 6: All the cluster-nodes are linked with the
corresponding entry in the corresponding p-node
of the R*-Part. All the cluster-nodes form the
Cluster-Node-Part.

Figure 1 shows an example of DSR*-tree.

SplitCluster algorithm

3—221

3—222

,_____

{a)clusters after merging-
splitting and their NBRs

RootNode

—

R*-Part:
R*-tree using
clusters’ MER:

Cluster-Node
cluster! cluster? cluster clusterd cluster$ clusters -Part

{b) DsR*-tree

Figure 1: Example of DSR*-tree

A new operator with two integers 1s introduced as
follows.

{B}: the least integer that is not less than p
q q

Let the cluster that need to be split be CLUSTER
and let its cardinality be C. Thus, CLUSTER should
be split into {-=} groups, each of which has M objects
(except the last one). The SplitCluster algorithm is
described as follows.

1. Repeatedly perform the following operations for
each axis.

(a) Sort all the objects in CLUSTER by the co-
ordinates in this axis.

(b) All the objects in CLUSTER are ordered in
{£} consecutive groups of M objects. Note
that the last group may contain fewer than
M objects.

(c) Calculate MBR for each group and calculate
the sum of the volumes of all the MBRs. Let
S refer to the sum of volumes.

2. Select the split axis and the packing method
which have the smallest S.

4 Experiments

We used the following 12D-Image40000 database to
test the behaviors of R*-tree, packed R-tree, NSBR*-
tree and DSR*-tree. The execution time and the num-
ber of object distance calculations (which is regarded
as the main cost in multimedia data searching) are
tested with a hot cache.

12D-Image40000 40000 color images from
H?soft corporation, including pictures of landscapes,
animals, buildings, people and plants. The image size

is fixed at 128x128 pixels. Using a six-level two-
dimensional wavelet transform, the dimensionality of
image feature vectors is decreased to 12.

The experimental results of search performance are
shown in Figure 2.

220

R’-tree ~—+—
200 packed R-tree -~ 3
NBSR*-tree K"
180 DSR*-tree —EF%
5 160
0 g
£ 140 s
£
S 120
5 100
3 80
3
w60
40)
20T S

1 10 20 30 100 200300
k, the number of objects to be retrieved {log)
12000 —
R--tree ——
packed B-treg -~
10000 NSBR*-tree - Xg"

DSR*-treg =~
el
8000 i

6000

1000

Object distance calcutations

2000

1 1 20 30 100 200300
k, the number of objects to be retrieved (log)

Figure 2: NN search performance comparison among
R*-tree, packed R*-tree, NSBR*-tree and DSR*-tree.

5 Conclusion

The new index structure for point objects proposed in
this paper is called DSR*-tree. The DSR*-tree com-
bines the clustering technology and R*-tree in order to
improve the clustering of the objects in the leaf nodes
and to improve the search performance. The analysis
and experimental results show that it has much better
search performance than R*-tree and packed R*-tree.
The search performance of the DSR*-tree is slightly
worse than NSBR*-tree. However its dynamic perfor-
mance is better than NSBR*-tree.

References

[1] N. Beckmann, H.P. Kriegel, R. Schneider, B.
Seeger. ”The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles.”. In
Proceedings of ACM SIGMOD International Con-
ference on Management of Data, pages 322-331,
May 1990.

2] Y. Feng, M. Kubo et al. ”"NSBR*-tree: Build-
g
ing and Retrieving”. In Database Workshop
(dbws2001), Hakodate, Japan, July 2001.

