TR 5 63 [(PRl 13 AF) 2EARS

3—169

QoS-Based Compensation of Multimedia Objects *

1X—1

Motokazu Yokoyama, Katsuya Tanaka, and Makoto Takizawa '

Tokyo Denki University *
Email : {moto, katsu, taki}@takilab.k.dendai.ac.jp

Abstract

In distributed applications, QoS of a multimedia 0b-
ject is manipulated in addition to the state. While ob-
jects are manipulated through methods, the manipula-
tions on the objects have to be undone in designing mul-
timedia systems and recovering from the system fault. In
this paper, we discuss how methods performed are com-
pensated by other methods. Novel types of compensating
methods are defined to obtain a state and QoS of the ob-
ject which satisfy requirements. We discuss how to find
a cheaper way to compensate a sequence of methods.

1 Introduction

Distributed applications are composed of multimedia
objects. Here, quality of service (QoS) of a multimedia
object is manipulated as well as the state.

In manipulating a multimedia object, an application
might like to undo the manipulation, for example, for
interactively designing and implementing an applica-
tion. In another example, an object is rolled back due
to the fault of the object. Suppose that an application
changes a colored mouie object to a monochrome one by
a method grayscale after adding a red car by a method
add-car. Here, the movie object is monochrome. Next,
suppose the application would like to undo the manipu-
lation done here. According to the traditional ways, the
movie object is rolled back to the previous one saved at
a checkpoint, i.e. colored object without the car object.
Another way is to compensate a computation sequence
of add-car and grayscale by other methods. del-car is
a method where a car is removed. color is a method
where a scene object is changed to be colored. If color
is performed after del-car, the object is recovered to the
previous state. Here, del-car and color are referred to
as compensating methods of add-car and grayscale, re-
spectively. If the application is not interested in how
colorful the movie object is, only the car object can
be removed without changing the color. That is, the
sequence of methods add-car and grayscale can be just
compensated by one method del-car with respect to QoS
required by the application.

In section 2, we discuss relations among methods. In
section 3, we discuss compensating methods. In section
4, we discuss how to compensate a sequence of methods.

2 QoS-based Relations of Methods

An object-based system is composed of classes and
objects. A class ¢ is composed of attributes Ay, ..., Ap
(m > 0) and methods. An object o is created from the
class ¢ by giving values to attributes. A collection (v1,
..., Um) of values is a state of the object o where each
v; is a value taken by A; (1 =1, ..., m).

A class ¢ can be composed of component classes ¢y,

.., ¢p in a part-of relation. Let ¢;(s) denote a projec-

*QoS IKE I INF AT 4 VAT 7 FOREEE

TR E—, Ep B, IR K
IR B A

tion of a state s of the class ¢ to ¢;. A state of an object
is changed by performing a method op. Let op(s) and
[op(s)] denote a state and response obtained by perform-
ing a method op on a state s of an object o, respectively.
“op1 o ops” shows a serial computation of op; and ops.

Applications obtain service of an object o through
methods. Each service is characterized by quality of
service (QoS). A QoS value is a tuple of values (vy, ...,
vm) where each v; is a value of parameter like frame
rate. A QoS wvalue g1 dominates another QoS value g
(g1 = g2) iff g1 shows a better level of QoS than gs.
For example, (160 x 120[pixels|, 1024[colors}, 15[fps]) =
{120 x 100,512, 15). g1 U g2 and g1 N g2 show least up-
per bound and greatest lower bound of ¢; and ¢» on >,
respectively. Let Q(s) be a QoS value of a state s of
an object 0. Q(op(s)) and Q([op(s)]) are QoS values of
state and output obtained by performing op. An appli-
cation requires an object o to support some QoS, named
requirement QoS (RoS).

Suppose a class ¢ is composed of component classes
€1, .- Cm (m > 0). An application specifies whether
each component class ¢; is either mandatory or optional.
There are the following relations among a pair of states
sy and s, of a class ¢:

o s; is state-consistent with s, (54 — sy,) iff 8¢ = sy

o s, is semantically consistent with s, (s; = s,) iff
8t — 8y OF ¢i(8¢) = ¢i(8y) for every mandatory com-
ponent, class ¢; of c.

o s; is QoS-consistent with s, (s; = s,,) iff sy — s, or
s¢ and s, are obtained by degrading QoS of some
state s of ¢, L.e. Q(s¢) U Q(sy) <X Q(s).

e s is semantically QoS-consistent with s, (s¢ ~
sy) iff 8¢ ~ s, or ¢(s¢) ~ ¢(sy,) for every mandatory
component class ¢; of ¢.

o 5 is r-consistent with s, on RoS r (s; =, s,,) iff s
~ sy and Q(s¢) N Q(sy) = 7.

o s; is semantically r-consistent with s,, on RoS 7 (s;
=, 8y) Iff 8¢ = sy, or ¢i(sy) =, ci(sy) for every
mandatory class ¢; of ¢.

For example, a movie class is composed of mandatory
classes car and tree and an optional class background.
Each state s; of the movie object is composed of car c;,
tree t;, and background b; (i = 1,2). s1 ~ s9 if ¢; and
c2 show a same car with different QoS and #; and #»
indicate a same tree with different QoS.

Let O, show an a-consistent relation where o shows
some consistent relation. For example, Ogos (or Oy)
shows “~”. State, Sem, QoS, R, Sem-QoS, and Sem-R
stand for sets of possible state, semantically, QoS, R, se-
mantically QoS, and semantically R consistent relations
on states of a class c, respectively. Here, Ris { O, |risa
possible QoS}, and Sem-R is { Oz, | r is a possible QoS
value}. Let C be a family of the sets state, Sem, QoS,
R, Sem-QoS, and Sem-R of consistent relations. A re-
lation “a — b” for a pair of sets a and b shows that b is a
subset of a. That is, s; Oy sy, if 8¢ O, s, for every pair of
states s; and s,. State — Sem, State — R, R — Sem-R

3—170

R — QoS, QoS — Sem-QoS, Sem-R — Sem-QoS are
primitive relations, i.e. not transitive.

Let op; and op, be a pair of methods of a class c.
“opy O 0py,” shows that op,(s) Oy 0py(s) for every state
s of the class c. ¢ shows an empty sequence of methods.
op Oy ¢ iff op(s) O, s for every state s of c. For example,
display — ¢. Let r1 and 75 be a pair of QoS values where
7y = ro. Here, O, — 0O, if 4 > r. For example,
St Ry, Sy if 8¢ Ry, Sy

In the traditional theories, a method op; is compati-
ble with another method op, on a class ¢ iff the result
obtained by performing op; and op, is independent of
the computation order. Otherwise, op; conflicts with
Opy.

[Definition] For every pair of methods op; and op, of
a class ¢, op is a-compatible with op, (op: Co opy) iff
(opt © opy) Oy (0py 0 0py) where o € C. O

For example, op; is semantically compatible with op,
(ope 11| opy) iff (ops © opy) = (opu © opt). The “R-
compatible relation” <p shows a set { O |r € R}
where R is a set of possible QoS values. op; a-conflicts
with opy, (op: $o 0py) unless op; Oy 0p,. Let State,
Sem, oS, R, Sem-QoS, and Sem-R be sets of possible
state, semantically, QoS, R, semantically QoS, and se-
mantically R-compatible relations on methods of a class
¢, respectively. O, is symmetric and transitive.

3 Compensating Methods

In traditional systems, if the system is faulty, the
state stored in the log is restored in the system and then
the system is restarted. Suppose paint is performed on a
background object. If erase is performed, the background
object can be restored. erase is a compensating method
of paint. Traditionally, a method op,, is a compensating
method of another method op; on a class ¢ if op; © op,,(s)
= s for every state s of the class ¢. We extend the
compensation concept to multimedia objects.

[Definition] A method op, «a-compensates another
method op; on an object (op, >4 op:) with respect to a
consistent relation « in C iff (op; o op,) Oy ¢. O

Let (~q0p) denote an a-compensating method of a
method op, op o (~q0p) Oy ¢.

Let State, Sem, QoS, R, Sem-QoS, and Sem-R de-
note sets of possible state, semantically, QoS, R, seman-
tically QoS, and semantically R compensating relations
of methods of a class ¢. Let CR be a family of these
compensating relations, CR = {>,| a € C}.

Suppose oy — a3 for a1, az € CR. For example, Sem
— Sem-R. This means that op; Sem-r-compensates op,
for RoS 7 in R (op; =, opy) if op: >= opy.

[Theorem] If oy — o, 0p; gy 0Py if 0Pt oy 0Py O

After performing op on a state s of a class ¢, a state
s’ is obtained by performing the compensating method
(~semop). 8 = s. From the theorem, op can be as-
compensated by (~,, op) instead of (~q,0p) if @1 — ao.
For example, add-bg is (~=del-car-bg). Suppose that
add-car-bg is a method by which car and background
objects are added. add-car-bg is (~statedel-car-bg). A
state obtained by performing add-car-bg is semantically
consistent with one obtained by performing add-bg.

[Theorem] (~q0p) Og (~gop) iff o — 3. O

4 Reduced Compensating Sequence

Let r show RoS “application is not interested in col-
ors”. A method add-car is r-compatible with grayscale

(add — car O, grayscale). Suppose add-car is per-
formed before grayscale, i.e. add — car o grayscale.
This sequence is r-compensated by (~pgrayscale) o
(~radd — car). However, it takes a shorter time to
perform (~,grayscale) after removing a car which is
added by add-car, ie. (~.add — car), because the
number of objects whose colors to be changed are de-
creased. Hence, add — car o grayscale can be more ef-
ficiently compensated by (~,add — car) o (~,grayscale)
with respect to RoS r. The method del-car is an -
compensating method of add-car, i.e. del-car = (~,add-
car) = (~stqteadd-car). Since the application is not in-
terested in color, (~,grayscale) can be omitted, i.e. ¢ is
(~rgrayscale).

Next, let us consider how to reduce the number
of compensating methods to compensate a sequence
of methods. Suppose a car object ¢ is deleted after
added, ie. add-car o del-car. Since (add-car o del-
car) —¢ holds, (~state del-car) o (~giqreadd-car) is not
required to be performed. Next, suppose a method
paint, which paints an object red is performed after
painting yellow by paints. paints o paint; brings the
same result obtained by performing only painti, i.e.
(painty o paint;) — paint;. In order to compensate
painty o paints, only (~qpaint;) can be performed. The
following relations are defined for methods op; and op,
and a consistent relation a:

e op; is an a-identity method iff op, O ¢.
® op; a-absorbs op, iff (op: 0 opy) Oy 0py.

5 Concluding Remarks

In this paper, we discussed how the QoS of the ob-
ject is manipulated by methods. We defined seman-
tically, QoS, RoS, semantically QoS, and semantically
RoS conflicting relations among methods of multimedia,
objects. By using the relations, we defined compensat-
ing methods to undo the works done by the methods.
We need further study to obtain an optimized sequence
of methods.

References

(1] Bernstein, P. A., Hadzilacos, V., and Goodman, N.,
“Concurrency Control and Recovery in Database
Systems,” Addison-Wesley Publishing Company,
1987.

[2] Yokoyama, M., Tanaka, K., and Takizawa,
M.,“QoS-Based Recovery of Multimedia Objects,”
Proc. of IEEE Int’'l Conf. on Parallel and Dis-
tributed Systems (ICPADS-00) Workshops, 2000,
pp.43-48.

[3] Korth, H. F., Levy, E., and Silberschalz, A., “A
Formal Approach to Recovery by Compensating
transactions,” Proc. of VLDB, 1990, pp.95-106.

[4] MPEG Requirements Group, “MPEG-4 Require-
ments,” ISO/IEC JTC1/SC20/WG11
N2321,1998.

[5] Yokoyama, M., Nemoto, N., Tanaka, K., and Tak-
izawa, M., “Quality-Based Approach to Manipulat-
ing Multimedia Objects,” Proc. of 2000 Int’l Conf.
on Information Society in the 21 Century: Emerg-
ing Technologies and New Challenges (1S2000),
2000, pp.380-387.

