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This paper describes a generic intermediate language, called LIR, and a retargetable code
generator for LIR, both of which were developed as part of the compiler for the COINS (COm-
piler INfraStructure) project. Although the purpose and basic concepts of LIR are similar
to those of RTL, the intermediate language of GCC, LIR is defined as an independent and
self-contained programming language that has the constructs of a high-level language, such
as variable declarations, and their formal semantics. As a result, LIR has several advantages
over other representations currently in use. We can describe all compiler back-end passes
as program transformations. Consequently, LIR provides a concise interface for interaction
with the compiler for users who want to replace part of the compiler with their code. Most
of the recently developed, retargetable code generators, such as Burg, IBurg, etc., are based
on the DP matching method. Their machine description language consists of rewriting rules
with code generation actions. However, the rules that are used to describe a machine do not
correspond directly to any of the existing instructions of the target machine. On the other
hand, the description language of GCC consists of descriptive statements that correspond to
each of the target’s existing machine instructions. However, the GCC code generator does
not produce optimal code because it is not based on the DP method. Our code generator
makes use of both the DP and GCC methods by translating the GCC descriptive statements
into rewriting rules that are suitable for use by the DP matching method. Furthermore,
DP matching is also implemented as a kind of transformation of an LIR program, and later
transformations such as register allocation are applied to the resulting LIR program.

1. Introduction

This paper describes a generic intermediate
language, called LIR, and a retargetable code
generator for LIR, both of which were devel-
oped as part of the compiler for the COINS
(COmpiler INfraStructure) project 1). COINS
is an ongoing project to develop a compiler
infrastructure that can be used as a base for
constructing various compilers such as research
compilers, educational compilers, and produc-
tion compilers. COINS has two levels of in-
termediate representation; high-level interme-
diate representation (HIR), and low-level inter-
mediate representation (LIR). HIR is used as
a language for higher-level optimizations such
as parallelization, whereas LIR is used for con-
ventional code optimizations and for final as-
sembler output, commonly known as compiler
back-end passes. In this paper, we focus on the
structure of LIR and on the retargetable code
generator that we developed for LIR.

A compiler intermediate language is usually
introduced as a private language that is specific
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to a certain compiler, and is known only to the
compiler writers. However, many compiler bugs
are caused by ambiguities in the specification of
a compiler’s intermediate language. Moreover,
the COINS compiler is an open source program
that can be freely modified and extended by
any users. Thus, we have defined the formal se-
mantics of LIR based on the ordinary denota-
tional semantics. All compiler back-end passes,
including instruction selection by our code gen-
erator and register allocation, are regarded as
program transformations in LIR, which pre-
serve the formal semantics of LIR programs.
Consequently, LIR provides a concise interface
for interaction with the compiler for users who
want to replace part of the compiler with their
own code. They can even write their own code
in a language other than JAVA, which is the im-
plementation language of the COINS compiler,
and in fact the first implementation of our code
generator was written in Scheme.

A retargetable code generator is one that can
produce object code for various target machines
without any modification to the generator. In
such a code generator, the characteristics of a
target machine are described in the machine de-
scription language of the generator, which is
independent of any target machine. Most re-
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cently developed retargetable code generators,
such as Burg, IBurg, etc., are based on the DP
matching method. Their machine description
languages consists of rewriting rules with code
generation actions. Theoretically, this method
gives the best results. However, the rules that
are used to describe a machine do not corre-
spond directly to any of the existing instruc-
tions of the machine owing to the characteris-
tics and theory of the DP method. This mis-
match often makes the work of describing a
machine a lengthy and somewhat onerous pro-
cess. On the other hand, the code generator
that is used by GCC 15), one of the most widely
used, retargetable compiler, employs a unique
method that differs considerably from the DP
method. Its description language consists of
descriptive statements that correspond to each
of the target’s existing machine instructions.
However, GCC code generator still has some
limitations that prevent it from producing opti-
mal code. Our code generator takes advantage
of the good points of both the DP and GCC
methods by translating the GCC descriptive
statements into rewriting rules that are suitable
for use by the DP matching method. Further-
more, DP matching is also implemented as a
kind of transformation of an LIR program, and
later transformations such as register allocation
are applied to the resulting LIR program. The
description language of our code generator is
also equipped with a Scheme interpreter 16) and
a simple macro feature to improve expressive-
ness.

The code generator described in this paper is
currently not used as is in the COINS compiler.
The code generator implemented in Scheme has
been rewritten in Java to improve performance
but the internal structure of the new code gen-
erator is essentially the same as that of the pre-
vious one and works with exactly the same in-
terface.

The remainder of this paper is organized as
follows. Our intermediate language, LIR, is in-
troduced in Section 2. The overall structure
of our code generator is described in Section 3.
Section 4 describes the machine description lan-
guage of our code generator. The instruction se-
lection pass of our code generator is explained
through the use of examples in Section 5. In
Section 6, we compare our intermediate lan-
guage and its code generator with other sim-
ilar systems. Section 7 presents current per-
formance of the COINS compiler. Finally, our

concluding remarks and recommendations for
future work are given in Section 8.

2. The LIR Intermediate Language

LIR and its formal semantics are introduced
in the following subsections.

2.1 Examples of LIR
In this subsection, LIR is described by using

examples to explain its overall structure. The
examples are written in C, since it, like LIR, is
a low-level language that is close to the actual
hardware.

The program listings in Fig. 1 are two C pro-
grams, main.c and sub.c, in which the func-
tion prodv returns the product of all the ele-
ments of the array v using the function fold1.

The first C program ‘main.c’ is translated
into the LIR code shown in Fig. 2, which is
called an L-module. The translation assumes
that an int, a pointer, and a float are all 32 bits
long. It also assumes that their required align-
ments are in the same four-byte boundary. Ma-
chine instructions and data are stored in the
segments text and data, respectively.

The syntax of LIR is built on top of S-
expressions. A semicolon is used to indicate
a comment. All of the characters following it
in the same line are part of a comment. Also,
the numbers that appear on the left side of the
LIR listing are not part of LIR; they are used
only as line references in the following explana-
tion. The listing in Fig. 2 is an example of an
L-module. An L-module consists of its mod-
ule name, its L-association list, and the defini-
tions of L-functions and L-data. An L-function
definition consists of its name, its local func-
tion L-association list, and its L-sequence. An
L-sequence is a list of L-expressions beginning
with a PROLOGUE expression and ending with
an EPILOGUE expression. An L-data definition
consists of its name and a list of its contents.

An L-association list, beginning with the key-
word ALIST, consists of several entries. The
first element of each entry is a name that is
defined by the rest of the elements of the en-
try. The second element of each entry is called
a class, which is used to dictate the syntax for
the rest of the entry. It also determines how
the entry’s remaining definitions are to be in-
terpreted. Names declared in L-association lists
are referred to by L-expressions in L-functions
that follow the same static scope rules as those
that are found in the C programming language.
A name with the class STATIC represents a stat-
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main.c : extern float fold1(float f(float,float), float v[], int n);
static float v[] = {1, 2.5, 3};
static int n = sizeof v / sizeof v[0];
static float fmul(float x, float y){float r=x*y; return r;};
float prodv(){return fold1(fmul,v,n);};

sub.c : float fold1(float f(float,float), float v[], int n)
{

int i; float r;
for (r=v[0], i=1; i<n; i++) r = f(r,v[i]);
return r;

}
Fig. 1 A sample C program.

1 (MODULE "main"
2 (ALIST
3 ;; name class L-type align segment linkage
4 ("fold1" STATIC UNKNOWN 4 "text" XREF)
5 ("v" STATIC 96 4 "data" LDEF)
6 ("n" STATIC I32 4 "data" LDEF)
7 ("fmul" STATIC UNKNOWN 4 "text" LDEF)
8 ("prodv" STATIC UNKNOWN 4 "text" XDEF))
9 ;; definition of the function fmul
10 (FUNCTION "fmul"
11 (ALIST
12 ;; name class L-type align offset
13 ("x" FRAME F32 4 0)
14 ("y" FRAME F32 4 4)
15 ("r" FRAME F32 4 8))
16 ;; L-sequence
17 (PROLOGUE (12 0) (MEM F32 (FRAME I32 "x")) (MEM F32 (FRAME I32 "y")))
18 (SET F32 (MEM F32 (FRAME I32 "r")) ; r=x*y
19 (MUL F32 (MEM F32 (FRAME I32 "x"))
20 (MEM F32 (FRAME I32 "y"))))
21 (EPILOGUE (12 0) (MEM F32 (FRAME I32 "r"))))
22 ;; definition of the data v and n
23 (DATA "v" (F32 1.0 2.5 3.0))
24 (DATA "n" (I32 3))
25 ;; definition of the function prodv
26 (FUNCTION "prodv"
27 (ALIST
28 ("t1" FRAME F32 4 0)) ; t1 is generated by the translator
29 (PROLOGUE (4 0))
30 (CALL (STATIC I32 "fold1") ; t1=fold1(fmul,v,n)
31 ((STATIC I32 "fmul") (STATIC I32 "v") (MEM I32 (STATIC I32 "n")))
32 ((MEM F32 (FRAME I32 "t1"))))
33 (EPILOGUE (4 0) (MEM F32 (FRAME I32 "t1")))))

Fig. 2 The LIR code for main.c.

ically allocated object. A name with the class
FRAME represents an object that is allocated on
the stack frame. For example, in line 6 of the
L-module main above, the name n is declared
to be a statically allocated object having the L-
type I32 (a 32-bit integer) along with its align-
ment, segment, and linkage information. An
object’s linkage information will always be one
of three symbols, LDEF, XDEF, and XREF, which
respectively mean that the name is locally de-

fined, globally defined, or that the name is an
external reference.

The declaration of x in line 13 is an example
of a frame variable and another kind of L-type.
F32 is the L-type that is used to designate 32-
bit floating point numbers. The 0 stands for its
offset from the frame pointer. Although we as-
sume the existence of a frame pointer, we treat
it implicitly. In line 5 of the module, the L-type
of the name v is just 96 but this is also another
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L-type. It means the type of an object has
96-bits (12-bytes). We have introduced three
kinds of L-types; namely, n-bit integers In, n-
bit floats Fn, and just n. These comprise all of
the kinds of L-types that we use. The symbol
UNKNOWN is used to indicate a type whose size
is unknown to the compiler. UNKNOWN is not an
L-type.

Line 10 shows an example of a function
definition. Two L-expressions, PROLOGUE and
EPILOGUE, are used to specify the interface of
the L-function. They are collectively called in-
terface expressions. The second element of the
PROLOGUE expression in line 17, (12 0), has the
syntax (wf wr). This syntax is used to desig-
nate the size of the frame and the register frame
to be allocated (or deallocated in the case of
EPILOGUE). We are not including any further
explanation of register frames. The remaining
elements of the PROLOGUE expression specify the
arguments of the L-function. The remaining el-
ements of the EPILOGUE expression specify the
list of expressions to be returned as multiple
return values.

Line 18 shows a typical example of an L-
expression. Unlike the corresponding C code
r=x*y, it explicitly represents memory ac-
cesses using the expression (MEM type address),
which refers to the object with the speci-
fied type and address. The frame expression
(FRAME I32 "x") represents the address of the
variable x that was declared in line 13. I32 is
the type of type address.

Line 30 shows an example of a function call.
Its syntax has the form:

(CALL addr (args . . .) (results ...)),
where addr is the address of the function to be
called, args are the L-expressions to be passed
to the function, and results are the variables
to which the multiple return values of the func-
tion will be assigned. As the CALL expres-
sion cannot be part of any other L-expression,
the temporary variable ‘t1’ is introduced by the
translator.

Line 31 shows an example of accessing a
global (as in the C language) variable, where
the L-expression (MEM I32 (STATIC I32 "n"))
represents the address of the variable n that was
declared in line 7.

This L-module does not have any examples
of registers. In LIR, a register is expressed as
(REG type name) and the name is declared in
an L-association list as (name REG type offset),
where type is the type of the register and offset

is the address of the register in register mem-
ory. There is no syntactic distinction between
virtual and real registers.

As we have seen, our expressions for a calling
convention are at a much higher level than the
corresponding GCC expressions in RTL. To re-
alize a calling convention with existing instruc-
tions is often called calling convention expan-
sion.

GCC expands all of its calling conventions
and designates some real registers at an early
stage of its compilation process. The advan-
tage of GCC’s approach is that optimizers can
achieve various machine specific optimizations.
For example, as the stack pointer is a pre-
allocated register, it explicitly exists through-
out compiler passes; this enables optimizers
to do some stack related optimizations, such
as defer pop. The disadvantage is that the
approach makes optimizers so complex since
function interface codes are already expanded.
Code optimizers can hardly recover them from a
given code; this disables optimizers to do some
higher-level optimizations, such as inline expan-
sion, tail recursion elimination, and partial eval-
uation.

The constructs of LIR for a (multiple-valued)
function consisting of PROLOGUE, EPILOGUE, and
CALL expressions enable the code optimizer to
handle registers by making the following as-
sumptions:
( 1 ) Arbitrariness of register names: Renam-

ing registers local to a function does not
change the meaning of the function.

( 2 ) Independence of registers: Assigning a
register local to a function does not al-
ter any other registers.

As the parameters of a function are specified
in an interface expression, renaming them does
not change the meaning of the function. Des-
ignating real registers before code optimization
clearly makes the above assumptions impossi-
ble, as the registers will now have unique names
that sometimes partly overlap.

Our intention in introducing such higher-level
constructs was to clarify and simplify code op-
timizers by separating and delaying the desig-
nation of real registers.

We can describe all of the passes of a com-
piler including code optimization, instruction
pattern matching, register allocation, and peep-
hole optimization in terms of program trans-
formations using LIR. With this in mind, the
task of instruction selection that is based on
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1 (MODULE "sub"
2 (ALIST
3 ("fold1" STATIC UNKNOWN 4 "text" XDEF))
4 (FUNCTION "fold1"
5 (ALIST
6 ("f" FRAME I32 4 0)
7 ("v" FRAME I32 4 4)
8 ("n" FRAME I32 4 8)
9 ("i" FRAME I32 4 12)
10 ("r" FRAME F32 4 16))
11 (PROLOGUE (20 0) (MEM I32 (FRAME I32 "f"))
12 (MEM I32 (FRAME I32 "v"))
13 (MEM I32 (FRAME I32 "n")))
14 (SET F32 (MEM F32 (FRAME I32 "r")) ; r=v[0]
15 (MEM F32 (MEM I32 (FRAME I32 "v"))))
16 (SET I32 (MEM I32 (FRAME I32 "i")) ; i=1
17 (INTCONST I32 1))
18 (DEFLABEL "L1")
19 (JUMPC (TSTLT I32 (MEM I32 (FRAME I32 "i")) ; if (i<n) goto L2; else goto L3
20 (MEM I32 (FRAME I32 "n"))) (LABEL I32 "L2") (LABEL I32 "L3"))
21 (DEFLABEL "L2")
22 (CALL (MEM I32 (FRAME I32 "f")) ; r=f(r,v[i])
23 ((MEM F32 (FRAME I32 "r"))
24 (MEM F32 (ADD I32 (MEM I32 (FRAME I32 "v")) ; v[i]
25 (MUL I32 (MEM I32 (FRAME I32 "i"))
26 (INTCONST I32 4)))))
27 ((MEM F32 (FRAME I32 "r"))))
28 (SET I32 (MEM I32 (FRAME I32 "i")) ; i++
29 (ADD I32 (MEM I32 (FRAME I32 "i"))
30 (INTCONST I32 1)))
31 (JUMP (LABEL I32 "L1"))
32 (DEFLABEL "L3")
33 (EPILOGUE (20 0) (MEM F32 (FRAME I32 "r")))))

Fig. 3 The LIR code for sub.c.

a machine’s description can be formalized as
a program transformation that reforms each
L-expression into one that expresses a real
instruction of a real machine. The task of
register allocation can also be formalized as
a transformation to change local registers to
global ones. After these transformations, the
L-function fmul would take the following form:
(MODULE "main"
(ALIST

.......
("F0" REG F32 0) ; real reg F0
("F1" REG F32 4) ; real reg F1
......

(FUNCTION "fmul"
(ALIST )
(PROLOGUE (0 0)

(REG F32 "F0")
(REG F32 "F1"))

(SET F32 (REG F32 "F0")
(MUL F32

(REG F32 "F0")
(REG F32 "F1")))

(EPILOGUE (0 0) (REG F32 "F0")))
.....

The modified registers now express the registers
of a real target machine via their types and off-
sets.

The translated L-module for sub.c is shown
in Fig. 3. Note that this example includes con-
trol structures. We never introduce ‘structured’
control constructs such as if and while. The ex-
pression (DEFLABEL label) defines a label label
which is referenced by jump expressions such
as an unconditional jump as shown in line 31, a
conditional jump as shown in line 19, and a mul-
tiway jump. An example of an indirect call is
shown in line 22. The address expression in the
CALL expression must evaluate to the address of
an L-function. In our model, program memory
is not an arbitrary list of L-expressions. Rather,
it is a list of L-functions that can be invoked
only by CALL expressions. At the same time,
the targets of any jump expressions are limited
to those targets that are within the function to
which the jump belongs.

2.2 The Formal Semantics of LIR
The benefits that have been realized by

designing LIR as a self-contained program-
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Table 1 Semantic functions.

component meaning syntax semantics
L-program a consistent set of modules Lprog P
L-module collection of data and functions Lmod M
L-association list mapping from string to its meaning Lalist A
L-data statically allocated data Ldata D
L-function L-sequence with function interface Lfunc F
L-sequence sequence of instructions Lseq S
L-expression instruction Lexp E
L-type type Ltype T

ming language have already been described
above. These benefits have been amply demon-
strated throughout our development of com-
piler back-ends. In contrast to high-level
programming languages, compiler intermediate
languages have usually been private languages
that are known only to the compiler writers who
use them. Therefore, these compiler intermedi-
ate languages have not needed to have rigorous
specifications. However, the COINS compiler
is an open source program that can be freely
modified and extended by any users. Thus, the
intermediate language in COINS must be spec-
ified as rigorously as possible in a similar fash-
ion to that of a general high-level programming
language.

Many compiler bugs are caused by ambigu-
ities in the specification of a compiler’s inter-
mediate language. In the case of a retargetable
compiler, such a bug is often revealed when the
compiler is used as a cross-compiler. Ambigu-
ously specified intermediate code might well
have two different interpretations; one for the
machine on which the compiler is running, and
another for the target machine.

2.2.1 Domains and Semantic Func-
tions

The semantics of LIR is defined as denota-
tional semantics 2), which is briefly discussed
below. The semantics consists of the eight se-
mantic functions shown in Table 1. Each func-
tion takes a corresponding syntactic object and
returns a semantic value of a certain type.

For example, the semantic function E has the
type shown below.

E : Lexp → Env → Mem → (Mem× Bits)⊥

Env
�
= { reg: RegEnv,

sta: StaticEnv,
fra: FrameEnv,
lab: LabelEnv }

Mem
�
= { pc: Location,

pm: PMem,

rm: RMem,
dm: DMem,
tr: Trace,
rs: R }

This means that the function E receives an
L-expression of type Lexp, the current envi-
ronment of type Env, the current memory (L-
memory) of type Mem, and then returns a value
of type (Mem × Bits)⊥. Erroneous results are
expressed as the bottom element. The record
type Env consists of functions that bind four
kinds of names appearing in L-expressions to
their concrete location in an L-memory of type
Mem. The record type Mem consists of a program
counter pc, three kinds of memory, and special
registers tr, and rs. We divide memory into
program memory PMem, register memory RMem,
and data memory DMem. The special registers
are used to simulate volatile memory in denota-
tional semantics, as explained in Section 2.2.3.

The domain of values is just a set of bits de-
fined as follows.

Bitw
�
= {0, 1}n

Bits
�
=

∞⋃

n=0

Bitw

Byte
�
= Bit 8

This decision is natural because the memory
of ordinal machines is typeless and a value in
the memory can be fetched as of a type differ-
ent from the type when it was stored. Even a
simple arithmetic operation such as addition is
regarded as an operation on bits. To convert
between a bit and an arithmetic value, conver-
sion functions are used (Fig. 4).

2.2.2 Arithmetic Operations
Using the conversion functions, our specifica-

tion of addition is given as follows.
(ADD t x1 x2) t = t1 = t2

E [[(ADD t x1 x2)]]ρ σ
�
= (σ2, bzw (zb v1 + zb v2)) if t ∈ Itype

E [[(ADD t x1 x2)]]ρ σ
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N

��������

nb

�

Bit w
zb ��
bzw

Z
��������

rb

�

���������
brw

R
Fig. 4 Conversion functions.

�
= (σ2, brw (rb v1 + rb v2)) if t ∈ Ftype

It consists of the syntax, constraints, and se-
mantic definitions of addition.

For brevity’s sake, we assume the following
rules for each such definition. If xi ∈ TypedExp
and the symbols ti, σi, vi are not defined, then
the following implicit definitions are assumed.

ti
�
= xi.type

w
�
= number of bits of t

(σ1, v1)
�
= E [[x1]]ρσ

(σ2, v2)
�
= E [[x2]]ρσ1

...

(σi, vi)
�
= E [[xi]]ρσi−1

Note that these definitions also specify the eval-
uation order of the arguments in L-expressions
as left to right. In the above case, the con-
straints t = t1 = t2 say that both of the argu-
ments x1, x2 must have the type equal to the
result type t of the addition.

There are some operations that are hard to
define. For example, the behavior of shift oper-
ations can be subtly different for each machine.
To account for these potential differences, we
allow an optional modifier (s n d) at the end
of an L-expression prefixed with ‘&’, where s
indicates that the shift is signed (s = S) or un-
signed (s = U), n gives the bit width of the shift
count, and d = D, U determines whether the re-
sult is defined (d = D) or undefined (d = U)
if a given shift count cannot be expressed in n
bits. We are not including a detailed explana-
tion here. Rather, we just cite the definition of
left shift as follows:

E [[(LSHS t x1 x2 & (s n d))]]ρ σ
�
= (σ2, genericshiftw (zb v1)

(shiftcount v2 [[(s n d)]]))
genericshift: w: N → Z → Z → Bitw

genericshiftw n c
�
= bzw (floor(n ∗ 2c))

shiftcount: Bits → ShiftModifier → Z⊥
shiftcount b [[(s n d)]]

�
= if c0 = c1 then c0 else

case [[d]] of D ⇒ c1 U ⇒ ⊥
where

f
�
= case [[s]] of S ⇒ zb U ⇒ nb

c0
�
= f b

c1
�
= f(bzn c0)

The following table shows some examples of
the correspondence between shift modifiers and
actual machines.

S8D VAX, V60/70
U5D SPARC(32), MIPS(32), Intel x86
U6D SPARC(64), MIPS(64), PowerPC(32)
U7D PowerPC(64)
U64D Intel MMX

2.2.3 Memory Access
The notion of volatile objects comes from the

C language. Our definition of memory access
operations takes this notion into account. To
simulate a volatile object in the denotational
semantics, we have introduced the trace reg-
ister tr and the random state register rs as
mentioned above.

The semantics of a memory read expression
is defined as follows:

E [[(MEM t x1 & m)]]
�
=
case [[m]] of
N ⇒ (σ1, dmreadσ1 (nb v1) [[t]])
V ⇒ random[[t]] (addtotr σ1 READ [[t]] [v1])

where (σ1, v1)
�
= E [[x1]]ρσ

This expression means the object of type t at
the address x1 in data memory. It represents a
volatile object if a modifier m ∈ MemModifier
is given and m = V. In this case, the reading is
recorded in the trace of the L-memory, and the
result is an unpredictable value.

The semantics of a memory write expression
is defined as follows:

E [[(SET t (MEM t′ x1 & m) x2)]]
�
= (σ4, v2)

where

(σ1, v1)
�
= E [[x1]]ρσ
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restruct instsel regalloc asmout
-> LIR(1) --------> LIR(2) -------> LIR(3) --------> LIR(4) ------> ASM

<--------
instsel

Fig. 5 Code generation passes.

(σ2, v2)
�
= E [[x2]]ρσ1

σ3
�
= dmwrite σ2(nb v1) [[t]] v2

σ4
�
= case [[m]] of

N ⇒ σ3

V ⇒ addtotr σ3 WRITE[[t]][v1, v2]

This expression stores the value of x2 into the
object of type t at the address x1. The MEM
sub-expression represents a volatile object if a
modifier m ∈ MemModifier exists and m = V.
In this case, the writing is recorded in the trace
of the L-memory.

The trace register holds the history list
recording the kind of memory accesses that
have been done. The random state register is
used to simulate the asynchronous modification
of memory by an external device.

2.2.4 Function Call
The semantics of a function call is defined as

follows:
E [[(CALL x1 (x2 · · · xn) (y1 · · · ym))]]ρ σ

�
= (σ′

m, ∅)
where
(σ′

0, [b1, . . . , bm])
�
= F [[σ.pm v1]] ρ [v2, . . . , vn] σn

ti
�
= yi.type

b′i
�
= mkconst[[ti]] bi

(σ′
i, ui)

�
= E [[(SET ti yi b′i)]] ρ σ′

i−1
This expression takes the arguments x2, . . . , xn,
call the (multiple-valued) function stored at the
memory location σ.pm v1, and returns the values
into y1, . . . , ym.
F is the semantic function for function defi-

nitions of LIR as follows.
F : Lfunc → Env → Args

→ Mem → (Mem× Rets)⊥

Args
�
= [Bits]

Rets
�
= [Bits]

The whole definition of F is lengthy. Rather,
we just cite the toplevel definition of it:
F [[(FUNCTION name alist seq@(pro · · · epi))]]

ρ [a1, . . . , an] σ
�
= (σ6, [b1, . . . , bm])

where

(PROLOGUE (wf wr) x1 · · · xn)
�
= pro

(EPILOGUE (wf wr) y1 · · · ym)
�
= epi

ρ′
�
= f_newenv ρ σ.rm alist seq wr

(σ1, v1)
�
= E [[pro]] ρ σ

σ2
�
= f_args

[[(x1 · · · xn)]] ρ′ σ1 [a1, . . . , an]

σ3
�
= f_exec seq ρ′ (σ2 : = {.pc = 1})

(σ4, [b1, . . . , bm])
�
= f_rets[[(y1 · · · ym)]] ρ′ σ3

(σ5, v2)
�
= E [[epi]] ρ σ4

σ6
�
= f_newmem σ5 σ

This function converts the syntactic object of
an L-function definition into the mathemati-
cal multiple-valued function. As such mathe-
matical functions are entirely independent from
their ‘implementation’, we can define equiva-
lence between L-functions in terms of the de-
notational semantics. And we can also define
code optimizations as transformations of an L-
function that keeps this equivalence.

3. The Overall Structure of Our Code
Generator

Figure 5 depicts the overall flow of our code
generator. LIR(1) to LIR(4) are all LIR codes
and ASM is the assembler code of the target
machine. The programs shown by the arrows do
transformations that are dependent upon the
target machine.

The parts of the programs that are target ma-
chine dependent are generated automatically by
a tool from a file containing a description for
the target machine. This description is called
a target machine description or just a machine
description. The tool is called a target machine
description compiler (TMDC).

The program restruct does some program
transformations that cannot be achieved by our
instruction selector instsel. We call these
transformations restructuring. A typical exam-
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Table 2 Examples of machine parameters.

Symbol Meaning
*real-reg-symtab* List of all registers
*cmplib-xref-symtab* List of external symbols of a compiler library
*reg-I32*, *reg-I16*, ... List of registers
*reg-call-clobbers* List of registers clobbered by procedure calls

ple of restructuring is expanding calling conven-
tions. As a result of this restructuring, LIR(2)
may include some real registers.

The program instsel is a tree that uses a
DP matching based instruction selector. Like
IBurg, our selector does DP matching at code
selection time and the cost of an instruction
specification can be arbitrary expression. It
translates each L-expression in LIR(2) into a
sequence of L-expressions that are existing in-
structions for the target machine. The resulting
LIR code, LIR(3), still includes virtual regis-
ters.

The program regalloc is a graph-coloring-
based register allocator that assigns real regis-
ters to all of the remaining virtual registers in
LIR(3). This allocator may call instsel to fix
partially modified L-expressions due to register
spills. Then, regalloc is called again. This
process is repeated until no virtual registers re-
main in LIR(4). LIR(4) is almost in the form
of the object code for the target machine, ex-
cept for its exact syntax. The program asmout
generates the final assembler code, ASM, from
LIR(4) for the target machine.

4. Machine Descriptions

A machine description for a target machine
consists of the following parts:
( 1 ) Machine parameters
( 2 ) Instruction definitions
( 3 ) Restructuring procedures
( 4 ) Assembler language definitions

The various properties of a machine, such as
the organization of its registers, are defined in
variables called machine parameters. Machine
instructions to be used in code generation are
defined in the instruction definitions. The re-
structuring procedures are a collection of pro-
grams for restructuring LIR programs. The
syntax of the target machine’s assembler lan-
guage is defined in the assembler language def-
initions.

As explained later, the syntax of all of these
parts is in the form of S-expressions, like LIR.
Thus LIR code fragments can naturally be em-
bedded inside machine descriptions. We also

employ a Scheme interpreter. Scheme is used
mainly to write programs that handle LIR
codes directly. For example, restructuring pro-
cedures and assembler language definitions are
written in Scheme.

4.1 Machine Parameters
To set the machine parameter <Symbol> to a

value <Sexp>, we use the following <Def> form.
<Def> ::= (def <Symbol> <Sexp>)

This is different from the (define ...) in
Scheme. This form is used to inform the code
generator about the various characteristics of a
target machine via a machine parameter. Some
examples of machine parameters are shown in
Table 2.

4.2 Instruction Definitions
The instructions of a target machine are

defined using two forms, <DefRule> and
<DefCode>. The former defines the addressing
modes while the latter defines the instructions.
The differences between these two forms are ex-
plained in detail in Section 4.4.

4.3 Defrule Form
defrule forms correspond to rewriting rules

in Burg-style generators. The syntax of a
defrule form is as follows:

<DefRule> ::= (defrule <NonTerminal>
<Pattern>
{<InstInfo>})

<NonTerminal> ::= <Symbol>
beginning with a lower letter

<Pattern> ::= An LIR expression
with <NonTerminal> or _

A defrule form defines a non-terminal
<NonTerminal> that can be rewritten to a
pattern <Pattern>. A pattern is like an L-
expression except that some sub-expression of
it can be a non-terminal or an underscore ‘_’.

A defrule form can optionally have some
<InstInfo>s consisting of the following:

<InstInfo> ::= <InstInfoAsm>
| <InstInfoCost>
| <InstInfoCond>
| <InstInfoClobber>

where <InstInfoAsm> is an assembler output
template. <SchemeCode> is evaluated and be-
comes a part of the assembler output.
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<InstInfoAsm> ::= (asm <SchemeCode>)
<SchemeCode> is a Scheme code that can in-
clude some pattern variables of the syntax
<PatRefVar>.
<SchemeCode> ::= Any Scheme code

with <PatRefVar>
<PatRefVar> ::= $0 | $1 | ...

The pattern variable $n refers to the n-th non-
terminal in the rule. The first one $0 corre-
sponds to the non-terminal after the keyword
defrule while the others correspond to each
occurrence in <Pattern>.

Consider the following example.
(defrule reg (REG _ _)
(asm ‘(reg ,(caddr $0))))

(defrule addr (ADD I32 reg reg)
(asm ‘(add ,$1 ,$2)))

The first rule matches an L-expression denot-
ing a register and the second rule matches
a part of an addressing mode. When the
second rule matches an L-expression, say
(ADD I32 (REG I32 "r1") (REG I32 "r2")),
the variables $1 and $2 correspond to the
two occurrences of the non-terminal reg
in the pattern. They are evaluated to
(reg "r1") and (reg "r2"), respectively.
These values are produced by (asm ...)
in the first rule. The variable $0 in the
first rule denotes the source of the rewrit-
ing rule, (REG I32 "r1") or (REG I32 "r2")
in this case. Finally, the second rule re-
turns (add (reg "r1") (reg "r2")). This S-
expression denotes an addressing mode and is
eventually converted into real assembler nota-
tion.

The other possibilites of <InstInfo> are as
follows.
<InstInfoCost>
::= (cost <SchemeCode>)

<InstInfoCond>
::= (eq <PatRefVar> <PatRefVar>)

| (regset {(<PatRefVar>
<Symbol>)}

| (cond <SchemeCode>)
<InstInfoClobber>
::= (clobber {<RegExp>})

<InstInfoCost> specifies the execution cost
of the L-expression that matches the pattern.
This value is used by DP matching to select
the best instructions for a given L-expression
in order to minimize the total cost of the L-
expression. This specification can be omitted if
the cost is 0.
<InstInfoCond> specifies the various condi-

tions of instruction usage. The first specifies
that two virtual registers must be allocated the
same real registers. The second specifies a nar-
rower set of virtual registers. The third spec-
ifies a special matching condition that is used
when a pattern syntax either cannot be used or
is very difficult to use as shown in the follow-
ing. The following defrule is only applied for
integer constants in the range 0 to 31.

(defrule con5 (INTCONST _ _)
(cond (<= 0 (caddr $0) 31))

(asm ‘(con ,(caddr $0))))
<InstInfoClobber> specifies the real regis-

ters that may be modified during instruction
execution. An example of this specification is
also found in a later section below.

4.4 Defcode Form
defcode forms are similar to defrule forms

but they are used to describe entire instructions
while defrule is used to describe addressing
modes.

<DefCode> ::= (defcode <Name>
<Pattern>

{<InstInfo>})
<Name> ::= <Symbol>

Unlike defrule forms, <Name> is not a non-
terminal; it is just a name that is used to dis-
tinguish defcode forms. For example, in the
following defcode form, the first non-terminal
is reg and the pattern variables $0 and $1 cor-
respond to reg and rc, respectively.

(defcode mov-I32 (SET I32 reg rc)
(asm ‘(mov ,$1 ,$0))

(cost 1))
Our system provides both the defrule and

the defcode forms. Almost all retargetable
code generators, including TMD and Burg-style
generators such as Burg 7), Iburg 5), Lburg 6),
and Jburg 8),9), are based on the DP match-
ing method. A defrule form in TMD directly
corresponds to a rewriting rule in Burg-style
generators. For example, consider the follow-
ing defrule in TMD:

(defrule addr (ADD I32 reg reg)
(asm ‘(add ,$1 ,$2)))

This is written in Burg-style generators as fol-
lows. The instruction costs are not essential to
the following arguments and are omitted here.

addr : (ADD I32 reg reg) {...}
In Burg-style generators, both addressing
modes and instructions are defined with this
style of specification. It is also possible for
TMD to specify both by using only defrule
forms. However, we use defcode forms that are
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Table 3 Examples of user defined functions.

Function name Meaning
tmd-restruct-prologue Restructures a prologue expression
tmd-restruct-epilogue Restructures an epilogue expression
tmd-restruct-call Restructures a call expression
tmd-asmout-align Emits an alignment directive
tmd-asmout-emit-data Emits data

specially designed to specify instructions. At
the same time, we limit the usage of defrule
forms to specifying addressing modes for rea-
sons that are discussed below.

Consider the following rewriting rule:
reg : reg + reg {add $1, $2, $0}

This is a typical specification of an add instruc-
tion in Burg-style generators. An expression
of the form reg+reg can be determined to be
a reg type by executing the add instruction.
This view seems natural, but the assignment
operation that is done by the add instruction
to store the result is implicitly handled. The
pattern itself does not express exactly what the
add instruction does. We think that this subtle
mismatch in Burg-style generators often leads
to lengthy and erroneous machine descriptions.
The following is an example of a specification
for the add instruction in a machine that has
rich addressing modes, such as VAX.
mem : *reg
gen : reg
gen : mem
reg : gen + gen {add $1,$2,$0}
stmt: gen = gen + gen {add $2,$3,$1}

The first three rules define the addressing mode
gen consisting of registers or indirect registers.
The last two rules define the same instruction
add but from two different viewpoints. The first
says that a sub-expression of the form gen+gen
can be regarded as a register reg that holds an
intermediate result. As Burg-style generators
assume that any intermediate result is held in a
register, this rule cannot cover an instruction’s
ability to store a result into memory. Hence,
the second rule is needed. The second rule is
applied only to the top level of an expression
that stores the sum of two gens into a memory
location, gen. This problem may seem trivial,
but machine descriptions tend to become larger
by repeating similar definitions. Each instruc-
tion should be defined by just one specification.

There are two possible solutions to this prob-
lem:
( 1 ) Generalize the notion of place to hold in-

termediate results.
( 2 ) Generate two rules from one specification

for each instruction.
We have chosen the second approach for its sim-
plicity and efficiency. In TMD, defrule forms
are used only to specify addressing modes and
each instruction is defined using a defcode form
as follows:

(defcode add (SET gen (ADD gen gen))
(asm ‘(add $1, $2, $0)))

A defcode form by itself is not a rewriting
rule, but it generates, at most, two rewriting
rules. For each defcode form, the following
conditions are first checked:
( 1 ) The pattern is an assignment to a non-

terminal.
( 2 ) The non-terminal can be rewritten to

reg.
Two defrule forms are then generated from a
defcode that satisfy the conditions as follows:

(defrule reg (ADD gen gen)
;; rulename = add.reg
(asm ‘(add ,$1 ,$2 ,$0)))

(defrule stmt (SET gen (ADD gen gen))
;; rulename = add.stmt
(asm ‘(add ,$1 ,$2 ,$0)))

For debugging purposes, each defrule form
is given a unique name that is included as a
comment.

4.5 User Defined Functions
The remaining parts of machine descriptions

are restructuring procedures and assembly lan-
guage definitions. They are implemented in
Scheme as user-defined functions. These parts
cannot be formalized as simply as the process of
instruction selection described above. Instead
of seeking a formal realization for these parts,
we have simply provided methods in the form
of hook functions to customize these parts in
the code generator. Table 3 shows examples
where functions prefixed with tmd-restruct-
are used for restructuring and tmd-asmout- are
used for describing a target machine’s assembly
code.

For example, the first three restructuring
functions that the user must provide carry out
calling convention transformations. Fig. 6 is
an example for a SPARC machine that takes
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;; Before restructuring
(PROLOGUE (0 0) (REG I32 "x") (REG I32 "y"))
(CALL (STATIC I32 "foo") ((REG I32 "x") (REG I32 "y")) ((REG I32 "z")))
(EPILOGUE (0 0) (REG I32 "z"))

;; After restructuring of PROLOGUE, EPILOGUE, and CALL
(PROLOGUE (0 0) (REG I32 "%i0") (REG I32 "%i1"))
(SET I32 (REG I32 "x") (REG I32 "%i0"))
(SET I32 (REG I32 "y") (REG I32 "%i1"))
(SET I32 (REG I32 "%o0") (REG I32 "x"))
(SET I32 (REG I32 "%o1") (REG I32 "y"))
(CALL (STATIC I32 "foo") () ((REG I32 "%o0")))
(SET I32 (REG I32 "z") (REG I32 "%o0"))
(SET I32 (REG I32 "%i0") (REG I32 "z"))
(EPILOGUE (92 0) (REG I32 "%i0"))

Fig. 6 An Example of restructuring.

(define (tmd-asmout-emit-align sm n)
;; Emit alignment assembler directive.
(fprintf sm " .align %d\n" n))

(define (tmd-asmout-emit-data sm type data)
(case type

((I32) (fprintf sm " .word %s\n" data))
((I16) (fprintf sm " .half %s\n" data))
((I8) (fprintf sm " .byte %s\n" data))
((F32)
(fprintf sm " .word 0x%08x ! %s\n" (float->bits data) data))
((F64)
(let ((bits (double->bits data)))
(fprintf sm " .word 0x%08x ! %s\n"

(logand (logshr bits 32) #xffffffff) data)
(fprintf sm " .word 0x%08x\n" (logand bits #xffffffff))))))

Fig. 7 Examples of assembler output functions in SPARC.

incoming arguments as real registers %i0, %i1,
etc. Then, it returns the result as %i0. Fi-
nally, it sends outgoing arguments as %o0, %o1,
etc. The calling convention of a SPARC ma-
chine becomes more complex when a call in-
volves floating point arguments. Each machine
has its own calling conventions that are hard to
formalize in any general fashion. Therefore, our
decision to use user-defined functions, a design
decision that is common in other retargetable
compilers, is a practical one.

Functions that are prefixed with tmd-asmout-
are called from the code generator to produce
the target machine’s assembly code. Examples
of these functions are shown in Fig. 7.

4.6 The Macro Feature
In a machine description, there is a ten-

dency to repeat definitions that are very sim-
ilar. These definitions are usually generated by
using cut, paste, or modification operations in
a text editor. To reduce this repetition, TMD

provides the following simple macro feature.
This example shows a macro form and its ex-
panded form.

(foreach @x (a b)
(foo @x))

=> (foo a) (foo b)

(foreach (@x @y) ((a 1) (b 2))
(foo @x @y))

=> (foo a 1) (foo b 2)

5. Example of Instruction Selection

This section explains how instsel works by
using a simple example. The machine de-
scription Fig. 8 is part of the description for
a SPARC machine. An older version of the
SPARC machine does not have a multiply in-
struction. Instead, they are implemented as li-
brary function calls. The constraints specified
in cond state that the result of an operation
is stored in the first operand of the operation
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1 (defrule reg (REG _ _) (asm $0))
2 (defrule addr (ADD I32 reg reg) (asm ‘(add ,$1 ,$2)))
3 (defrule con13 (INTCONST _ _)
4 (cond (<= -4096 (caddr $0) 4095))
5 (asm ‘(con ,(caddr $0))))
6 (defrule rc reg) ; rc.1
7 (defrule rc con13); rc.2
8
9 (defcode mov-I32 (SET I32 reg rc)
10 (asm ‘(mov ,$1 ,$0))
11 (cost 1))
12
13 (defcode add (SET I32 reg (ADD I32 reg rc))
14 (asm ‘(add ,$1 ,$2 ,$0))
15 (cost 1))
16
17 (defcode lib-mul (SET I32 reg (MUL I32 reg reg))
18 (cond (eq $0 $1)
19 (regset ($0 *reg-o0-I32*) ; *reg-o0-I32* = (%o0)
20 ($1 *reg-o0-I32*) ; *reg-o1-I32* = (%o1)
21 ($2 *reg-o1-I32*)))
22 (asm ’(call (sta ".mul")) ’(nop))
23 (clobber (REG I32 "%o1")
24 (REG I32 "%o2")
25 (REG I32 "%o3")
26 (REG I32 "%o4")
27 (REG I32 "%o5"))
28 (cost 10))

Fig. 8 Reduced description for SPARC.

1 SET I32
2 | * 13, stmt: (SET I32 reg (ADD I32 reg rc)) ; add.stmt
3 |
4 +--REG I32 "a"
5 | * 0, reg: (REG _ _) ; reg
6 |
7 +--ADD I32
8 |
9 +--MEM I32
10 | | * 1, reg: (MEM I32 addr) ; load-I32.reg
11 | |
12 | +--ADD I32
13 | | * 0, addr: (ADD I32 reg reg) ; addr
14 | |
15 | +--REG I32 "b"
16 | | * 0, reg: (REG _ _) ; reg
17 | |
18 | +--REG I32 "c"
19 | * 0, reg: (REG _ _) ; reg
20 |
21 +--MUL I32
22 | 11, reg: (MUL I32 reg reg) ; lib-mul.reg
23 | * 11, rc: reg ; rc.1
24 |
25 +--REG I32 "d"
26 | * 0, reg: (REG _ _) ; reg
27 |
28 +--INTCONST I32 100
29 * 1, reg: rc ; mov-I32.reg
30 0, rc: con13 ; rc.2
31 0, con13: (INTCONST _ _) ; con13

Fig. 9 DP matching result.
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(SET I32 (REG I32 "V@1") (MEM I32 (ADD I32 (REG I32 "b") (REG I32 "c"))))
(SET I32 (REG I32 "V@2") (INTCONST I32 100))
(SET I32 (REG I32 "V@3") (MUL I32 (REG I32 "d") (REG I32 "V@2")))
(SET I32 (REG I32 "a") (ADD I32 (REG I32 "V@1") (REG I32 "V@3")))

Fig. 10 After tree expanding.

(SET I32 (REG I32 "V@4") (REG I32 "b"))
(SET I32 (REG I32 "V@5") (REG I32 "c"))
(SET I32 (REG I32 "V@1") (MEM I32 (ADD I32 (REG I32 "V@4") (REG I32 "V@5"))))
(SET I32 (REG I32 "V@2") (INTCONST I32 100))
(SET I32 (REG I32 "%o0") (REG I32 "d"))
(SET I32 (REG I32 "%o1") (REG I32 "V@2"))
(SET I32 (REG I32 "%o0") (MUL I32 (REG I32 "%o0") (REG I32 "%o1")))
(SET I32 (REG I32 "V@3") (REG I32 "%o0"))
(SET I32 (REG I32 "V@6") (ADD I32 (REG I32 "V@1") (REG I32 "V@3")))
(SET I32 (REG I32 "a") (REG I32 "V@6"))

Fig. 11 After relaxing.

and the operands of the operation are %o0 and
%o1. Each library function clobbers the listed
registers in (clobber ...).

The following is an input example for the in-
struction selector instsel:
;; register int a,b,c,d;
;; a = *(int*)(b+c) + d*100;
(SET I32 (REG I32 "a")

(ADD I32
(MEM I32
(ADD I32
(REG I32 "b")
(REG I32 "c")))

(MUL I32 (REG I32 "d")
(INTCONST I32 100))))

Figure 9 shows the result of DP matching.
Consult Iburg 5) for the details of Burg-style DP
matching. Each node has the rules selected dur-
ing the DP matching. For example, MUL (Line
21) has two rules (Lines 22, 23). Each rule
consists of an optional star, the total costs, a
rewriting rule, and a unique name (after a semi-
colon as it is a comment).

In general, each node does not correspond di-
rectly to an instruction. For example, the root
node SET (Line 1) has the rule name add.stmt
that is derived from defrule for add, and the
node ADD (Line 7) is a part of the rule add.stmt.
That is, the children of SET (Line 1) are REG
(Line 4), MEM (Line 9), and MUL (Line 21). They
correspond to the non-terminals reg, reg, and
rc of the pattern shown in (Line 2), respec-
tively.
MUL (Line 21) has two rules. The

lib-mul.reg rule (Line 22) matches directly.
The rule says that this node can be regarded as
reg, but as explained before, this MUL node cor-

responds to the non-terminal rc from the pat-
tern shown in (Line 2). This mismatch is solved
by the second selected rule rc.1 (Line 23). The
rule to which a parent refers directly is marked
by ‘*’. In this case, the rewriting rule rc.1
can be applied without any additional cost.

On the other hand, the constant INTCONST
(Line 28) requires additional cost to solve the
mismatch of non-terminals. The mov-I32.reg
rule is derived from defcode for mov-I32. Then
it generates a mov instruction to regard the con-
stant as a register.

After matching, this tree is first expanded
into the sequence of instructions shown in
Fig. 10. The order of the instructions is de-
termined by the Sethi-Ullman numbering algo-
rithm 12).

Secondly, the register constraints of the
defcode forms are considered and the required
transformations are applied. For example, reg-
ister b and c are copied to fresh virtual regis-
ters so that they may be considered as candi-
dates for coalescing. The MUL instruction (im-
plemented as a library call) takes arguments
from registers %o0 and %o1 and stores the result
into %o0. To make it possible for the register
allocator to solve these constraints, additional
copies are needed to relax the constraints. We
call this process relaxing.

The output of instsel is shown in Fig. 11.
Each line of the sequence is an L-expression
that corresponds to an existing instruction.

Even at this point, we never introduce any
assembler notations that are dependent on the
target machine. This allows the rest of the com-
piler passes, including register allocation, to be
generic. The register allocator then tries to al-
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locate real registers. instsel may be recalled
when register spills arise.

Finally, the sequence of L-expressions is con-
verted into real target machine assembly code.
During this conversion, the hook functions in
the target assembly code descriptions are used.
Register allocation and coalescing are skipped
in the following example.

mov b,V@4
mov c,V@5
ld [V@4+V@5],V@1
mov 100,V@2
mov d,%o0
mov V@2,%o1
call .mul
nop
mov %o0,V@3
add V@1,V@3,V@6
mov V@6,a

6. Comparison with Other Systems

The idea to design an intermediate language
of a compiler as a self-contained programming
language is not new. The intermediate lan-
guage that is based on the most similar concept
to ours is C-- 13), which is also a self-contained
programming language designed as an interme-
diate language. However, C-- was designed pri-
marily to implement functional programming
languages. As such, C-- has some special fea-
tures that are required for implementing func-
tional programming languages, such as garbage
collection 14) and exceptions 10). These special
features are not currently provided by LIR. C--
provides several kinds of variables, including lo-
cal, global, register, and aggregate, and their
declarations are similar to those of the C pro-
gramming language.

Compared to C--, LIR is closer to the conven-
tional hardware and is more concrete. We have
added only selected constructs to an assembler-
level intermediate language. These constructs
are essential to all back-end tasks including in-
struction selection and register allocation. Vari-
able declarations in LIR include the details re-
quired for these tasks, such as frame offset,
alignment value, and segment name. These de-
tails cannot be expressed in C--. LIR can be
used as an intermediate language for instruc-
tion selection and register allocation as shown
in our examples above.

We have previously pointed out a problem
of Burg-style generators. Besides this problem,
major Burg-style generators do not support the
features that are necessary to specify various

constraints, as the generators are designed to
be independent of any intermediate languages.
However, writing such constraints by hand sep-
arately from the corresponding instruction def-
initions is not easy and is often a very onerous
task. The assumption that a fixed intermedi-
ate language exists can make a code genera-
tor more powerful. TMD is designed only for
LIR. It provides the capability to specify var-
ious constraints as described above. TMD has
also been incorporated with the Sethi-Ullman
register minimizing algorithm 12).

Finally, Burg-style generators directly pro-
duce assembler codes by DP matching, while
TMD transforms LIR programs by DP match-
ing, whose results can be further transformed
in later passes including register allocation.

The code generator that is used by GCC is de-
signed for use with the RTL intermediate lan-
guage. Machine descriptions in GCC do not
have the problems inherent in Burg-style gen-
erators. However, features are provided that
allow various constraints to be specified simi-
lar to TMD. Although the retargeting method
used by GCC is a unique and flexible method,
it cannot generate the best selection of instruc-
tions for each expression. As the method used
by GCC is not based on the rewriting rules of
Burg-style generators, the specification of ad-
dressing modes cannot be based on rewriting
rules like the rules of Burg-style generators or
the defrule of TMD. Instead, GCC provides a
fixed but wide addressing mode. It can then be
customized by using only a limited part of it.
While at first glance this appears to be more
awkward than necessary, this wide addressing
mode includes a pre/post inc/decrement mode
that is hard to implement otherwise. Therefore,
GCC’s approach is practical as far as the wide
addressing mode covers the addressing modes
of the target machine. Note that such special
modes cannot be handled by Burg-style gener-
ators, including TMD.

The differences in design choices between LIR
and RTL of GCC have already been discussed
in detail in Section 2.1.

Table 4 summarizes the above comparison.
The row ‘One def for one inst’ means whether
one definition corresponds to one instruction in
machine descriptions, and this property is not
satisfied by Burg-style generators. The next
row ‘New addr modes’ means whether new ad-
dressing modes can be easily defined. As we
mentioned, the machine description language of
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Table 4 Comparison.

LBurg GCC TMD
DP matching Yes No Yes
Sethi-Ullman No No Yes
One def for one inst No Yes Yes
New addr modes Yes No Yes
Reg constraints No Yes Yes
Complex addr modes No Yes No

GCC does not provide an easy way to define
new addressing modes, while in Burg-style gen-
erators, addressing modes can be easily defined
by rewriting rules. The row ‘Reg constraints’
means whether constraints on registers can be
specified in the machine description language.
The final row ‘Complex addr modes’ denotes
the feature of GCC that some intrinsic address-
ing modes are supported.

Machine descriptions for TMD were written
for a SPARC machine and a (limited) X86 ma-
chine. The first version of our SPARC descrip-
tion was exactly based on that of LCC’s re-
targetable code generator LBurg 6). Thus it is
worth comparing the total number of lines in
their machine descriptions; the number of lines
in LCC’s description and that of ours are 1,163
and 877, respectively. Our machine description
for the X86 machine excluding floating opera-
tions is 650 lines long, while the corresponding
description in LCC is about 1,000 lines long.
The machine description language of GCC is
similar to ours except that the language does
not support macro features because its underly-
ing language is C. Thus we think that machine
descriptions for TMD should be more concise
than machine descriptions for GCC in general.
However, the current machine descriptions for
GCC cover a much wider range of SPARC and
X86 machines, so it is impossible to directly
compare the number of lines in those descrip-
tions with ours or LCC’s.

As we explained in Secion 2, another differ-
ence between the COINS compiler and GCC
is that in COINS real registers do not appear
in LIR programs before machine code genera-
tion. This convention has been widely preferred
by those who implement code optimizations in-
cluding SSA transformations 3), because they
have much freedom in the use of registers, e.g.,
they can freely rename registers during trans-
formations.

7. Performance of the COINS Com-
piler

The performance evaluation of object codes

Table 5 Benchmark results.

PROGRAM GCC-O2 coins-O2
164.gzip 2.74* 4.02
171.swim 2.67 2.50*
175.vpr 3.57* 5.82
181.mcf 0.741 0.738*
197.parser 5.12* 6.77
254.gap 2.07* 2.31
256.bzip2 9.99* 26.3
300.twolf 0.489* 0.622
isort 179.92 108.09*
ssort 184.55* 247.39
heap 68.81* 69.27
shell 63.57 63.47*
queen 69.46 67.91*
soukan 118.40 113.77*
komachi 27.90 　 27.52*
prime 160.37* 229.74

depends not only on the performance of TMD
but also on other parts of COINS, such as
the code optimizer and the register allocator.
A portion of the results on the benchmark
with Sun Microsystems Ultra5-10 workstation
with a 300-MHz SPARC processor and 256-
MB of memory is cited in Table 5 to evalu-
ate the current status of the COINS compiler
where programs prefixed with digits are from
the SPEC benchmark suite. It supports a rel-
atively wide range of code optimizations based
on SSA transformations 11), while some essen-
tial optimizations including pipeline scheduling
and peephole optimizations are about to be im-
plemented. The programs without a number
prefix are not from the SPEC benchmark and
the results are due to a version of COINS com-
piler with an experimental pipeline scheduler,
which will soon be incorporated with the offi-
cial version.

According to the above benchmark results,
the object codes produced by TMD have an
almost similar quality to those produced by
GCC, though code optimizations in LIR are
performed at a higher level compared with
GCC. This means that the high-level features of
LIR, such as L-functions and variable declara-
tions, do not hinder the quality of the produced
codes. Therefore, more sophisticated optimiza-
tions applied to LIR programs will outperform
GCC in the future.

8. Conclusions

We have designed an intermediate language
called LIR and have implemented the TMD
retargetable code generator for this language.
Machine descriptions for SPARC, x86, ARM,
SH-4, PowerPC, and MIPS are currently avail-
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able and the last three are done by students in a
few month. Throughout the development of the
back-end, LIR has been used without any major
modification. The fact that LIR was designed
as a programming language has provided a nat-
ural snapshot feature for the COINS compiler.
An LIR program that is dumped at any point
in the compilation process is very useful as a
debug dump. Furthermore, it is also possible
to restart the process at this dump point. Al-
though the COINS compiler is implemented in
JAVA, users can easily gain access to the com-
piler via any programming language. This is
illustrated by the fact that TMD was originally
implemented in Scheme.

TMD is a Burg-style generator with some
additional features. One machine instruction
can be naturally defined by a single defcode
form, while addressing modes are defined by
ordinary rewrite rules. This feature and the
simple macro feature can reduce the size of ma-
chine descriptions. The embedded Scheme in-
terpreter has proven to be helpful in generating
concise descriptions of various conditions.

As a natural consequence that LIR is a pro-
gramming language, the instruction selection
by DP matching in TMD is also implemented
as a kind of transformation of LIR programs.

In addition to TMD, various optimization
techniques have already been implemented at
the level of LIR programs. Those who imple-
ment such optimization techniques, including
the third author, have reported that having
a self-contained programming language makes
implementation easier and clearer.

The elegance and quality of the DP match-
ing method depends on the assumption that in-
struction selection is done for a single tree with
at most one side effect. In fact, the method
does not guarantee code generators based on
the method to select optimal instructions for a
whole program. It is difficult to select the best
instructions for even a basic block; this problem
is known to be NP-Complete. A few research-
level retargetable code generators can select op-
timal instructions for expressions in a range be-
yond a single tree, e.g., Ertl 4). But as far as we
know, there are no such practical retargetable
compilers. Any efforts towards such an ideal
compiler are fruitful. A first step would be to
cope with a pre/post inc/decrement mode.
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