TERSLER RS 64 1] CPAK 14 4F) £FERS

3—597

Membership Management of Group

3L—06 CaLe 1
Masashi Shiraishi

and Makoto Takizawa

Tokyo Denki University, Japan
Email: {shira, taki}@takilab.k.dendai.ac.jp

Abstract

This paper discusses a group communication protocol
where membership is dynamically changed due to faulty
processes. We discuss how to support causally ordered
delay of messages on less reliable networks.

1 Introduction

In a distributed application, a group of multiple pro-
cesses are cooperating to achieve some objectives. Mes-
sages transmitted are causally / totally delivered to pro-
cesses in the group [2]. A message my causally precedes
another message my if a sending event of m; happens
before [1] a sending event of my. If m; causally precedes
mg, m; is required to be delivered before my in every
common destination of m; and mag.

Some process in a group may be faulty. Another pro-
cess may newly join a group. Thus, a membership of
group is variant, where processes are leaving and join-
ing. In this paper, each communication channel between
a pair of processes is assumed to be less-reliable. A pro-
cess p; perceives another process p; to be faulty if p; does
not receive any message for some duration. When a pro-
cess recovers from the fault, the process informs all the
operational members of its recovery. Each process p; has
a view v; showing what process is perceived to be opera-
tional in a group. The view v; does not include a process
p; if p; perceives p; to be faulty. If p; perceives some
change of the membership, i.e. leaving and joining the
group, v; is changed. However, another process p; might
perceive p; still operational. Here, v; # vj.

In most discussions on membership management [3],
networks are assumed to be reliable. In addition, some
mechanism for detecting faulty processes is assumed to
be supported by the underlying subsystem. The under-
lying system is realized by taking usage of the Internet
and mobile communication. In these systems, communi-
cation channels like connections supported by TCP are
often disconnected while processes are still operational.
Suppose there are three processes p;, p;, and pi. A chan-
nel between p; and p; is eventually disconnected due to
timeout while a channel between p; and py, is connected.
Here, p; considers p; to be faulty because p; cannot re-
ceive any message from p; but py considers p; to be oper-
ational. We discuss a group communication of multiple

processes where processes are leaving and joining. In this
paper, we discuss how to detect faulty processes.

In section 2, we discuss a system model. In section 3,
we discuss how to detect faulty processes.

2 System Model

A group G is a collection of process p1, ..., pn (n > 1)
which are interconnected in a network. The network is
modeled to be a collection of channels. Each channel ¢;;
supports reliable, bidirectional communication between
a pair of processes p; and p;. For example, a channel
can be realized by a TCP connection. Messages sent by
a process p; are delivered to the other process p; in a
sending order without message loss as long as a channel
ci; exists. For example, if a connection is disconnected,
p; and p; cannot be communicated. Even if p; does not
receive any message from p;, p; cannot perceive p; to be
faulty. Here, p; is suspected by p;.

A process is assumed to suffer from only crash fault.
No Byzantine faulty occurs. In a network, each channel
is assumed to be reliable, i.e. messages are delivered in a
sending order without any message loss and duplication.
However, a channel may be disconnected in the Inter-
net and mobile networks. If a process is faulty, channels
with the faulty process are automatically disconnected.
In Figure 1, there are three processes pi, ps, and p3. If
the process ps is faulty, a pair of channels c;3 and cy3 are
disconnected [Figure 1(2)]. On the other hand, a channel
may be disconnected while processes interconnected with
the channels are operational. For example, a channel ci3
is disconnected while the processes p; and p3 are oper-
ational [Figure 1(3)]. A process p; cannot communicate
with another process p; if a channel between p; and p; is
disconnected. Here, p; perceives that p; is suspected. p;
perceives p; to be faulty if every operational process for
p; perceives p; to be suspected or faulty.

Processes exchange messages in the network. Let
si(m) and r;(m) be sending and receipt events of a mes-
sage m at a process p;. The causally precedent relation
is defined by the happens-before relation [1]. A message
my is referred to as causally precede another message
ma (my — mg) iff s;(my) happens before s;(mz). my is
causally concurrent with mg (my || mq) iff neither m,
— mg nor my — my. A message my totally precedes
another message mq iff m; — mgy or my precedes mo in

3—598

every pair of common destination process of my and no

if mq || mo.
o C RO}

()= G (i (—()
1) @

((©)]

Figure 1: Disconnection of channel.

3 Detection of Faulty Process

As discussed in the preceding section, a process p; can-
not communicate with another process p; if a channel ¢;;
between p; and p; is disconnected even if p; is still oper-
ational. A process p; considers another process p; to be
operational if p; receives some message from p;. A pro-
cess p; suspects p; if p; does not receive any message for a
longer duration than some prefixed time units. An opera-
tional process p; perceives another process p; to be faulty
if p; is suspected by every process py which p; is perceived
to be operational. Let us consider processes in Figure
1(3). A pair of processes p; and ps cannot communicate
with one another due to the disconnection of a channel
c13. However, p; can still deliver messages to p3 via ps.
If p; finds that p; can deliver messages to a suspected
process p; via other processes, p; is semi — operational.
Figure 2 shows a state transaction showing how a process
perceives another process.

semi-operational

Figure 2: State transaction.

Each message m has a sequence number m.sq. The se-
quence number sq is incremented by one each time a pro-
cess p; sends a message. Each process p; sends a message
m with a vector (sqi, ..., s¢n) to all the processes where
each sq; shows a sequence number of message which p;
expects to receive next from a process p;. Suppose a
process p; receives a message m from another process
pj. Here, p; finds that p; has received every message m;
from p; where m;.sq < m.sq;. In addition, the process
p; knows that p; has received every message my from a
process pi when my.sq¢ < m.sqr. If sq; +1 = m.sq, p;
accepts m from p;. If sq; > m.sq, p; rejects m. If sq; +1
< m.sq, p; finds there is a message gap from p;. Suppose
sqr < m.sqr, p; finds that p; has not received message
my, from pg where sq;, < my.sqr < m.sqx.

In Figure 3, a process p; sends a message m; with a
vector (2,1, 3) to a pair of processes ps and p3. However,
p3 does not receive mny due to the disconnection of the
channel ¢;3 while py receives my. Then, the process ps
sends a message ms with (2,2, 3) to p; and p3. ps receives
my and then sends a message ms with (2,2,4) to p; and
p2. The process py sends a message my4 with (2,3,4) to
p1 and p3. After sending m; to ps, p1 does not receive
any message from ps. p; suspects ps. On receipt of my,
p1 finds that ps receives some message from pz but py
does not receive. That is, p, finds that ps perceives p3
to be operational. Here, p3 is semi-operational in p;. po
forwards p3 a message which p; sends.

P p:z ps
<2,1,3>

—x
mr
m:z me

<2,2,4>

— a
ma« maq fime

Figure 3: Suspected process.

4 Concluding Remarks

In this paper, we discussed how to detect faulty pro-
cesses in a group in presence of disconnection of channel.
We are now discussing how to make a consensus on a
some view among all the operational processes.

References

[1] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” CACM, Vol.21,
No.7, 1978, pp.558-565.

(2

Mattern, F., “Virtual Time and Global States
of Distributed Systems,” Parallel and Distributed
Algorithms (Cosnard, M. and , P. eds.), North-
Holland, 1989, pp.215-226.

[3] Reiter, M. K., “The Rampart Toolkit for Build-
ing High-Integrity Services,” Theory and Practice
in Distributed Systems, LNCS 9388, Springer-Verlag,
1995, pp.99-110.

4

Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Realtime Ap-
plications,” Proc. of IEEE ICDCS-18, 1998, pp.40-
47.

