TE AT R 64 [0 CERK 14 48) REKRE 3—517

Agent-based Data Management *

1K—=05 Takao Komiya, Hiroyuki Ohshida, Katsuya Tanaka, and Makoto Takizawa '
Tokyo Denki University ¥
Email : {komi, ohsida, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

In client-server database applications, application
programs are performed on clients. Requests and re-
sponses are exchanged among clients and servers in net-
works. The more number of requests are issued to ob-
ject servers by applications and the more number of
responses are sent back to the applications, the more
communication overheads are increased. In the three-
tier client-server architecture, applications move to ap-
plication servers from clients in order to decreasc the
communication overheads between clients and servers.

In database applications, transactions are required
to manipulate objects in object servers so as to satisfy
ACID. For example, objects in multiple object servers
are required to be atomically manipulated and trans-
actions are serializable. In the traditional systemns, ob-
jects are locked to realize the serializability of transac-
tions. In the locking protocol, multiple accesses to an
object are coordinated based on a principle that only
one transaction is a winner which can hold the object
and the others are losers.

In another computation paradigm, programs named
mobile agents move around data servers. First, an
agent lands at a server and then is performed to ma-
nipulate data objects in the server. If the agent fin-
ishes manipulating the data objects in the server, the
agent moves to another server which has data to be
manipulated. Here, agents manipulate objects in ob-
ject servers without exchanging messages in a network.
Compared with traditional process-based applications
like client-server applications, mobile agents have fol-
lowing characteristics;

1. Agents are autonomously initiated and performed.
2. Agents negotiate with other agents.
3. Agents are moving around computers.

In this paper, we discuss how to manipulate multi-
ple object servers by using agents. Agents move around
object servers without exchanging messages in the net-
work. On the other hand, application programs and
object servers are exchanging messages in the network.
In addition, an agent negotiates with other agents if
the agents manipulate objects in a conflicting manner.
Through the negotiation, each agent autonomously
makes a decision on whether the agent continues to
hold the objects or gives up to hold the objects.

2 Object Servers

A system is composed of object servers Dy, ..., D,
(m > 1), which are interconnected with reliable, high-
speed communication networks. FEach object server
supports a collection of objects and methods for inanip-
ulating the objects. Objects are encapsulations of data
and methods. Objects are manipulated only through
methods supported by the objects.

Applications in clients initiate transactions in appli-

FI-Vr 2 bIBTLT - ER
UNE &, KEH Bz, B B, WK W
IR EEAY

cation servers. A transaction manipulates objects in
one or more than one object server. A transaction T
is an atomic sequence of methods for manipulating ob-
Jjects in object servers. A subsequence 7T; of methods in
T to manipulate objects in one object server D; is re-
ferred to as subtransaction of T. A subtransaction 7
is also atomic sequence of methods in one object server

i

3 Computation model of agents

An agent is a procedure which can be performed on
one or more than one object server. An agent issues
methods to an object server to manipulate objects in
an object server where the agent exists. Every object
server is assumed to support a platform to perform
agents.

First, an agent A is initiated by an application or
is autonomously initiated on an object server. The
procedure and data of an agent A are first stored in
the memory of an object server D; in order to perform
the agent A on D;. If enough resource like memory to
perform the agent A is allocated for the agent A on
the server D;, the agent A can be performed. Here,
D; is referred to as current server of A and the agent
A is referred to as land at the server D;. Objects in
the server D; are manipulated by the agent A through
methods. In result, state of object may be changed and
a part of the state may be derived. Data derived from
the server D; may be stored in the agent A. Thus,
an instance A4; of the agent A on the object server D;
shows a subtransaction, i.e. a sequence of methods
for manipulating objects in the server D;. Then, the
agent A finds another server D; which has objects to
be manipulated by A. Then, the agent A moves to
the server D;. Here, the agent A may carry objects
obtained from D; as the data of A {Figure 1]. If enough
resource like memory in the server D; is allocated for
the agent A, A lands at D;.

A pair of agents A; and Ay are referred to as
conflict if A; and A, manipulate a same object
through conflicting methods. For example, A; issues
a method reset and A, issues increment to a counter
object in a server D;. Here, A; and As conflict. The
agent A is allowed to land at D; if the following con-
dition is satisfied:

[Landing conditions]
1. Enough resource to perform an agent A is allo-
cated for the agent A in an object server D;.

2. There is no agent on D; which conflicts with A.

4 Consensus among Agents

An agent A manipulates objects in multiple object
servers Dy, ..., Dy, (m > 1). After finishing manip-
ulating objects in all the object servers, the agent A
commits if some condition C on the servers Dy, ...,
Dy, is satisfied. Otherwise, A aborts. For example, an
atomic all-or-nothing condition is used to realize the
atomicity of a transaction. That is, the agent commits



3—518

=)= a)=
=~ [
D; D;

/\ :data Q : agent

Figure 1: Agent.

only if all the object servers are successfully updated.
Otherwise, the agent aborts, i.e. no update is done
on the objects in any object server. The two-phase
commitment (2PC) protocol is used to realize the all-
or-nothing principle in distributed database systems.
In another example, an application would like to book
one hotel. The application issues a booking request to
multiple hotel objects. Here, the application can com-
mit if at least one hotel object is obtained. Thus, if
at least one of the servers is successfully manipulated,
the agent A commits. There are following consensus
conditions;

[Consensus conditions]

1. Atomic consensus: an agent is successfully per-
formed on all the object servers, i.e. all-or-nothing
principle. This is a condition used in the tradi-
tional two-phase commitment protocol.

2. Majority consensus: an agent is successfully per-
formed on more than half of object servers.

3. At-least-one consensus: an agent is successfully
performed on at least one object server.

4. (TT‘) consensus: an agent is successfully performed

on more than r out of n servers (r < n).

The atomic, majority, and at-least-one consensus
conditions are shown in forms of (Z), (r(n ﬁ) /21), and

('1’) consensus ones, respectively. More general consen-
sus conditions are discussed in a paper [1].

5 Negotiation Strategies

Unless the landing conditions are satisfied, the agent
A can not land at the server D;. Here, the agent A can
take one of the following ways:
1. The agent A waits in the current object server D;.
2. The agent A finds another object server Dy which
has objects to be possibly manipulated before D;
by A.
3. The agent A negotiates with other agents in D;
which hold resources.
4. The agent A aborts.

Suppose an agent lands at a current object server
D;. Here, there might be other agents Bi, ..., Bx
which are being performed on the object server D;.
Each agent B; is an agent or surrogate agent of an
agent. If the agent A conflicts with some agent B; on
an object o, A negotiates with B; with respect to which
agent A or B; holds the object 0. There are following
negotiation strategies:

1. The agent A blocks until the agent B; commits.

2. The agent A takes over Bj, i.e. Bj releases the
objects and blocks. Then A starts.

3. Bj aborts and A starts.

The first way is similar to the locking protocol. An
agent A blocks if some agent B holds an object o in a

conflicting way with the agent A. If B waits for release
of an object held by A, A and B are deadlocked. Thus,
deadlock among agents may occur. When an agent A
blocks in a object server D;, a timer is started. If the
timer expires, the agent A takes one of the following
ways:
1. The agent A retreats to an object server D; which
A has passed over.
2. Every surrogate A; of A initiates a deadlock de-
tection agent.

In the second way, an agent A takes over an agent
Bj; in an object server D; if A conflicts with B; and B;
holds an object. Here, A starts to do the negotiation
with an agent B; on D; by using a following negotiation
protocol :

[Negotiation protocol]

1. An agent A sends a can-I-use message CIU(o,
op) to an agent B; on an object server D;. This
means that an agent A would like to manipulate
an object o with a method op in an object server
D;.

2. On receipt of CIU(o, op) from an agent A, an
agent Bj; sends OK to A if B; can release the
object o or B; does not mind if A manipulates the
object o. Here, there are two approaches to B;’s
releasing the object o :

a. Bj aborts if A precedes B;.

b. B; rolls back to a checkpoint and then
restarts if A precedes B;. Otherwise, B;
sends No to A.

3. On receipt of OK from Bj, A starts manipulating
the object o.

4. On receipt of No from Bj, there are following
ways:

a. A blocks until A receives OK/NO from B;.

b. A aborts.

c. A triggers the second level negotiation proto-
col. [J

If the agent B; agrees with the agent A in the nego-
tiation protocol, A can manipulate objects by taking
over B;. In the second way, the agent B; not only
releases the object but also aborts.

6 Concluding Remarks

This paper discussed an agent model for transac-
tions which manipulate muitiple object servers. An
agent first moves to an object server and then manip-
ulates objects. The agent autonomously moves around
the object servers to perform the computation. If the
agent conflicts with other agents, the agent negotiatcs
with the other agents. The negotiation is done based
on the commitment conditions and types of agents, i.e.
ordered and an ordered.

References

[1] Shimojo, I., Tachikawa, T., and Takizawa, M.,
“M-ary Commitment Protocol with Partially Or-
dered Domain,” Proc. of the 8th Int’l Conf.
on Database and Expert Systems Applications
(DEXA’97), 1997, pp.397-408.



