A5 64 0] (CFRR 14) 2FEKS

3—287

Group Protocol for Delivering Requests to Replicas *

1G—06

Keijirou Arai, Katsuya Tanaka, and Makoto Takizawa '

Tokyo Denki University ¥

Abstract

Distributed applications are realized by cooperation
of multiple processes which manipulate data objects like
databases. Objects in the systems are replicated to make
the systems fault-tolerant. We discuss a system where
read and write request messages are issued to replicas
in a quorum-based scheme. In this paper, a quorum-
based ordered (QBO) relation among request messages
is defined to make the replicas consistent. We discuss
a group protocol which supports a group of replicas with
the QBO delivery of request messages.

1 Introduction

Data objects are replicated in order to increase per-
formance and reliability of a system. In this paper, we
consider a system which includes replicas of simple ob-
jects like files, which supports basic read and write op-
erations. The replicas of the objects are distributed in
data servers. Users in clients initiate transactions in ap-
plication servers. Transactions manipulate replicas by
issuing requests to data servers. The data and applica-
tion servers are distributed in computers. A transaction
sends a read request to one replica and sends a write
request to all the replicas in order to make the replicas
mutually consistent. Another way is the quorum-based
scheme, where each of read and write requests are sent
to a subset of replicas named quorum. It is significant
to discuss in which order to deliver the request mes-
sages to replicas in each computer. In the group com-
munications, a message mi causally precedes another
message mg if the sending event of my happens before
the sending event of ms. In addition, write requests
issued by different transactions are required to be de-
livered to replicas in a same order. Thus, the totally
ordered delivery for a pair of write request messages is
also required to be supported in a group of replicas. Re-
quests to be delivered are reformed to as significant.
The delivery order of significant message which is mean-
ingful for replicas is also significant. Compared with
the traditional group protocol, loss number of requests
are required to be delivered and requests stay for shorter
time. We evaluate the QB protocol in environments of
a local area network and wide area network like the In-
ternet.

2 Quorums

2.1 Quorum-based scheme

Computers p1, ..., p, are interconnected in an asyn-
chronous network where messages may be lost and the
delay time is not bounded in the network. Replicas
of data objects are stored in data servers and transac-
tions in application servers manipulate objects in data
servers. Let o, denote a replica of an object o in a com-
puter p;. Let R(o) be a cluster, i.e. a set of replicas

=3I AFRICEIVEY N —TEETD R
Y BRKRER, P BsL, TEIR W
PR B

of the object 0. A transaction 7; is initiated in an ap-
plication server and sends read and write requests to
manipulate a replica o; in a data server of computer p;.
A pair of operations op; and ops on an object are re-
ferred to as con flict iff opy or ops is write. Otherwise,
opy and op, are compatible.

A transaction T; sends read requests to N, replicas
in a read quorum @, and write to N,, replicas in a write
quorum (), of an object 0. The quorums are N, and
Ny, are quorum numbers. Q, C R(0), Qu C R(o), Q- U
Qw = R(0) and N, + N, > ¢, and N,, + N,, > ¢. Each
replica o; has a version number v;. T; obtains a version
number v; from a replica o; which is the maximum Q..
vy is incremented by one. Then, the version numbers of
the replicas in @, are replaced with v;. T; reads the
replica whose version number is maximum in @Q,.. Since
N, + N, > q, every read quorum surely includes at
least one newest replica.

2.2 Quorum-based precedency

A request message m from a transaction T; is en-
queued into a receipt queue RQ; in a computer p;. Here,
let m.op show an operation type op, i.e. r or w, m.o be
an object o to be manipulated by op, m.dst be a set of
destination computers, and m.src be the source com-
puter. A top request m in RQ; is dequeued and then an
operation m.op is performed on a replica o; of an object
o(=m.o) in p;. RQ; shows a sequence of read and write
requests received but not yet performed in p;.

Each computer p, maintains a vector clock V' = (v,
..., Un) where n is the number of computers. For every
pair of vector clocks A = (a1, ..., an) and B = (b1, ...,
bp), A>Bifa, > b fort =1, ..., n If neither A
> B nor A < B, A and B are uncomparable (A || B).
The vector V is initially (0, ..., 0) in every computer.
Each time a transaction is initiated in a computer p,,
Uy = ¥y + 1 in p,. When 7} is initiated, V(T3) :=
V. A message m sent by T; carries the vector m.V =
(v1y .- Un) (= V(T3)). On receipt of m from p,, V is
manipulated in a computer p; as vs := max (vs, m.vs)
fors=1,...,n(s#t).

A transaction 7} initiated in p, is given a unique iden-
tifier tid(T;). tid(T;) is a pair of the vector clock V(T3;)
and a computer number no(T;) of p,,. For a pair of trans-
actions T; and T}, id(T;) < id(Tj) if V(T;) < V(T;). If
V(T;) and V(T}) are uncomparable, tid(T;) < tid(T;) if
no(T;) < no(T;). Hence, for every pair of transactions
T; and Tj, either tid(T;) < tid(1;) or tid(13) > tid(1}).

Each request message m has a sequence number m.sq.
sq is incremented by one in a computer p; each time p;
sends a message. For each message m sent by a trans-
action T', m.tid shows tid(T).

[Quorum-based ordering (QBO) rule] A request
my quorum - based (Q—) precedes mo (mq < mg) if
my.op conflicts with mq.op and

1. tid(ml) < tid(mz), or
2. mi.sq < mg.sq and tid(mi) = tid(mg). O

3—288

Messages received by a computer p; are stored in RQ
and ordered as follows:
e If my < mgy, my locally precedes my in RQ);.
o Otherwise, my precedes mg in RQ; if my || mz and
m; is received before mo.

my —¢ mg shows “m; locally precedes my in p,”, i.e.
my precedes mo in RQ;. my globally precedes another
request mo (m1 g ‘I’nz) iff m1 —¢ Mo O My —¢ M3
— mg in some computer p;. Only a pair of conflicting
requests m; and mgy are required to be ordered in the
same order “<” in every pair of common destination
computers of m; and mo.

[Theorem 1] For every pair of conflicting requests m;
and ma, either m; — mg or mg — my.

[Theorem 2] Let m; and my be conflicting requests
issued by different transactions.

e my < my if my causally precedes my.
e Otherwise, m; < mg if a source computer of m;
has a larger identifier than mq. O

3 Significant messages

Due to unexpected delay and congestions in the net-
work, some destination computer may not receive a mes-
sage m. The replicas have to wait for m and cannot
deliver messages causally/totally preceding m. The re-
sponse time and throughput can be improved if mes-
sages not, necessarily to be delivered are removed from
the receipt queue and are not waited. [Definition] A

write request w! is current for a read request rj- in a

receipt queue RQ; iff w} =; % and there is no write w
such that w! — w — 7. Here, 7% is also current. O
A request which is not current is obsolete.
[Definition|
e A write request w; absorbs another write request
w} if wf —,; w’ and there is no read r such that w}
—¢ T ¢ wf
e A current read request r! absorbs another read re-

quest 7% iff r; —; r% and there is no write w such

that rf — w — 7%, O

[Definition] A request m is significant in a receipt
queue RQ); iff m is neither obsolete nor absorbed. O

4 Group Protocol
4.1 Detection of insignificant requests

In order to detect insignificant requests in RQ:, p:

manipulates a vector of write counters C = (¢, ...,
¢n), where each element ¢, is initially zero. Suppose p;
sends a message m. If m is a write request, ¢, == ¢, + 1
for every destination p,, of m. m.C := C. Each message
m carries write counters m.C = {m.c1, ..., m.c,). On
receipt of a write request m from a computer ps, ¢, =
max{cy,, m.c,)(u=1,..., n).
[Theorem 3| Let m; and mo be messages received by a
computer p; in a receipt queue RQ); where m precedes
ma. There exists such a write request m3 that m; < ms
< mg if m1.C < ma.C and m.V < mo.V. O

5 Evaluation

The QG protocol is evaluated by waiting time of each
message in a receipt queue through the simulation. We
make the following assumptions on the simulation:

[Assumptions]

1. Each computer p; has one replica o, of an object o
(t =1, ..., n). Here, n is a number of computers.

2. Each transaction issues are request, read or write
request. p; sends one request issued by a transac-
tion every 7 time units. 7 is a random variable.

3. Tt takes 7 time units to perform one request in each
computer.

4. N, and N, are quorum numbers for read and write,
respectively. N, + Ny, > n+ Landn + 1 < 2N,
<n+ 2.

5. p: randomly decides which replica to be included in
a quorum for each request given the quorum num-
ber.

6. It takes § time units to transmit a message from a

computer to another.

. It is randomly decided which type read or write

each request is.

-3

04

02 ¥

Ratio of the significant requests for the tolal {destined) requesls

0 0.1 02 03 04 05 [X] 07 08 09 1
Pr

Figure 1: Ratio of read requests(P,).

Figure 1 shows a ratio of significant messages for P,.
Here, m = 0.5[msec|, n = 5, and N, = N,, = 3. In cases
P, = 0 and P, = 1, every request in a receipt queue is
read and write, respectively. Incase P, = 0, a last write
request absorbs every write in the queue. In case P, =1,
a top read request absorbs every request in the queue.
Here, the smallest number of requests are performed.
In case “P, = 0.5”, the number of insignificant requests
removed is the minimum.

6 Concluding Remarks

We presented the QG (quorum-based group) proto-
col where each replica decides whether or not requests
received are significant and which supports the quorum-
based ordered (QBO) delivery of messages. We showed
that waiting time of message in a receipt queue can be
reduced in the QG protocol.

References
[1] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol.21, No.7, 1978, pp.558-565.
[2] Bernstein, P. A., Hadzilacos, V., and Goodman, N.,
“Concurrency Control and Recovery in Database
Systems,” Addison — Wesley, 1987.

