THAALEE S5 64 8] (CFpk 14 4F) FERE

3—285

Compensation of Methods for Multimedia Applications *

1G—05

Motokazu Yokoyama, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University ¥
Email : {moto, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications are composed of multimedia
objects. Here, quality of service (QoS) of a multimedia
object is manipulated as well as the state.

In manipulating a multimedia object, an application
might like to undo the manipulation, for example, for
interactively designing and implementing an applica-
tion. In another example, an object is rolled back due
to the fault of the object. Suppose that an application
changes a colored movie object to a monochrome one by
a method grayscale after adding a red car by a method
add-car. Here, the movie object is monochrome. Next,
suppose the application would like to undo the manipu-
lation done here. According to the traditional ways, the
movie object is rolled back to the previous one saved at
a checkpoint, i.e. colored object without the car object.
Another way is to compensate a computation sequence
of add-car and grayscale by other methods. del-car is
a method where a car is removed. color is a method
where a scene object is changed to be colored. If color
is performed after del-car, the object is recovered to the
previous state. Here, del-car and color are referred to
as compensating methods of add-car and grayscale, re-
spectively. If the application is not interested in how
colorful the movie object is, only the car object can
be removed without changing the color. That is, the
sequence of methods add-car and grayscale can be just
compensated by one method del-car with respect to QoS
required by the application.

In section 2, we discuss relations among methods. In
section 3, we discuss compensating methods. In section
4, we discuss how to compensate a sequence of methods.

2 QoS-based Relations of Methods

An object-based system is composed of classes and
objects. A class ¢ is composed of attributes Ay, ..., Am
(m > 0) and methods. An object o is created from the
class ¢ by giving values to attributes. A collection (v,
..., Um) of values is a state of the object o where each
v; is a value taken by 4; (i =1, ..., m).

A class ¢ can be composed of component classes ¢y,
..., Cn in a part-of relation. Let ¢;(s) denote a projec-
tion of a state s of the class ¢ to ¢;. A state of an object
is changed by performing a method op. Let op(s) and
[op(s)] denote a state and response obtained by perform-
ing a method op on a state s of an object o, respectively.
“op1 o opa” shows a serial computation of op; and ops.

Applications obtain service of an object o through
methods. Each service is characterized by quality of
service {Q0S). A QoS wvalue is a tuple of values (v, ...,
vm) where each v; is a value of parameter like frame
rate. A QoS walue q1 dominates another QoS value g2
(g1 > g2) iff g1 shows a better level of QoS than gs.
For example, (160 x 120|pixels|, 1024[colors], 15[fps]) >

*TAFAFATT T r—a B2 HEEEAR
TR E—, B B, IR R
PRmES A

(120 x 100, 512, 15). q; U g2 and g1 N g2 show least up-
per bound and greatest lower bound of ¢; and ¢» on =,
respectively. Let Q(s) be a QoS value of a state s of
an object 0. Q(op(s)) and Q(Jop(s)]) are QoS values of
state and output obtained by performing op. An appli-
cation requires an object o to support some oS, named
requirement QoS (RoS).

Suppose a class ¢ is composed of component classes
¢1, --+ Cm {(m > 0). An application specifies whether
each component class ¢; is either mandatory or optional.
There are the following relations among a pair of states
sy and s, of a class ¢

o s is state-consistent with s, (s¢ — s,) iff 8¢ = s4,.

o s, is semantically consistent with s, (s; = s,,) iff
8¢ — 8y OF ¢i(8¢) = ¢;(8y) for every mandatory com-
ponent class ¢; of c.

e s is QoS-consistent with s, (s; = sy,) iff s — s, Or
s¢ and s, are obtained by degrading QoS of some
state s of ¢, L.e. Q(s:) U Q(sy) < Q(s).

o s is semantically QoS-consistent with s, (s; ~
Sy) iff 8¢ = 8y, 01 ¢(s¢) = c(sy,) for every mandatory
component class ¢; of c.

o s is r-consistent with s, on RoS 7 (s; = 8y) iff ¢
~ sy and Q(s:) N Q(su) = 7.

o s, is semantically r-consistent with s, on RoS r (s;
=, 8,) iff sy = sy or ¢;(st) =, ci(sy) for every
mandatory class ¢; of ¢.

For example, a mowie class is composed of mandatory
classes car and tree and an optional class background.
Each state s; of the mowvie object is composed of car ¢;,
tree t;, and background b; (i = 1,2). s1 = s if ¢; and
¢y show a same car with different QoS and #; and 5
indicate a same tree with different QoS. Let O, show
an a-consistent relation where o shows some consistent
relation. For example, Og,g (or Ux) shows “~”.

In the traditional theories, a method op; is compati-
ble with another method op,, on a class ¢ iff the result
obtained by performing op; and op, is independent of
the computation order. Otherwise, op; conflicts with
0Py
[Definition] For every pair of methods op; and op, of
a class ¢, op; is a-compatible with op,, (op: Oq opy) iff
(opt 0 opy,) O (0py, © 0pt) where @ € C. O

For example, op; is semantically compatible with op,
(ope ||| opu) iff (op: © op,) = (opy © opt). The “R-
compatible relation” <O shows a set {Opjr € R}
where R is a set of possible QoS values. op; a-conflicts
with op, (op: $o op,) unless op; o 0p,. Let State,
Sem, QoS, R, Sem-QoS, and Sem-R be sets of possible
state, semantically, QoS, R, semantically QoS, and se-
mantically R-compatible relations on methods of a class
¢, respectively. Oy is symmetric and transitive.

3 Compensating Methods

In traditional systems, if the system is faulty, the
state stored in the log is restored in the system and then

3—286

the system is restarted. Suppose paint is performed on a
background object. If erase is performed, the background
object can be restored. erase is a compensating method
of paint. Traditionally, a method op, is a compensating
method of another method op, on a class ¢ if op; © opy(3)
= g for every state s of the class ¢. We extend the
compensation concept to multimedia objects.

[Definition] A method op, a-compensates another
method op; on an object (op, > 0op¢) with respect to a
consistent relation o in C' iff (op; 0 op,) Og ¢. O

4 Reduced Compensating Sequence

Let r show RoS “application is not interested in col-
ors”. A method add-car is r-compatible with grayscale
(add — car Oy grayscale). Suppose add-car is per-
formed before grayscale, i.e. add — car o grayscale.
This sequence is 7-compensated by (~rgrayscale) o
(~radd — car). However, it takes a shorter time to
perform (~,grayscale) after removing a car which is
added by add-car, ie. (~radd — car), because the
number of objects whose colors to be changed are de-
creased. Hence, add — car o grayscale can be more ef-
ficiently compensated by (~,add — car) o (~,grayscale)
with respect to RoS r. The method del-car is an r-
compensating method of add-car, i.e. del-car = (~,add-
car) = (~gtateadd-car). Since the application is not in-
terested in color, (~, grayscale) can be omitted, i.e. ¢ is
(~rgrayscale).

Next, let us consider how to reduce the number
of compensating methods to compensate a sequence
of methods. Suppose a car object ¢ is deleted after
added, L.e. add-car o del-car. Since (add-car o del-
car) —¢ holds, (~gtatedel-car) o (~siqteadd-car) is not
required to be performed. Next, suppose a method
paint; which paints an object red is performed after
painting yellow by paintz. paints o painty brings the
same result obtained by performing only paint;, i.e.
(paintz o paint;) — paint;. In order to compensate
painty o paints, only (~qpaint;) can be performed. The
following relations are defined for methods op; and op,
and a consistent relation a:

e op; is an a-identity method iff op, Ty ¢.

o op; a-absorbs op, iff (op; o op,) Ou Ops.

S1 i c SQ Sg
g)

del-car-bg Wow! | monoral Wow!

-

Wo add-bg | Wow!
S//
1

Wow!

Figure 1: Compensating sequence of methods.

Next, we discuss how to reduce a sequence of meth-
ods. Let S be a sequence S]0S520853 where Sy, So, and S3
are subsequences of methods. If Sy is an a-identity se-
quence, ~4(S10852083) O ~q(S1083). If S5 a-absorbs
59, ~a(51082083) Oy ~a(S51083). If S is a-compatible
with S3 (Sg <>a Sg), NQ(SIOSZ 053) Da Na(Sl 053052).

Let S be a sequence of methods performed on an ob-
ject o. S is partitioned into a sequence of subsequences

Sio...08,(m > 1). The subsequences satisfy the fol-
lowing conditions:

1. For every subsequence S; = op;; ©...0 opy,, every
pair of methods opy; and opy, in S; are a-compatible.
2. Every method op;; in S§; a-conflicts with methods

Opi-1,;_y In Si—1 and opii1,,, in Siy1.
+

A subsequence which satisfies the conditions pre-
sented above is referred to as segment.

We take a following strategy.
1. A sequence S of methods is partitioned into segments

JRERE] Sm~
2. Each segment S; is reduced into a subsequence 5.

Each subsequence S; is reduced though the follow-
ing procedure Reduce by using the a-identity and a-
absorbing relations.

Let S be a sequence of methods performed on an
object o are to be a-compensated. Let S; and S be
compensating sequences of S, i.e. (S0 S51)04¢ and
(S0 8y)Oq ¢. If it takes a shorter time to perform S;
than Sy and S; consumes less amount of computation
resource than Sy, S is cheaper than Ss. Since it is
not easy to define the cost, Sy is defined to be cheaper
than Sy if |S1| < |S2|. Here, |S;| denotes the number
of methods in a sequence S;. A cheaper sequence ' is
found for a sequence S by the following procedure:

1. Let S be a sequence S” o op where S is a subse-
quence and op is a method.
2. 8 = Reduce(S”, op).

Reduce(S’, op).
1. If S =¢, 8 := op; return (57);
2. Let S' be S" oop'.
3. If op a-absorbs op’, op’ is removed from 5, i.e.
S’ S” and S; := Reduce(S”, op); return
(51);
4. If op Oq op', S1 := Reduce(S” o op, op'); Sz :=
Reduce(S”, op’) o op of |S1| < |S2|, return (Sy)
else return (57).
5. else 51 := Reduce(S”, op’) o op, return (S);
Let |S| be a number of methods to be performed in
a sequence S. |S| is defined as follows: |op| = 1 and
[Soop| = |S| + 1. In Figure 1, Reduce(~=(delete o
monoral)) = stereo since lstereo o add| > |stereol.

5 Concluding Remarks

In multimedia systems, QoS of an object is manip-
ulated in addition to the state of the object. In this
paper, we discussed how the QoS of the object is ma-
nipulated by methods. We defined semantically, QoS,
RoS, semantically QoS, and semantically RoS conflict-
ing relations among methods of multimedia objects. By
using the relations, we defined compensating methods
to undo the works done by the methods. We also made
clear how types of compensating methods are related
from the QoS point of view. We discussed how to con-
struct a compensating sequence of methods which imply
better performance.

References

[1] Yokoyama, M., Tanaka, K., and Takizawa, M.,
“QoS-Based Method for Compensating Multime-
dia Objects,” Proc. of DEXA Int’l Workshop
on Network-Based Information Systems (NBIS-4),
2001, pp.185-189.

