A5 64 0] (CFRR 14) 2FEKS

3—279

Replication of Processes and Objects in Heterogeneous Groups

1G—02

Kenichi Hori and Makoto Takizawa

Tokyo Denki University
{hori, taki}@takilab.k.dendai.ac.jp

1 Introduction

In order to make a system fault-tolerant, a compo-
nent of the system is replicated. A unit of system com-
ponent is an object. A database server is a stereo type
of object. A system is realized by the 3-tier architec-
ture. A user in a client initiates a transaction in an
application server. The transaction issues requests to
object servers. On receipt of a request from a transac-
tion, the request is performed on objects in an object
server and then a response is sent back to the transac-
tion. Only if the transaction successfully manipulates
objects in object servers, the transaction commits. Ob-
jects are encapsulations of data and methods for ma-
nipulating the data. Object state may be changed by
performing some methods like write. Object state may
not be changed even if a method like read is performed
on the object. There are many discussions on how to
replicate database servers. In this paper, not only ob-
ject servers but also application servers are replicated in
order to realize fault-tolerant 3-tier client-server appli-
cations, and replicas of object servers and transactions
in application servers are distributed in various types
of computers interconnected with various types of net-
works like local area networks, the Internet, and mobile
networks.

Replicas of objects like database systems are manip-
ulated in the two-phase locking protocol. Here, one
replica is locked for a read request and all the repli-
cas are locked for a write request. In the quorum-based
protocol [2], quorum numbers N, and N,, of replicas
are locked for read and write requests, respectability.
Here, N, + Ny, > m and N, + N, > m for total num-
ber m of replicas. Objects support more abstract level
of methods than read and write. A paper extends the
quorum concept for read and write to abstract methods
supported by objects. In order to maintain mutual con-
sistency among replicas, it is critical to discuss in which
order conflicting methods like deposit and balance on an
account object to be performed on each replica, i.e. se-
rializability. Objects are state-full while processes, i.e.
transactions on application servers are state-less.

Object and application servers are distributed on dif-
ferent types of computers which are interconnected by
various types of networks. A heterogeneous group is a
collection of servers which are realized in different types
of computers with different level of reliability. Comput-
ers are characterized by computation speed of each re-
quest and reliability level. More number of requests can
be performed in faster servers than slower servers. The
more number of requests are issued to slower servers,
the longer the waiting quenes of the servers are getting.
If requests waiting, not to be performed, are removed
from the quenes, the slower replicas can follow the faster
replicas. [5]

In section 2, we present a system model. In section
3, we discuss a protocol.

2 System Model

A system is realized in 3-tier client server architec-
ture, which is composed of object servers, application
servers, and clients. Transactions are initiated in an
application server by a user in a client and issue re-
quest messages to object servers manipulating objects.
Objects in object servers are manipulated and then re-
sponses are sent back to the transactions. In order to
make the system fault-tolerant, object servers and ap-
plication servers are replicated. A collection of replicas
of a server is referred to as a cluster of the servers. Fig-
ure 1 shows a cluster which is composed of replicas O,

..Om (m > 1) of an object server O and a cluster of
application servers A; ... A;(I > 1) where a transaction
T is performed. In addition, mobile clients like Oracle
Lite can have a database where replicas of objects are
stored.

clients cluster of cluster of
application servers object servers

Figure 1: Replicas.

3 Replication

3.1 Replication of process

Transactions are realized in processes. Processes are
state-less. There are following ways for replicating a
process; active replication [3], passive replication [1] and
hybrid replication [4]. Let pi, ..., p, be replicas of a
process p. In the active replication, every replica re-
ceives same messages in a same sequence, same compu-
tation is performed on every replica, and same sequence
of output is sent back. Here, the process p is required
to be deterministic. The process is operational as long
as at least one replica is operational.

In the passive replication, there is one primary
replica, say p1, and the other replicas ps, ..., p, are
secondary ones. Messages are sent to only the primary
replica p; and the computation is performed on only
the primary replica p;. No computation is performed
on any secondary replica. A checkpoint is eventually
taken at the primary replica p;. A state of the pri-
mary replica p; taken at the checkpoint is sent to all
the secondary replicas. Here, state of each secondary
replica is changed with the state sent by the primary
replica. The passive replication can be adopted for
a non-deterministic process. If the primary replica is
faulty, some secondary replica takes over the primary
one. The secondary replica starts as a new primary

3—280

replica. That is, the process rolls back to the check-
point and then is restarted. Since it takes a longer time
to recover from the fault of the primary replica, the pas-
sive replication supports less availability than the active
one.

The hybrid replication is same as the active one ex-
cept that messages are sent to not only the primary
replica but also the secondary replicas. The checkpoint
is taken at the primary replica and is transmitted to
all the secondary replicas. The secondary replicas can
restart from the checkpoint and the state is restored to
the current one by performing massages received.

3.2 Replication of object

Objects are state full differently from transactions.
It is critical to keep state of every replica mutually con-
sistent. In order to do so, conflicting methods like read
and write are required to be performed so as to satisfy
the serialization constraint.

Wiesamann et al. [5] classifies ways for replicating
a database system. First, there are following types of
replications with respect to when replicas are updated,;
eager replication and lazy replication. In the eager type,
every replica is updated by methods as soon as the meth-
ods are delivered. In the lazy type, some replicas are
delayed to be updated after the methods are delivered.

Next, replication ways are classified with respect to
which object replicas are updated; primary, everywhere,
and quorum-based.

In the primary way, there is one primary replica. Ev-
ery method is performed on the primary replica. In the
everywhere way, every method is performed on every
replica. In the quorum-based way [2], each method is
performed on some number of replicas. A subset of repli-
cas where a method is performed quorum of the method.
Let @, and @, be a pair of quorums of methods ¢ and
u, respectively. Let m be the total number of replicas.
|Q¢| + 1Qu| > m if one of methods ¢ and u is an update
type. For example, Q. + @, > m for read and write
quorums.

There are following combinations of replications; ea-
ger primary, eager update everywhere, lazy primary,
lazy update everywhere, eager quorum-based, and lazy
quorum-based ways.

The famous two-phase locking protocol is a type of
eager update everywhere since write is performed on ev-
ery replica. In the primary replication, every request is
issued to a primary replica. In the eager type, every
other replica is updated before a transaction commits.
In the lazy type, other replicas are updated after a trans-
action commits.

3.3 Replication of transactions and object

servers
LetTh, ..., T, bereplicas of a transaction T'(m > 1).
Let Oy, ..., Oy, be replicas of an object server O(n > 1).

As discussed here, there are three ways for replicating a
transaction and six ways for replicating an object server.
Totally eighteen combinations of transaction and object
server replications.

First, let us consider a passive replication of a trans-
action. Let 77 be a primary transaction replica and
the others Ty, ..., T, are secondary. Only the pri-
mary replica 7} issues requests to replicas of the object
server O. The response of the request is sent back to
the primary transaction replica 7}. A save point is taken
during the primary transaction replica 73 is being per-

formed. A state of T) taken at a save point is sent to
all the replicas. On receipt of the save point, the state
of each transaction replica is changed at the state sent
from 737. One-to-one and one-to-many communications
from transactions replicas to replicas object servers are
done.

Next, let us consider a hybrid replication of a trans-
action. Let 77 be a primary replica and the others be
secondary. The hybrid replication is same as the pas-
sive replication except that replicas on which requests
are performed send responses to all the secondary trans-
action replicas. Thus, every transaction replica receives
responses from object replicas while only the primary
transaction replica issues requests to the object repli-
cas. One-to-one and one-to-many communications from
transactions replicas to replicas object servers are done.

Lastly, let us consider a case a transaction is actively
replicated. Every transaction replica T; issues requests
to replicas of the object server. Here, many-to-many
communication between transaction replicas and object
replicas is done.

Active Eager primary

Figure 2: Active eager primary replication.

4 Concluding Remarks

We discussed how to replicate transactions and ob-
jects in client-server systems. Transactions are state-less
while objects are state-full. Transactions and objects
are replicated in different ways. We are now evaluat-
ing architectures for replicating transactions and object
servers.

References

[1] Budhiraja, N., Marzullo, K., Schneider, B. F., and
Toueg, S., “The Primary-Backup Approach,” ACM
Press, 1994, pp.199-221.

[2] Garcia-Molina, H. and Barbara, D., “How to As-
sign Votes in a Distributed System,” JACM, Vol
32, No.4, 1985, pp.841-860.

[3] Schneider, B. F., “Replication Management using
the State-Machine Approach,” Distributed Com-
puting Systems, ACM Press, 1993, pp.169-197.

[4] Thomas, L. C. and Mukesh, S., “The Delta4 Dis-
tributed Fault-Tolerant Architecture,” Distributed
Computing Systems, IEEE CS Press, 1990, pp.223—
247

[6] Wiesmann, M., et al., “Understanding Replication
in Databases and Distributed Systems,” Proc. of
IEEE ICDCS-2000, 2000, pp.264-274.

