
Vol. 48 No. SIG 10(PRO 33) IPSJ Transactions on Programming June 2007

Regular Paper
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The ambient calculus is a process algebra designed for describing mobile processes. It has
a layered structure of ambients that enables us to describe not only mobile processes but
also the world in which the processes move around such as computer networks and freight
systems. When we describe such a system with ambients, however, malicious processes can
destroy nodes of the network or alter the construction of the system. Thus, several mobility
types for the ambient calculus have been proposed to enable us to give each node desirable
characteristics that prevent malicious processes from acting harmfully. Gordon and Cardelli,
the originators of the ambient calculus, also defined an equivalence relation for the untyped
ambient calculus. Our previous work pointed out that there exist identified processes up to the
relation that have different properties, and it refined the relation so that we can discriminate
those processes. This paper shows that the original relation and our previous relation are
no longer available for the typed ambient calculus and it presents another relation that is
suitable.

1. Introduction

The ambient calculus 3), devised by Cardelli
and Gordon of Microsoft Research, was orig-
inally invented to model the behavior of net-
work environments and various kinds of mo-
bile entities with a unified framework. It has
a layered structure of ambients that enables us
to describe not only mobile processes but also
the world in which the processes move around
such as computer networks and freight systems.
Since ambient calculus was developed for mod-
eling such entities, Cardelli gave it the notion of
security. The typed ambient calculus 2) is an ex-
tension of the ambient calculus that gives types
to ambients for security purposes. When we de-
scribe a network with ambients, we would like
to protect nodes from malicious processes that
try to destroy nodes or alter the construction
of the network. On the other hand, messenger
ambients could be opened to extract the mes-
sages when they enter a node. The type system
can flexibly control the opening property of am-
bients.

In the type system, names of ambients are
classified in several groups according to their
characteristics. For example, some ambients
(more precisely, their names) in the Node group
are given a type such that these ambients must
not move around, and others in the Packet
group have a type that can migrate among am-
bients of the Node group. The ambients in the
Node group also have a type such that they
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must not be opened, while the type for those in
the Packet group says that they can be opened
in ambients of the Node group.

When we give an ambient a property in ac-
cordance with the type system of Ref. 2), how-
ever, we have to bind the ambient’s name;
that is, the ambient becomes invisible from the
environment. For example, suppose that we
have the process of the untyped ambient cal-
culus P

def
= a[P ′] that provides a global ser-

vice (meaning any processes of the environ-
ment e.g., m[in a.Q] can access the ambient
a). In order to protect the ambient a from
an opening operation by the environment, we
give it a type such as Ptyped

def
= (νNode)(νa :

Node�{}[�{}, ◦{}, T ])a[P ′], where P ′ : T . The
process Ptyped does not provide global service
any more.

As a solution to the problem, this paper pro-
poses an extension of the syntax of the typed
ambient calculus, called the extended typed am-
bient calculus (ETAC ) by introducing the type
tag. The type tag gives processes properties
without them being bound so that the processes
can keep providing global service.

This paper also presents an equivalence rela-
tion for ETAC. In our previous work 5), we pre-
sented an equivalence relation for the untyped
calculus by extending the original one presented
in Ref. 4). We explained the need for extension
of the original equational relation using choice
macro processes that were constructed by us-
ing only parallel composition and restriction
primitives. An unexpected opening capability,
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however, can destroy the construction of choice
macro processes. Using the typed ambient cal-
culus, our choice macro always works as we in-
tended. The type system is a desirable feature
of the ambient calculus. However, it makes our
previous equational relation and even the orig-
inal one hard to apply. Thus, we need another
relation for the typed ambient calculus.

This paper is organized as follows. In Sec-
tion 2, we review the syntax and operational
semantics of the typed ambient calculus. Sec-
tion 3 explains the intuitive behavior of pro-
cesses of the typed ambient calculus using our
choice macro. In Section 4, we review the
original equivalence relation (contextual equiv-
alence) and our previous equivalence (contex-
tually testing equivalence). Section 5 explains
why those equivalences are not adequate for
the typed framework and Section 6 introduces
another equivalence: capability equivalence for
the typed ambient calculus.

2. Typed Ambient Calculus

This section reviews the syntax and the se-
mantics of the typed ambient calculus originally
defined in Ref. 2). We assume there are infinite
sets of names ranged over by m, n, p, q. Mes-
sages and processes are ranged over by M,N and
by P, Q, R, respectively.

Definition 2.1 (Group sets, Types,
Messages and Processes 2))
G,H ::= finite set of name groups

{G1, . . . , Gk}
W ::= message type

G�G[F ] name in group G for ambients
that cross G objectively and
contain processes with effects F

Cap[F ] capability unleashing effects F

F ::= effect
�G, ◦H, T

crosses G, may open H, may exchange T

S, T ::= exchange type
Shh no exchange
W1 × . . .×Wk tuple exchange

M, N ::=message
n name
in M can enter M
out M can exit M
open M can open M
ε null
M.N path

P, Q, R ::= processes
(νG)P group restriction
(νn:W )P name restriction
0 inactivity
P |Q composition
!P replication
M [P ] ambient
M.P action
(x1:W1, . . . , xk:Wk).P input
〈M1, . . . , Mk〉 output
go(N).M [P ] make an ambient

move N where
N must be in M ′
out M ′ or ε

�
We use the following abbreviations:
• M for M.0
• M [] for M [0]
• (ν�p) for (νp1:W1), . . . , (νpk:Wk)P

where �p = p1:W1, . . . , pk:Wk.
In Ref. 3), the message in Definition 2.1

is called the capability and, in particular,
in M, out M , open M are the essential func-
tionality of processes. Input and output ac-
tions (that are restricted in local communica-
tion in ambients) are also defined in the ambi-
ent calculus. They are the main capabilities of
other process algebras such as CCS 8) or the π–
calculus 9). The purpose of those kinds of calcu-
lus is to express the communicating behavior of
concurrent systems while the aim of the ambi-
ent calculus is to capture the moving behaviors
of processes. Thus, we must concentrate on the
faculty of changing the structure of processes.

As message type W and effect F in Definition
2.1 are hard to understand, the following exam-
ple gives the intuitive explanation of them.

Example 2.2 As message type W appears
in the two cases (case 1: name restriction and
case 2: input) in Definition 2.1, we give exam-
ples for these cases.

case 1: Suppose that we have groups of
names G, G1, G2 and the following process:
(νn:W )go(N).n[P ], where W

def
= G�G[F ],

F
def
= �G, ◦H, T , G

def
= {G1} and H

def
= {G2}.

Here, n : G says that name n is a member of
G, the first �G says that the ambient n[P ] can
be objectively moved into and out of only the
ambients whose names belong to G1. Moreover,
the second �G in F says that the ambient n[P ]
subjectively moves according to only the capa-
bilities in m and out m, where m is a member
of G1.
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◦H says that the capabilities open l can be
executed in the n ambient, where l is a member
of G2. T says that any communication in the
n ambient is impossible in the case where T =
Shh or it can contain input and output whose
types consist of a tuple of some message types
in the case where T is a tuple of those message
types.

case 2: Suppose that we have process
(x:W ).P . If W is defined as in case 1, it can
receive the name n, whose type is W . If W

def=
Cap[F ] and F is defined as case 1, it can re-
ceive the capability open n, where n : G�G[F ]
or the capability in m or out m for any m. �

An expression go(M).M [P ] is called an objec-
tive move, which used to be defined as a macro
as follows:
go(N).M [P ]

def
= (νk)k[N.M [out k.open k.P ]]

where k �∈ fn(P ).
Intuitively, the objective move go(N).M [P ]
means that we make the inactive ambient M [P ]
move according to N , while the subjective move
M [N ] means that the active ambient moves ac-
cording to N by itself.

Cardelli 2) made a slight extension in syntax
by using objective moves as primitives, as we
do in this paper. So our syntax is the extended
version.

As we showed in Example 2.2, the name re-
striction prescribes what is impossible in the
process. For example, in case 1 of Example 2.2,
open m is impossible if m �∈ G2, and if P con-
tains such a capability, the typing rules defined
in Ref. 2) judge (νn:W )n[P ] as not being a well
typed process. In such a case, we use the phrase
(νn:W ) interferes open m in n[P ] in this paper.

Definition 2.3 (Free Names and Free
Groups 2))

fn(n)
def
= {n}

fn(in M)
def
= fn(M)

fn(out M)
def
= fn(M)

fn(open M)
def
= fn(M)

fn(ε)
def
= ∅

fn(M.N)
def
= fn(M) ∪ fn(N)

fn((νG)P )
def
= fn(P )

fn((νn:W )P )
def
= fn(P )− {n}

fn(0)
def
= ∅

fn(P |Q)
def
= fn(P ) ∪ fn(Q)

fn(!P )
def
= fn(P )

fn(M [P ])
def
= fn(M) ∪ fn(P )

fn(M.P )
def
= fn(M) ∪ fn(P )

fn((x1:W1, . . . ,xk:Wk).P )
def
= fn(P )−{x1, . . . ,xk}

fn(〈M1, . . . , Mk〉) def
= fn(M1)∪, . . . ,∪fn(Mk)

fn(goN.M [P ])
def
= fn(N) ∪ fn(M) ∪ fn(P )

fg((νG)P )
def
= fg(P )− fg(G)

fg((νn:W )P )
def
= fg(W ) ∪ fg(P )

fg(0)
def
= ∅

fg(P |Q)
def
= fg(P ) ∪ fg(Q)

fg(!P )
def
= fg(P )

fg(M [P ])
def
= fg(P )

fg(M.P )
def
= fg(P )

fg((x1:W1, . . . , xk:Wk).P )
def
= fg(W1) ∪ . . . ∪ fg(Wk) ∪ fg(P )

fg(〈M1, . . . , Mk〉) def
= ∅

fg(goN.M [P ])
def
= fg(P )

fg(G[T ])
def
= {G} ∪ fg(T )

fg(Cap[T ] ])
def
= fg(T )

fg(Shh)
def
= ∅

fg(W1 × . . .×Wk)
def
= fg(W1)∪, . . . ,∪fg(Wk) �

Definition 2.4 (Structural Congruence:
P ≡ Q 2))
P |Q ≡ Q|P
(P |Q)|R ≡ P (Q|R)
!P ≡ P |!P
m �= n⇒ (νn:W1)(νm:W2)P

≡ (νm:W2)(νn:W1)P
n �∈ fn(P )⇒ (νn:W )(P |Q) ≡ P |(νn:W )Q
m �= n⇒ (νn:W )m[P ] ≡ m[(νn:W )P ]
P |0 ≡ P
(νn:W )0 ≡ 0
(νG)0 ≡ 0
!0 ≡ 0
ε.P ≡ P
go(ε).P ≡ P
(M.M ′).P ≡M.M ′.P
m �= n⇒ (νn:W )m[P ] ≡ m[(νn:W )P ]
(νG1)(νG2)P ≡ (νG2)(νG1)P
G ∈ fg(W )⇒ (νG)(νn:W )P ≡ (νn:W )(νG)P
G ∈ fg(P )⇒ (νG)(P |Q) ≡ P |(νG)Q
(νG)m[P ] ≡ m[(νG)P ]
P ≡ P
Q ≡ P ⇒ Q ≡ P
P ≡ Q, Q ≡ R⇒ P ≡ R
P ≡ Q⇒ (νn:W )P ≡ (νn:W )Q
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P ≡ Q⇒ (νG)P ≡ (νG)Q
P ≡ Q⇒ P |R ≡ Q|R
P ≡ Q⇒!P ≡!Q
P ≡ Q⇒M [P ] ≡M [Q]
P ≡ Q⇒M.P ≡M.Q
P ≡ Q⇒ (x1, . . . , xk).P ≡ (x1, . . . , xk).Q

�
The behavior of processes of the ambient cal-

culus is defined by the following reduction rules.
Definition 2.5 (Reduction: P → Q 2))
n[in m.P |Q]|m[R]→ m[n[P |Q]|R]
go(in m.N).P |m[Q]→ m[go(N).P |Q]
m[n[out m.P |Q]|R]→ n[P |Q]|m[R]
m[go(out m.N).n[P ]|Q]→ go(N).n[P ]|m[Q]
open n.P |n[Q]→ P |Q
〈M1, . . . , Mk〉|(x1:W1, . . . , xk:Wk).P
→ P{x1 ←M1, . . . , xk ←Mk}

P → Q⇒ P |R→ Q|R
P → Q⇒ (νn:W )P → (νn:W )Q
P → Q⇒ (νG)P → (νG)Q
P → Q⇒ n[P ]→ n[Q]
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′

�
3. External Choice Operation

This section explains the behavior of pro-
cesses of the typed ambient calculus having an
external choice macro and explains the exten-
sion of the syntax.

3.1 Choice Macro for the Untyped
Calculus

The ambient calculus and the typed ambient
calculus do not have choice primitives because
of the difficulty of implementation, especially
in distributed environments, and also because
they can be simulated by using parallel com-
position and restriction primitives. Cardelli 3)

presents an example of the simulation of choice.
That operation is an internal choice and it can
be used only for local services. Thus, we de-
fined an external choice by which we can define
global services 5).

Definition 3.1 (External Choice for
the Untyped Calculus “+n

u”) Let B and C
be any processes of the ambient calculus. Then,

we define b[B] +n
u c[C] as follows:

b[B] +n
u c[C]

def
=

(νtrash, sync )(
b[in trash
| go(in n.out n).sync[out trash.B|trash[out b]]
| open sync ]
| c[in trash
| go(in n.out n).sync[out trash.C|trash[out c]]
| open sync ]).

�
The symbol n of +n

u in Definition 3.1 is a pa-
rameter of the operator and u is the identifier
of the choice operator (we will show two more
choice operators +n

p and +n in this paper) We
explained the behavior of this choice operation
“+n

u” in Ref. 5). When a choice process such
as a[b[]] +n

u a[c[]] is used with a process such as
n[in a. in b] (we call it a traveling ambient), it
works as an ideal choice primitive: after sev-
eral reductions, only the ambient chosen by the
traveling ambient remains visible and the other
ambient goes into the ambient trash[] and be-
comes inaccessible.

3.2 Pseudo External Choice for Typed
Calculus

When there exists a malicious process with
a traveling ambient, for example open a.0, the
process can destroy the structure of the choice
macro and make it useless. This is not only
the case for our examples but also for network
structures constructed of ambients. The open-
ing control of the type system enables us to de-
sign networks that are safer against illegal op-
erations.

Definition 3.2 (Pseudo External Choice
“+n

p”) Let B and C be any processes of
the typed ambient calculus. Then, we define
b[B] +n

p c[C] as follows:

b[B] +n
p c[C]

def
=

(νTrsh,Sync)
(νb:Node�∅[�Trsh, ◦∅,Shh ])
(νc:Node�∅[�Trsh, ◦∅,Shh ])
(νtrash:Trsh�{Node,Thread}[�Node, ◦∅,Shh ])
(νsync :Sync�{Thread}[�Trsh, ◦Sync,Shh ])
b[in trash
| go(in n.out n).sync[out trash.B|trash[out b]]
| open sync ]
| c[in trash
| go(in n.out n).sync[out trash.C|trash[out c]]
| open sync ]).

�
In choice process b[B] +n

p c[C] above, the
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bound name trash is a member of bound group
Trsh, the ambients having the name trash ob-
jectively move into or move out of ambients
belonging to groups Node and Thread, subjec-
tively move into or move out of ambients be-
longing to the group Node, no process can open
them, and no message exchange occurs in them.

The bound names b and c are members of the
free group Node, the ambients having the names
b and c objectively move into or move out of no
ambient, subjectively move into or move out of
ambients belonging to group Trsh, no process
can open them, and no message exchange oc-
curs in them.

4. Extended Typed Ambient Calculus

The choice process b[B] +n
p c[C] is, however,

not what we would like to define because the
names b and c are bound; that is, the ambients
having those names cannot be accessed from
traveling ambients. We have to bind the name
when we intend to give an ambient the locking
property or movement property though we only
want to gain those properties.

The cause of the problem is the dual binding
in this type system. The group binding and the
name binding cause an inconsistency: names in
a free group must be bound when we try to
give them properties, while we have no problem
when we give properties to names in a bound
group. As a solution to this problem, we pro-
pose extending the syntax by introducing type
tags with the idea that the name in a free group
is free and the name in a bound group is bound.

According to this idea, we extend the defini-
tion of the processes of Definition 2.1 as follows:

Definition 4.1 (Extension of Processes)
P, Q, R ::= processes

(νG)P group restriction,
(νn:W )P restriction,

where G in W is bound,
(γn:W )P type tag, where if W =

G�G[F ], then G is free,
· · · as in Definition 2.1. �

We call the expression (γn:W ) type tag and
we call the calculus with type tag the Extended
Typed Ambient Calculus (ETAC ). When we
write a process (γn:W )P , the group G must
be free, the name n appearing in P is free, and
the ambient whose name is n has the property
described as W . We extend Definition 2.3 by
adding the following rules.

Definition 4.2 (Extension of Free Name)

fn((γn:W )P )
def
= fn(P )

fg((γn:W )P )
def
= fg(W ) ∪ fg(P )

· · · as in Definition 2.3. �
The type tag does not create a scope of the

name, but only gives properties to ambients.
Suppose that we have the following process in
which the inner n ambient of the following pro-
cess gets out from the outer n ambient and gets
into the ambient m[]:

(γn:W )n[n[out n.in m]]|(γm:W ′)m[ ].
Unlike the name restriction, the scope of n is
not expanded; instead, the type tag is dupli-
cated as follows:

(γn:W )n[ ]|(γm:W ′)m[(γn:W )n[ ]].
This leads to the first rule of Definition 4.3.
There may be the following case in the way of
a reduction:

(γn:W ′)n[(γn:W )n[out n.in m]].
In this case, ambients obey the nearest inner
tag. This leads to the second rule of Defini-
tion 4.3. We extend the definition of structural
congruence by adding the following rules.

Definition 4.3 (Extension of Struc-
tural Congruence)
n ∈ fn(P )⇒(γn:W )n[P ] ≡ (γn:W )n[(γn:W )P ]
(γn:W1)(γn:W2)P ≡ (γn:W2)P
m �= n⇒ (γn:W1)(γm:W2)P

≡ (γm:W2)(γn:W1)P
n �∈ fn(P )⇒ (γn:W )(P |Q) ≡ P |(γn:W )Q
m �= n⇒ (γn:W )m[P ] ≡ m[(γn:W )P ]
P ≡ Q⇒ (γn:W )P ≡ (γn:W )Q
(γn:W )0 ≡ 0
· · · as in Definition 2.4. �
According to Definition 4.3, we have the fol-

lowing transitions:
(case out n) (γn:W )n[n[out n.Q]|P ] ≡

(γn:W )n[(γn:W )n[out n.Q]|P ] →
(γn:W )n[P ]|(γn:W )n[Q].

(case go(out n)) (γn:W )n[go(out n.N).n[P ]|Q]
≡ (γn:W )n[(γn:W )go(out n.N).n[P ]|Q] →
(γn:W )n[Q]|(γn:W )go(N).n[P ].

Thus, we only need to add the following rule
to the definition of reduction.

Definition 4.4 (Extension of Reduc-
tion)
P → Q∧
(γn:W ) does not interfere with the transition in

P∧ for any R and S.
(P �≡ n[m[out n.R]|S],
P �≡ n[go(out n.N).m[R]|S]
where n ∈ {m} ∪ fn(R) ∪ fn(N))

⇒ (γn:W )P → (γn:W )Q



Vol. 48 No. SIG 10(PRO 33) An Equivalence Relation for Typed Ambient Calculus 95

· · · as in Definition 2.4.
�

We call the above calculus the extended typed
ambient calculus (ETAC ). Using processes with
the type tag, we define the choice macro of
ETAC as follows.

Definition 4.5 (External Choice “+n”)
Let B and C be any processes of ETAC. Then,
we define b[B] +n c[C] as follows:
b[B] +n c[C] def=
(νTrsh,Sync)
(γb:Node�∅[�Trsh, ◦∅,Shh ])
(γc:Node�∅[�Trsh, ◦∅,Shh ])
(νtrash:Trsh�{Node,Thread}[�Node, ◦∅,Shh ])
(νsync :Sync�{Thread}[�Trsh, ◦Sync,Shh ])
b[in trash
| go(in n.out n).sync[out trash.B|trash[out b]]
| open sync ]
| c[in trash
| go(in n.out n).sync[out trash.C|trash[out c]]
| open sync ]).

�
Example 4.6 We explain the behavior of

this choice operation “+n” by the follow-
ing transitions: when the traveling ambient
(γn:Thread�∅[�{Node, ◦∅,Shh ])n[in a|in b] is

running parallel to a[b[]] +n a[c[]] and a mali-
cious process “open a”, that is,
(γn:Thread�∅[�{Node, ◦∅,Shh ])

(n[in a|in b])|open a|a[b[]] +n a[c[]], (∗)
the traveling ambient can enter either the am-
bient a[· · · ] of a[b[]] or a[· · · ] of a[c[]], the pro-
cess “open a” cannot do anything because of
the opening control property of ambient whose
name is a. According to Definition 4.5, the ex-
pression (∗) has the following structure:
(γn:Thread�∅[�{Node, ◦∅,Shh ])
(n[in a|in b])|open a
|(νTrsh,Sync)
(γa:Node�∅[�Trsh, ◦∅,Shh ])
(γb:Node�∅[�Trsh, ◦∅,Shh ])
(γc:Node�∅[�Trsh, ◦∅,Shh ])
(νtrash:Trsh�{Node,Thread}[�Node, ◦∅,Shh ])
(νsync :Sync�{Thread}[�Trsh, ◦Sync,Shh ])

(a[in trash
| go(in n.out n).sync [out trash.b[]| trash[out a]]
|open sync ]
| a[in trash
| go(in n.out n).sync [out trash.c[]| trash[out a]
|open sync ]).

Suppose that the traveling ambient happens to
choose the first a[. . .] ambient. After several
reductions, the expression (∗) is reduced to the

following process:
(γn:Thread�∅[�{Node, ◦∅,Shh ])|open a
|(νTrsh,Sync)
(γa:Node�∅[�Trsh, ◦∅,Shh ])
(γb:Node�∅[�Trsh, ◦∅,Shh ])
(γc:Node�∅[�Trsh, ◦∅,Shh ])
(νtrash:Trsh�{Node,Thread}[�Node, ◦∅,Shh ])
(νsync :Sync�{Thread}[�Trsh, ◦Sync,Shh ])
(a[b[n[]]]
|trash[a[go(in n.out n)

.sync [out trash.c[]|trash[out a]]
|open sync ]]).

Finally, the traveling ambient can reach the des-
tination, and the contents of trash are inaccessi-
ble and process open a cannot open the ambient
a[. . .]. Thus, we find that our “+n” can behave
as an ideal choice operator. �

In Ref. 2), the typed ambient calculus does
not have variables as the π–calculus 9), while
Ref. 4) defines names and variables for the
untyped ambient calculus so that contextual
equivalence is to be defined. Here, we introduce
variables to the syntax and define free variables
for ETAC as defined in 4).

Definition 4.7 (Messages)
M, N ::=message

x variables
· · · as in Definition 2.1.

�
Definition 4.8 (Free Variables)
fv(x)

def
= {x} fv(n)

def
= ∅ fv(ε)

def
= ∅

fv(in M)
def
= fv(M)

fv(out M)
def
= fv(M)

fv(open M)
def
= fv(M)

fv(M.N)
def
= fv(M) ∪ fv(N)

fv((νG)P )
def
= fv(P )

fv((νn:W )P )
def
= fv(P )

fv((γn:W )P )
def
= fv(P )

fv(0)
def
= ∅

fv(P |Q)
def
= fv(P ) ∪ fv(Q)

fv(!P )
def
= fv(P )

fv(M [P ])
def
= fv(M) ∪ fv(P )

fv(M.P )
def
= fv(M) ∪ fv(P )

fv((x1:W1, . . . , xk:Wk).P )
def
=

fv(P )− {x1, . . . , xk}
fv(〈M1, . . . , Mk〉) def

= fv(M1)∪, . . . ,∪fv(Mk)

fv(goN.M [P ])
def
= fv(N) ∪ fv(M) ∪ fv(P ) �
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5. Problems of Existing Equivalences

Contextual equivalence for the untyped am-
bient calculus was presented in Ref. 4) based on
the set of names of ambients that are or will
be observable from the environment of the pro-
cesses. We pointed out that there exist two con-
textual equivalent processes that have different
behaviors by defining the choice macro “+n

u”,
and we proposed another equivalence relation
in Ref. 5).

5.1 Contextual Equivalence☆
First, we review the original equivalence re-

lation.
Definition 5.1 (P Exhibits a Name n:

P ↓ n 4))
P ↓ n

def⇔ there are �m, P ′, P ′′ such that
n �∈{�m} and P ≡ (ν �m)(n[P ′]|P ′′). �

Definition 5.2 (Convergence to a Name
n: P ⇓ n 4))
(Conv Exh) (Conv red)

P ↓ n

P ⇓ n

P → Q Q ⇓ n

P ⇓ n �
Definition 5.3 (Context 4)) C() is a pro-

cess containing zero or more holes. C(P ) is the
outcome of filling all the holes of the context
C() with the process P . �

Definition 5.4 (Contextual Equivalence:
P � Q 4))

P � Q
def⇔ for all n and C() with C(P )

and C(Q) closed, C(P ) ⇓ n⇔ C(Q) ⇓ n.
�

The expression “C(Q) closed” means C(Q) does
not have free variables.

Parallel testing equivalence for CCS 8) is not
adequate for the ambient calculus. This is
explained in Ref. 4) as follows: for example,
two processes out p.0 and 0 are testing equiv-
alent though in the context C() ≡ p[m[()]],
C(out p.0) ⇓ m while C(0) �⇓ m. Thus, to cap-
ture the mobile properties of processes of the
ambient calculus, contextual equivalence was
presented.

Furthermore, in Ref. 5), we showed that there
exist two processes of the untyped ambient cal-
culus that are identified by contextual equiva-
lence though they have different properties.

Example 5.5 Let Pu and Qu be the pro-
cesses of the untyped ambient calculus as fol-
lows:

☆ All processes in this subsection are that of the un-
typed ambient calculus.

Pu
def
= a[Pu1] +n

u a[Pu2].

Qu
def
= a[Qu1] +n

u a[Qu2].

Pu1
def
= a[Pu2]+n

u b[].

Pu2
def
= a[Pu1]+n

u c[].

Qu1
def
= a[Qu1]+n

u b[].

Qu2
def
= a[Qu2]+n

u c[].
According to Definition 3.1 for “+n

u”, P and Q
have the following structure:
Pu ≡ (ν trash, sync ) (
a[in trash
| go(in n.out n).sync [out trash.Pu1|trash[out a]]
| open sync ]
| a[in trash
| go(in n.out n).sync [out trash.Pu2|trash[out a]]
| open sync ]).

Qu ≡ (ν trash, sync ) (
a[in trash
| go(in n.out n).sync [out trash.Qu1|trash[out a]]
| open sync ]
| a[in trash
| go(in n.out n).sync [out trash.Qu2|trash[out a]]
| open sync ]).

The behaviors of Pu and Qu are illustrated in
Fig. 1. Let Tr

def
= n[!in a|in c] be a traveling

ambient. Each labelled arrow in Fig. 1 repre-
sents a transition of the process done by exe-

Qu

Qu1

Qu2

a[]

a[]

a[]

a[]

c[]

b[]

�•.......................................
............
............
..............
..............
..............
.............
...............
..................
...........................
.............................................

.......................................................�• �

......................................................................................................................................................................................................................................................................................�• �...............
................
.................
...................
.....................
.........................
...............................
.........................
................

........................
.................................................................................................................................................................................................................................................................�

...............................................................................................................................................................................................................................................................................................
...................

...............
..................................
...........................
......................
....................
..................
................
........�

Pu

Pu1

Pu2

a[]

a[]

a[] a[]

c[]

b[]

�•........................................
............
............
..............
...............
..............
.............
...............
...................
.............................
..................................................

.............................................�• �

......................................................................................................................................................................................................................................................................................�• �

..............................................................................................................................................................................................................................................................................................................................................�

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
............
............
............
............
............
............
............
............
.............
.............
.............
.............

.............
....

�

Fig. 1 Process Pu and process Qu.
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cuting one of the capabilities in a, in b, or in c,
and each node represents a process. For exam-
ple, the leftmost node of the upper graph is pro-
cess Pu|Tr and the leftmost arrow is a certain
transition that makes process Pu|Tr available.
The upper labelled arrow with a[] represents
the execution of the capability in a that leads
the process to the process a[Pu1|Tr], which is
expressed by the labeled node with Pu1.

When the traveling ambient Tr is running
parallel to Pu, it cannot fail in reaching the
ambient c[], while it may fail when it is run-
ning parallel to Qu. Therefore, Pu and Qu

should be distinguished. However, in Ref. 5),
it was proved that contextual equivalence iden-
tifies Pu � Qu by structural induction. �

As is explained in Ref. 4), contextual equiva-
lence is a form of may testing equivalence. In
order to define a finer equivalence relation, we
defined the testing equivalence (composed of
may and must testing) in Ref. 5) as follows.

Definition 5.6 (Hit a name n: P � n 5))

(Hit Exh) (Hit Red)
P ↓ n

P � n

for any Q st P → Q. Q � n

P � n
�

Intuitively, P � n iff ambient n[] will be vis-
ible in every possible execution path of P as
must testing.

Definition 5.7 (Contextually Testing
Equivalence: P�test Q 5))

P�test Q
def⇔

for all n, C() with C(P ) and C(Q) closed,
C(P ) ⇓ n⇔ C(Q) ⇓ n
and C(P )� n⇔ C(Q)� n.

�
Let Cu be the context as follows:
Cu()

def
= n[!in a] | !open a | open b | − .

In a usual parallel testing scenario, Pu in Ex-
ample 5.5 would not pass must testing. This is
because by using even a context (tester) that
has infinite opening a action such as Cu, from
Pu2 position of Fig. 1, we may not open b be-
cause of the infinite path of opening the a am-
bients; this means that Cu(Pu) may fail to open
b and so does Cu(Qu).

In a contextual testing scenario, however, we
will observe the name b from the Pu2 posi-
tion of Fig. 1 even in that infinite path; this
means that Cu(Pu) never fails to Hit b while
Cu(Qu) does from the Qu2 position. Conse-
quently, Pu ��test Qu.

5.2 Problems
In ETAC, equivalences based on observable

names in Subsection 5.1 are no longer ade-
quate; that is, even contextually testing equiva-
lence cannot distinguish the processes of ETAC
that are similar to Pu and Qu. We show the
problems by defining the processes P and Q of
ETAC in Example 5.8 such that the ambients
whose names are a cannot be opened by any
processes.

Example 5.8 Let P and Q be the processes
as follows:

P
def
= a[P1] +n a[P2].

Q
def
= a[Q1] +n a[Q2].

P1
def
= a[P2] +n b[].

Q1
def
= a[Q1] +n b[].

P2
def
= a[P1] +n c[].

Q2
def
= a[Q2] +n c[].

According to Definition 4.5 for “+n”, P and
Q have the following structures:
P ≡
(νTrsh,Sync)
(ν trash:Trsh�{Node,Thread}[�Node, ◦∅,Shh ])
(γa, b, c:Node�∅[�Trsh, ◦∅,Shh ])
(νsync :Sync�{Thread}[�Trsh, ◦Sync,Shh ])(
a[in trash
| go(in n.out n).sync [out trash.P1|trash[out a]]
| open sync ]
| a[in trash
| go(in n.out n).sync [out trash.P2| trash[out a]]
| open sync ]).

Q ≡
(νTrsh,Sync)
(ν trash:Trsh�{Node,Thread}[�Node, ◦∅,Shh ])
(γa, b, c:Node�∅[�Trsh, ◦∅,Shh ])
(νsync :Sync�{Thread}[�Trsh, ◦Sync,Shh ])(
a[in trash
| go(in n.out n).sync [out trash.Q1|trash[out a]]
| open sync ]
| a[in trash
| go(in n.out n).sync [out trash.Q2| trash[out a]]
| open sync ]).

In an untyped case, contextually testing
equivalence distinguished Pu from Qu by open-
ing the ambients whose name is a and exhibit-
ing the name c, though opening control pre-
vents us from using the same strategy. �

We can prove that contextually testing equiv-
alence identifies P and Q in Example 5.8.

Lemma 5.9 Let P and Q be the processes
in Example 5.8. For all n and C() with C(P )
and C(Q) closed, C(P ) ⇓ n ⇒ C(Q) ⇓ n and
C(P )� n⇒ C(Q)� n. �
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Proof: Suppose that C(P ) ⇓ n and C(P )� n.
There are two cases: n can be the name of the
ambient in P (case (1)) or in C(P ) (case (2)).

case (1) As the ambient a cannot be
opened, any reduction does not expose the am-
bients in P1, P2, P3, P4. Thus, obviously, the
only name n that is and will be visible from
the environment of P and Q is a. Thus, for
all n (appearing in P ) and C() with C(P ) and
C(Q) closed, C(P ) ⇓ n ⇒ C(Q) ⇓ n and
C(P )� n⇒ C(Q)� n.

case (2) consists of case (i), where n (ap-
pearing in C()) is in the top level; that is, C(P )
↓ n, case(ii) n (appearing in C()) will be visible
without any interaction with P , and case (iii)
n (appearing in C()) will be visible after sev-
eral interactions with P . In cases (i) and (ii),
it is obvious that C(P ) ⇓ n ⇒ C(Q) ⇓ n and
C(P )� n⇒ C(Q)� n.

Case (iii). From the structure of P and
the types of a, b, c in P , the only executable
capabilities of the ambient in C() are sub-
jective or objective moves concerned with
a, b, c. Suppose that after several reductions,
m[S|M.go(out m).n[R]] appearing in C() goes
into P and comes back from P and n[R′] ap-
pears in the top level for some m, S, M, R, R′
with R reduced to R′.
• Let M be in a.out a. Obviously C(P ) ⇓

n⇒ C(Q) ⇓ n and C(P )� n⇒ C(Q)� n.
• Let M be in a.in b.out b.out a. C(P )�� n.
• Let M be in a.in c.out c.out a. C(P )�� n.
• Let M be in a ∗ .in b.out b.out a∗, where ∗

means more than 0 times iteration. There
is a computation path that has infinite in a
that prevents us from executing in b. Thus,
C(P )�� n.

• Any other combination of those capabili-
ties gives the same results in these cases
because of the structure of P . �

Lemma 5.10 Let P and Q be the processes
in Example 5.8. For all n and C() with C(P )
and C(Q) closed, C(Q) ⇓ n ⇒ C(P ) ⇓ n and
C(Q)� n⇒ C(P )� n �
The proof is just the same. Consequently, we
prove P�test Q.

6. Capability Equivalence

As we cannot rely on the equivalences based
on the names visible from environments any
more, we concentrate our attention on what
processes can do after they have performed
some actions.

Definition 6.1 (Labels cap) Letting n be

a name, we define a set of labels ranged over by
cap as follows:
cap ::= label

in n enter n ambient
out n exit n ambient
open n open n ambient
go(in n) enter n ambient objectively
go(out n) enter n ambient objectively

�
We define the labelled transition system only

for cap of Definition 6.1 that changes the struc-
ture of the processes.

Definition 6.2 (Labelled Transition
cap−−→)

n[in m.P |Q]|m[R] in m−−−→m[n[P |Q]|R]

m[n[out m.P |Q]|R] out m−−−−→n[P |Q]|m[R]

open m.P |m[Q]
open m−−−−−→P |Q

go(in m.N).n[P ]|m[Q]
go(in m)−−−−−−→m[go(N).n[P ]|Q]

m[go(out m.N).n[P ]|Q]
go(out m)−−−−−−→go(N).n[P ]|m[Q]

P
cap−−→Q

P |R cap−−→Q|R
P

cap−−→Q

m[P ]
cap−−→m[Q]

P
cap−−→Q, (νn:W ) dose not interfere cap in P

(νn:W )P cap−−→(νn:W )Q

P
cap−−→Q

(νG)P
cap−−→(νG)Q

n ∈ {m} ∪ fn(Q)

( γn:W )n[m[out n.Q]|P ] out n−−−→
(γn:W )n[P ]|(γn:W )m[Q]

n ∈ {m} ∪ fn(Q) ∪ fn(N)

(γn:W )n[go(out n.N).m[P ]|Q]
go(out n)−−−−−−→

(γn:W )n[P ]|(γn:W )go(N).m[P ]

P
cap−−→Q, (γn:W ) dose not interfere cap in P,

for any R and S.
(P �≡ n[m[out n.R]|S],
P �≡ n[go(out n.N).m[R]|S]
where n ∈{m} ∪fn(R)∪ fn(N))

(γn:W )P
cap−−→(γn:W )Q

�
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Definition 6.3 (Predicate Can(P, cap))
Let P be a process of ETAC and cap be any
label defined in Definition 6.1. We define the
predicate Can(P, cap) as follows: ∃P ′.P ∗→cap→
P ′, where ‘ ∗→’ expresses a reflexive transitive
closure of reduction ‘→’ defined in Definition
4.4. �

Intuitively, P can execute capability cap as
the last step of the transition that reduces P to
P ′.

Definition 6.4 (Process Rcap
P ) Let P be

a process and cap be any label defined in Defi-
nition 6.1 such that Can(P, cap). From the def-
inition of Can, the following condition holds:

∃R, P ′.P ∗→ R ∧R
cap→ P ′.

We define Rcap
P to be any process R satisfying

the condition
Rcap

P ∈ {R | ∃P ′.P ∗→ R
cap→ P ′}.

�
Definition 6.5 (Binary Relation
P≤can Q)

P≤can Q
def
=

∀cap, C(). if C(P ) and C(Q) are closed, then
Can(C(P ), cap)⇒ Can(C(Q), cap)
∧ ∀cap’ , ∀Rcap

C(P ), ∃Rcap
C(Q).

Can(Rcap
C(P ), cap’)⇒ Can(Rcap

C(Q), cap’).
�

Definition 6.6 (Capability Equivalence)
P�can Q

def
= P≤can Q ∧Q≤can P. �

We explain the intuitive notion of capability
equivalence in the following example.

Let C() be the context as follows:
C() def

= (γn:Thread�∅[�Node, ◦∅,Shh ])
(n[!in a|in c]|−).

and let P and Q be the processes defined
in Example 5.8. Then, Can(C(P ), in c) ∧
Can(Rin c

C(P ), in b) holds. This means that when
process C(P ) is reduced to a process that can
directly enter the ambient c[], there is still a
possibility that the ambient b[] is accessible. On
the other hand, when process C(Q) is reduced
to the same stage, it will not be able to ac-
cess the ambient b[]. Consequently, capability
equivalence can distinguish P from Q.

Proposition 6.7 Capability equivalence is
a congruence. �
Proof: We can apply the strategy of the proof
for contextual equivalence 4).

(Equivalence part) Reflexivity and sym-
metry are trivial. We show the proof for
only transitivity. Suppose that P1≤can P2 and
P2≤can P3. Let C() be any context such that

C(P1) and C(P3) are closed, let θ be a clos-
ing substitution for C(P2), and let D()

def
= C()θ.

Suppose that cap is any label of Definition 6.1
such that Can(C(P1), cap) and let Rcap

C(P1)
be any

processes satisfying ∃cap′.Can(Rcap
C(P1)

, cap′).
Since C(P1) are closed, C(P1) ≡ D(P1). Thus,

Can(D(P1), cap) and ∃cap′, ∀Rcap
D(P1)

.

Can(Rcap
D(P1)

, cap′).
With this condition, the fact that D(P2) is
closed, and the assumption P1≤can P2, we are
led to the following condition:
Can(D(P2), cap) ∧ ∃Rcap

D(P2)
.Can(Rcap

D(P2)
, cap′).

As C(P3) is closed, C(P3) ≡ D(P3) and D(P3)
is also closed. These conditions and the as-
sumption P2≤can P3 lead us to the following
condition:
Can(D(P3), cap) ∧ ∃Rcap

D(P3)
.Can(Rcap

D(P3)
, cap′).

As C(P3) ≡ D(P3),
Can(C(P3), cap) ∧ ∃Rcap

C(P3)
.Can(Rcap

C(P3)
, cap′).

Therefore, P1≤can P3. The symmetric proce-
dure proves that P3≤can P1.

(Precongruence part) We can apply a sim-
ilar proof to the one in Ref. 4). Let P and Q be
any capability equivalent processes, cap be any
label of Definition 6.1, and C() be any context
such that C(P ) and C(Q) are closed. Suppose
that D() is any context such that D(C(P )) and
D(C(Q)) are closed and Can(D(C(P )), cap) and
∃cap′.Can(Rcap

D(C(P )), cap
′).

As D(C()) is a context and P≤can Q,
Can(D(C(Q)), cap) and Can(Rcap

D(C(Q)), cap
′) by

Definition 6.6 and 6.5. Consequently, we have
C(P )≤can C(Q). The symmetric way proves
C(Q)≤can C(P ).

Because we have proved C(P )�can C(Q) for
any context C() and for any two processes P and
Q such that P�can Q, capability equivalence
“�can ” is a precongruence. �

7. Conclusions

The primary result of this paper is that it
showed the problems of the type system de-
fined in Ref. 2) and presented an extension of
the type system. It also presented an equiva-
lence relation for the extended typed ambient
calculus.

The type system in Ref. 2) gives type to an
ambient according to the group to which the
name of the ambient belongs and to the groups
among which the ambient can move around. In
that system, a restriction is defined on names
and groups. When we try to give an ambient a
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property (e.g., cannot be opened, cannot move
around), however, we have to bind the name
of the ambient even if the name belongs to a
free group. That is, bound names are members
of free groups. For processes providing global
service, however, this is inconvenient.

To solve this problem, we extended the defini-
tions of free names and processes by adding the
type tag. The type tag resembles name restric-
tion, though it does not bind names but only
gives ambients restrictions on opening and mov-
ing properties. This method gives us a flexible
way to specify entities on networks that have
global names.

An equational relation, called contextual
equivalence, was given to the untyped ambient
calculus based on the names observed from en-
vironments. But the type system, especially
the opening control of ambients, makes the
equivalence hard to apply to the typed ambi-
ent calculus. Contextual equivalence identifies
or discriminates processes by their possibility
of exhibiting the names of the ambients that
compose the processes. For security, however,
the ambients that express nodes of a network
should not be opened. As a result, the net-
work becomes invisible and contextual equiva-
lence can only tell trivial differences.

As the opening control prevents us from dis-
tinguishing processes by exhibiting names of
ambients, we defined the capability equivalence
based on what the processes can do after they
have performed several actions. We did not use
the notion of what the process can do because
there are processes that the method cannot dis-
tinguish them though they have different prop-
erties. We showed such a phenomenon by defin-
ing choice macro processes in Ref. 5). We pro-
posed capability equivalence using the should
testing idea 1) originally presented for CCS pro-
cesses to distinguish such processes.

We need to compare our capability equiva-
lence with bisimulations. For example, a bisim-
ulation is defined for safe ambients that is also
a congruent relation in Ref. 7). We also intend
to check if the choice macro is to be defined by
using the type system defined in Ref. 6): the
dynamic types.
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