
Vol. 48 No. SIG 12(PRO 34) IPSJ Transactions on Programming Aug. 2007

Regular Paper

A Low-stretch Object Migration Scheme for Wide-area Environments

Ken Hironaka,† Kenjiro Taura† and Takashi Chikayama††

We propose a low-stretch scheme for locating mobile objects in wide-area computing envi-
ronments. Locating mobile objects in distributed computing systems is a non-trivial problem
and has been investigated for decades. The forwarding address algorithm, perhaps the most
popular algorithm, requires the previous holder of the object to point to the successive holder,
and to forward all requests along this pointer. However, this approach cannot provide any ac-
cess stretch bounds for wide-area settings, and can incur unlimited communication overhead.
This is unacceptable when a large number of objects simultaneously move or when numerous
referencers attempt to access an object that has moved. We propose an active update method
where nodes in the vicinity of the object’s location are notified of its new location via local-
ized update messages. Moreover, we will utilize the overlay topology information to minimize
these messages. Referencers beyond the scope of the update will still be able to safely access
the object. We will demonstrate that these updates maintain access stretches low even in
wide-area settings.

1. Introduction

Wide-Area computing has become increas-
ingly popular with the increase of network
bandwidth and of the computational power
of commodity computers. In such computing
environments, distributed object-oriented pro-
gramming is taking center stage. In particular,
solutions like JavaRMI and CORBA have be-
come popular choices for web-based services 1).
Java is becoming a favorite for grid-enabled
high performance computing 2),3). The world’s
largest database is in fact, run by an object
oriented database management system 4). The
importance of object-oriented solutions is un-
deniable and in the future, it is important that
such solutions can provide adaptivity to accom-
modate the dynamic nature of wide-area envi-
ronments.

Object migration is one way in which dis-
tributed object-oriented systems provide adap-
tivity. Object migration allows increased per-
formance by moving an object to a local des-
tination and avoiding remote method invoca-
tions. It also enables adaptive load-balancing
by distributing popular objects evenly and dy-
namically among nodes. It can also give more
flexibility as nodes who want to leave or join a
computation can do so by moving objects away
or to itself.

Many object-oriented implementations 5)∼8)

† Graduate School of Information Science and Tech-
nology, The University of Tokyo

†† Graduate School of Frontier Sciences, The Univer-
sity of Tokyo

have adopted object migration as a tool, but
have not answered the question of how it
should be implemented in a wide-area setting.
The question that needs to be answered in its
scheme is, how can a mobile object be located?
It is imperative that all existing remote and lo-
cal object references stay valid even in the face
of migration. Needless to say, providing loca-
tion servers is not scalable in such settings.

One way in which an object can be accessed
is by following the path of migration. However,
an object can migrate across local networks. In
a grid-enabled environment, wide-area commu-
nication costs hundreds and thousands of times
more time compared to local-area communica-
tion. A simple senario is depicted in Fig. 1. In
such cases, the access path becomes enormously
large in comparison to the optimal path. Such
an access overhead is unacceptable. Therefore,
it is important that the access stretch, the ra-
tio of the length of the access path to that of
the optimal access path, is constantly low. The
above approach does not satisfy this property.

The opposite approach is to update exist-
ing references actively so that all references
will constantly reach the object via the optimal
path. Though this will result in constantly low
stretches, the message overhead is significant.
An object movement of any kind will require a
flooding of update messages. In the presence of
a large number of mobile objects, this is clearly
not scalable. Moreover, a localized change of
location usually does not affect a very remote
node in terms of locating the object; that node
would still need to send an access message in the

28

Vol. 48 No. SIG 12(PRO 34) A Low-stretch Object Migration Scheme for Wide-area Environments 29

Fig. 1 Simply following the path of migration may
force the accessor to traverse wide-area connec-
tions unnecessarily. Such traversals can result
in access stretchs in the order of thousands.

same general direction. Thus, this method will
encompass nodes that are largely unaffected by
the modification.

Consequently, what is expected of an object
migration scheme is a method that yields low
access stretch from all nodes without flooding
the network with update messages.

Hence in this paper, we propose a mobile ob-
ject location scheme that utilizes localized dis-
semination of update messages without rely on
object access monitoring. Participating nodes
will construct an overlay network and routing
among them will be performed using shortest-
path routing. We utilize communication la-
tency for the metric. The messages will be
propagated by the most current holder of the
object. The message propagation is localized
by limiting the distance it can travel over the
overlay network. Our scheme is able to give
provably low stretch bounds on certain situa-
tions. Our scheme satisfies the following prop-
erties for any overlay topology.
(1) The object access stretch is constantly

low on average
(2) The update messages are localized to the

local area network of the object’s location
The organization of this paper is as follows.

In Section 2, we will introduce related work.
In Section 3, we will explain our proposal. In
Section 4, we will evaluate our scheme. Finally
in Section 5, we will conclude.

2. Related Work

2.1 Forwarding Addresses
A very popular object tracking method has

been analyzed by Fowler 9). This has been
adopted in many implementations 1),5),7),8),10).
Even the more recent Java implementations
like JavaParty 5) and Voyager 1) employ this
scheme.

The method makes use of forwarding ad-
dresses to keep track of mobile objects. A for-
warding address for an object is a data structure

that contains the following
object id: a unique network-wide identifier

for an object
timestamp: a number that represents the

freshness of the forwarding address, where
a larger number indicates a fresher piece of
information.

location: location information of where the
object was when the forwarding address
was created

When an object migrates from a node, the
contents of the node’s object is replaced by
a forwarding address. This means, that the
timestamp will be incremented to the newest
value, and that the location will point to the
node to which the object migrated. An attempt
to access the object at an old location will re-
veal a newer location. The access will be for-
warded to the newer location, where a similar
attempt to access is made. The above steps will
continue until the access is finally forwarded to
the correct location. In effect, this will create
a forwarding chain from the accessing node to
the hosting node. The object reference of the
node from where the access originated will be
updated after a successful object access. Hence-
forth an access will go directly to the correct
location.

The forwarding address protocol is effective
when migration is limited, or when mobility is
confined to a small group of nodes. Fowler has
given a proof that with the path compressing
protocol, the average stretch of accessing a re-
mote object is O(log N/ log(a/m)) where N is
the number of nodes the object visits in its life-
time, a is the number of times it is accessed,
and m is the number of times it moves 9).

Many of the more modern distributed object
oriented systems, including Java Party 5) and
ProActive 11), implement migrant object track-
ing using this method.

However, Fowler’s analysis of the forwarding
address model assumes the following.
• all nodes are directly connected to each

other
• the cost of all inter-node communication is

equal
None of the above can be assumed for the

modern wide-area environment. In such set-
ting, following a forwarding chain may incur un-
necessary traversals of wide-area connections.
In such a situation, the access stretch can ex-
tend unconditionally.

30 IPSJ Transactions on Programming Aug. 2007

2.2 Extension to the Forwaring Proto-
col

In Ref. 12), Moreau extends on Fowler’s work.
Moreau uses the same forwarding address pro-
tocol by adding an inform message. The mes-
sage contains the object’s location and the
timestamp it had when it was at the location.
When a node receives an inform message, its
routing table is updated if the message is more
up-to-date.

Moreau does not specify when inform mes-
sages should be sent, or to where the messages
need to be sent. The work is left to the dis-
tributed system that implements the algorithm.

2.3 Referencer Updates: Thor
Thor is a distributed object-oriented database

where objects are stored persistently at highly
available servers called object repositories
(ORs) 13). In Thor, references to an object is a
location dependent piece of information called
xref s which contains
• the OR id
• the local address within the OR

When a reference makes an access, the request
is forwarded to the corresponding OR, which
executes the access using the local object ID.
When an object moves to another OR, the cor-
responding xref s in the system must be up-
dated. The source OR propagates the new xref
to all ORs that have references to the migrated
object. This selective propagation is made pos-
sible by the inlist on each OR. The distributed
garbage collector maintains this list. An OR’s
inlist contains a list of ORs that hold references
to objects on it. When an OR receives an up-
date message, the update is saved in a location
table, in which each entry contains
• old xref
• new xref

Whenever a distributed garbage collector scans
references in an OR, the local location table
will be used and old xref s are overwritten with
newer xref s. However, object references them-
selves are not updated eagerly, and so accesses
may be made to an old location. To accomo-
date this, the source OR of a migration also
maintains a serrogate which effectively forward
the access request to the location to where the
object migrated.

Thor is unique in that it selectively propa-
gates the update only to the nodes that are
concerned. However, this method is dependent
on a distributed garbage collector, and this by
itself fails to address the general problem for

object location. This also assumes that the
garbage collector runs often enough to update
old references in a timely manner. As a result,
this method also resorts to the forwarding ad-
dress protocol.

2.4 DSDV
Destination-Sequence Distance-Vector Rout-

ing protocol is a modification of the Bellman-
Ford routing mechanism 14). It realizes
shortest-route routing for mobile networks
where nodes move freely. In addition, the par-
ticipating nodes also do not have to know all
the nodes in advance.

Each node broadcasts its routing table peri-
odically to neighboring nodes within its range.
This eager exchange of routing information is
classified as proactive routing. Each node main-
tains a routing table that consists of entries for
each destination. Each entry contains
fwd a node to which messages to the destina-

tion are forwarded
nhops the number of hops required from the

local node to the destination node
seq a sequence number that implies the fresh-

ness of the information
When a node receives a routing table in a

message, the node compares it with that of its
own. If the message contains new information,
its routing table is overwritten and broadcasted
again. A piece of information in a table is new
if for any entry
• the sequence number is newer
• the sequence number is the same, but nhops

is smaller than its own
This protocol can adapt to dynamic mobile net-
works because nodes advertise routing tables
periodically. It’s adaptability depends on how
frequently each node broadcasts messages.

It is possible to disseminate routing informa-
tion to each object in this manner. Each node
will constantly be aware of object’s freshest lo-
cation and thus will constantly access the object
using the optimal access path.

However, all nodes will receive an update for
any migration of any object. The network will
be flooded with update messages.

2.5 AODV
Ad-hoc On-demand Distance-Vector Routing

protocol is a modification to DSDV 15). While
nodes exchanged messages eagerly in DSDV,
they are done lazily in AODV. This method
is classified as reactive routing. Unlike DSDV,
shortest-path discovery is done on demand,
when a message needs to be sent to a mobile

Vol. 48 No. SIG 12(PRO 34) A Low-stretch Object Migration Scheme for Wide-area Environments 31

destination. At this time, a node broadcasts
to neighboring nodes and requests a path to
the destination. If neighboring nodes do not
have a path to the destination, they too broad-
cast. This continues until a node, possibly the
destination node itself, responds with the re-
quested route information. The information is
conveyed back to the initial inquirer in the re-
verse path of the broadcasts. Because unneces-
sary broadcast messages are not exchanged ac-
tively, the amount of routing messages can be
reduced significantly. However, because rout-
ing is done on-demand, the protocol does not
provide good response. It is unacceptable if an
object access requires such a large latency even
before the access is performed.

2.6 SHARP
SHARP is a hybrid protocol that combines

proactive and reactive routing 16). This proto-
col takes advantage of the fact that most inter-
node communication happens among nodes
close by. Each node constructs a zone, a
group of near-by nodes with which it eagerly
exchanges routing information. A node re-
sorts to reactive routing with nodes outside its
zone. SHARP goes furthur by adaptively ad-
justing zone size using network traffic informa-
tion. Though this method strives to incooper-
ate the benefits of both proactive and reactive
routing, its heuristics on deciding zone size is
still suspect.

3. Our Proposal

3.1 The Problem Setting
Our scheme functions in a dynamic network.

We do not prohibit dynamic joining and leaving
of nodes, nor do we disallow dynamic changes
of connections. However in the presence of
dynamic reconfiguration of nodes and connec-
tions, we cannot theoretically guarantee low ac-
cess stretch. Thus for the purpose of our anal-
ysis, we assume a static overlay topology. In
other words,
constant number of nodes: the nodes will

stay constant throughout the computation,
no nodes will leave or join the computation

static links: there will be no changing of
edges between any pair of nodes during the
computation

3.2 The Overview
In our proposal, we utilize a combination of

update messages and inter-node routing to lo-
cate an object. At start up, all nodes construct
a routing table to all destinations on the over-

Fig. 2 All messages to the destination at the root are
forwarded up the routing tree.

Fig. 3 The larger the migration distance, the larger
update propagation range.

lay network. In each table entry for a given
destination, each node keeps the next hop, and
the distance to that destination. The metric
for distance is the communication latency over
the overlay network. By doing so, shortest-path
routing will be realized among all nodes. Con-
structing routing tables in effect creates routing
trees , one for each node. A routing tree for a
node is a tree in which a child node forwards a
message to its parent node to reach the node.
In effect, a routing tree for a given node has the
node as the root. An example of such a tree is
shown in Fig. 2.

When an object migrates, the new object
host broadcasts the updated object location
message to all nodes in a given radius. The
radius of dissemination is fixed to a value pro-
portional to the distance the object traveled
from the old host to the new host. We call
this proportional value, the propagation ratio.
The manner in which the update is propagated
is illustrated in Fig. 3. Meanwhile, the old host
node corrects its local reference to point to the
new host node.

When a given node accesses a remote object,
it does so by emitting an object access mes-
sage. An object access message contains the
node information of where the object is thought
to be. When the message is emitted, the re-

32 IPSJ Transactions on Programming Aug. 2007

Fig. 4 While node D visits node A first, its overall
stretch is not affected mostly.

quest will be forwarded by intermediate nodes
towards the node hosting the object. To deter-
mine where to forward a request, a forwarding
node will use the newer information between
the location the node has, and the location that
is included in the access message. A node will
overwrite the old information and will forward
the request towards the location in the newer
information. Quite possibly, both pieces of in-
formation will be out-dated. Thus, it is possible
that the object access will reach an old object
host. Since the old object host has information
as to where the object migrated, the old host
is guaranteed to have newer information than
the object access message. Thus in this case,
the message will be forwarded to the newer lo-
cation. Hence, nodes that do not receive the
latest object location information are still able
to access the object.

The dissemination of update messages is de-
signed to prevent senarios like that described
in Fig. 1. The effect of our method can be il-
lustrated in Fig. 4. The object in question mi-
grates from Node A to Node B. In the senario,
node C is close enough to node B that node C
receives the true location of the object. Thus
node C will access node B directly. On the other
hand, node D is unaware and its access message
mistakenly goes to node A when it attempts to
access. However, node D is far enough from
node B anyway and the overall access stretch,
the ratio of the actual access path and the op-
timal access path, does not grow too large.

3.2.1 Optimizated Progapation
Method

Disseminating a message to all nodes within a
given distance can be done without having each
node broadcast the message on all of its links.
The same results can be achieved by using a
tree. For this purpose, we will utilize the rout-
ing tree rooted at the new object host. This
is shown in Fig. 5. In order to send a message
to all nodes within a given distance from the

Fig. 5 The update message can be disseminated by
sending the message from the parent to its chil-
dren.

root, the root node can propagate the message
down the routing tree until the desired distance
is reached.

3.3 The Algorithm
3.3.1 Node ID
Each Node that is participating in the system

is given a unique ID. We will call this the node
id.

3.3.2 Inter-node Routing
At start-up, the participating nodes will con-

struct a shortest-path routing table to each
node. This can be done by each node initially
flooding routing information to each other.
When the routing tables are complete, each
node will have record the distance to the desti-
nation node on the overlay, and the next hop to
that node. In addition, each node will record
the adjacent nodes that are dependent on itself
to route messages to a given node. In other
words, all parent nodes record their children
nodes for all routing trees.

3.3.3 The Object Reference
Each mobile object is labeled with a tag that

uniquely identifies the object, the UID . A ref-
erence to an object is in effect, this identifier.
This identifier is assigned at birth and contains
the node id of where the object was first cre-
ated.

3.3.4 The Sequence Number
Each node maintains a table containing the

object location information that it is aware of.
Each entry in this table contains the following
uid: the object’s unique identifier
location: the location information of the ob-

ject
seq: the sequence number that tells the fresh-

ness of the information
In particular, the sequence number is a mono-

tonically increasing number in which a larger
value signifies a newer piece of information.

Vol. 48 No. SIG 12(PRO 34) A Low-stretch Object Migration Scheme for Wide-area Environments 33

3.3.5 Object Migration
When an object migrates, it is packaged in

a MOVE message and is forwarded to the new
object host. The MOVE message contains the
following.
object: the object itself
seq: the object’s sequence number
dist: the distance the object has traveled
The dist element is initially set to 0. When a
node receives a MOVE message, the dist el-
ement is increased by the weight of the link
from which the message was received. If the
node is not the destination node, the message
is forwarded to the next hop to the destina-
tion. When the MOVE message reaches the
destination node, the message in processed and
the object is unpackaged. After the object has
been unpackaged, the new object host returns a
MOVE ACK message back to the source node.

3.3.6 Update Message Propagation
3.3.6.1 Emitting the Update Message
Whenever an object migration completes, the

following steps are followed.
(1) the source and destination nodes update

the object’s entry in its object routing ta-
bles to reflect the migration. When they
do so, they increment the sequence num-
ber for the object

(2) the destination node propagates the UP-
DATE message

The UPDATE message includes the following.
uid: the object’s UID
seq: the object’s new sequence number
old host: the old host node’s id
new host: the new host node’s id
TTL: a Time-To-Live (TTL)

3.3.6.2 The Propagation Ratio
In particular, the TTL is initially set to

dist · k (1)
where dist is the distance the object traveled
and k is the propagation ratio. If k = 1,
it would mean that the UPDATE message is
propagated in the radius of the migration dis-
tance. By choosing a smaller value of k, we can
limit the amount of message and sacrifice the
access stretch performance.

3.3.6.3 Propagating the Message
When a node first emits or forwards an UP-

DATE message, it constructs a set of adjacent
nodes to which the message will be sent. Let
dep(pid) represent the set of adjacent nodes
that are dependent on the node to send a mes-
sage to pid , and link weight(pid) represent the
weight of the edge to pid . The set of nodes to

which the message will be sent are

{x : x ∈ dep(new host) &&
link weight(x) < TTL}

3.3.6.4 Forwarding the Update Mes-
sage

When a node receives an UPDATE mes-
sage, it compares the update message’s se-
quence number to that of the entry in its object
routing table. If the message’s sequence num-
ber is greater, it signifies a new piece of infor-
mation and its object routing table is updated.
If the table is updated, the TTL is decreased
by the weight of the link from which the mes-
sage was received and the node propagates the
UPDATE message.

3.3.7 Object Access
3.3.7.1 Constructing an Object Access

Message
Accessing an object requires a reference to

that object. When a node tries to access a non-
local object, it creates an ACCESS REQ mes-
sage. The message includes the following.
uid: the UID of the object
host: the location where the object is thought

to be.
seq: the sequence number of the location in-

formation
The UID can simply be derived from the ref-
erence. The location information and the se-
quence number can be drawn from the node’s
object routing table. There may be a case
where the object information is not avaiable in
the table. In such cases, the object’s birth loca-
tion is derived from the UID (cf., Section 3.3.3)
and the sequence number is set to 0.

The request message is sent to the next hop
to the location specified in the message.

3.3.7.2 Forwarding an Object Access
Message

When a node receives an ACCESS REQ mes-
sage, it processes the access if the object resides
on the node. If this is not the case, the object
will be forwarded to the next node. In order to
estimate where the object can be, the node will
use it’s object routing table and the informa-
tion in the request message. Of the two pieces
of information, the information with the larger
sequence number is respected. The piece of in-
formation with the smaller sequence number is
overwritten with the other. After this check is
complete, the request message is forwarded to
the next hop towards the location.

34 IPSJ Transactions on Programming Aug. 2007

3.3.7.3 Path Compression
Like the forwarding address scheme, we uti-

lize a path compression protocol. When an ob-
ject access is processed by the target object,
the object returns the result of the access to
the accessor. The location of the object at that
time, along with its current sequence number is
piggy-backed on this message. Henceforth, the
accessor is able to access the object at this new
location.

3.4 Access Stretch
With our algorithm, we give strict bounds on

the access stretch to mobile objects. For any
propagation ratio k > 0, an access from any
node to any mobile object can be bounded by
a stretch of 1 + 2

k . A formal analysis is given
in the Appendix. This bound holds only for
when an object migrates at most once between
accesses from any node. If an object migrates
m times in between accesses from a node, the
access stretch from that node can grow with
the power of m. Even in such cases however,
the worse case stretch is unlikely and the access
stretch stays low on average. We shall show this
by evaluation.

4. Evaluation

In this section, we will show that,
• our scheme gives low access stretch to

mobile objects in wide-area environments,
even with small propagation ratios

• our scheme allows update dissemination to
be limited to localized areas in the network
while still maintaining low access stretch

We use three clusters to simulate a wide-area
environment for our experiment:
HONGO (66 nodes): CPU: Intel (R) Pen-

tium (R) M processor 1.86 GHz, RAM:
1GB

CHIBA (64 nodes): CPU: Intel (R) Pen-
tium (R) M processor 1.86 GHz, RAM:
1GB

KASHIWA (66 nodes): CPU: Intel (R)
Xeon (TM) CPU 2.40 GHz, RAM: 2 GB

We show the round trip time between and
within each cluster in Fig. 6.

For all of the experiments we present be-
low, we constructed a random graph where each
node connects to 10% of all participating nodes.

In Section 4.1, we compare and evaluate the
access stretch of our scheme against the for-
warding address scheme in a multi-cluster envi-
ronment. In Section 4.2, we discuss the message
overhead and how our scheme limits the prop-

Fig. 6 The inter and intra cluster RTT for the three
clusters.

agation area.
4.1 Access Stretch
In the first set of experiments, we analyze

the object access stretch from a single acces-
sor when an object migrates within the three
clusters. The evaluation is done with different
access/migration frequencies.

4.1.1 One Migration in between Ac-
cesses

We evaluate a case where 1,000 objects mi-
grate as a group to different random nodes.
A fixed node accesses the objects sequentially.
Where one access iteration is an access to each
object, the objects migrate after every 5 itera-
tions. The accesses was resumed once the mi-
gration has been complete. We compute the
average access stretch of each iteration by di-
viding the total lapse time of an iteration by
the total lapse time of an iteration had the ac-
cesses taken the optimal path. We let the opti-
mal access time be the shortest completion time
among every 5 iterations. We compare the av-
erage access stretch for the forwarding address
scheme and our scheme. For our scheme, we
varied the propagation ratio. We attained the
results shown in Fig. 7 (a)–(d).

In both Figs. 7 (a) and (b), we see that the
optimal stretch is attained for the most part.
A non-optimal access stretch is attained for the
first of every 5 iterations. This is because a
non-optimal stretch happens when the acces-
sor goes to access the object at its old loca-
tion. For the forwarding address scheme, many
of the non-optimal stretches are scattered high
above the optimal value of 1. We believe that
the very large stretches came from senarios de-
scribed in Fig. 1 because they arose when the
object moved nearby the accessing node. Thus,
we hypothesize that the effect will be more vis-
ible in environments where the distribution of

Vol. 48 No. SIG 12(PRO 34) A Low-stretch Object Migration Scheme for Wide-area Environments 35

a. Forwarding address scheme b. Our scheme (k = 1)

c. Our scheme (k = 0.5) d. Our scheme (k = 0.2)

Fig. 7 Average access stretch when 1,000 objects migrate after every 5
iterations with 195 nodes in 3 clusters.

the inter-node latency is much greater. On the
other hand for our scheme, we see that the non-
optimal stretches are bounded by a stretch of
3. This is a confirmation of our assertion in
Section 3.4.

In Figs. 7 (c) and (d), we show how our
scheme performs with smaller propagation ra-
tios. Though their non-optimal access stretches
are larger at some points, they are roughly
equivalent to our results when k = 1. In these
case, the maximum stretch bounds guaranteed
in our analysis become larger, but in reality,
we see that their maximum stretch is roughly
uneffected by a smaller k.

4.1.2 Multiple Migrations in between
Accesses

Generally, an object can move independently
of how it is being accessed. Below we general-
ize the previous experiment to reflect this case.
Now, the object group is allowed to migrate to
random nodes R times after every 5 iterations.
Likewise, we compare the average access stretch
between the forwarding address scheme and our

scheme. We show the results in Fig. 8 (a)–(d).
We can see clearly in Fig. 8 (a) the forwarding

address scheme’s vulnerability when the target
object moves multiple time before it is accessed.
This can be explained by the fact that, when
the object continues to migrate, the forwarding
chain becomes longer. Moreover in a wide-area
environment, a single forwarding may entail a
number of hops on the overlay network, and a
single hop may be a wide-area connection that
is very costly.

On the other hand, our scheme with k = 1
is hardly affected on average by the extra mi-
gration. Figures 8 (b), (c), and (d) also show
that decreasing k does not dramatically change
the access stretch performance either. More im-
portantly, though we were not able to provide
any bound on the access stretch in this general
case, the Figs. 8 (b), (c), and (d) show that the
access stretch in reality stays low even if an ob-
ject moves multiple times in between accesses.

36 IPSJ Transactions on Programming Aug. 2007

a. Forwarding address scheme b. Our scheme (k = 1)

c. Our scheme (k = 0.5) d. Our scheme (k = 0.2)

Fig. 8 Average access stretch when 1,000 objects migrate R times after
every 5 accesses with 195 nodes in 3 clusters.

Fig. 9 Completion time of 100 iterations with varying
migration frequencies with 193 nodes in 3 clus-
ters.

4.1.3 Access with Aggressive Object
Migration

For the final experiment in this round of ex-
periments, we compare our scheme’s perfor-
mance when objects migrate aggressively. We
perform the evaluation by moving 1,000 objects
as a group every P seconds while a fixed node
incessantly accesses them. We measured the
time to complete 100 access iterations. The re-
sult is shown in Fig. 9.

It is clear from Fig. 9 that the completion
time deteriorates quickly for the forwarding ad-
dress scheme. This can again be attributed to
the fact that as the objects’ consecutive migra-

tion increases, the fowarding chain becomes un-
bearably long. Our scheme performs well for
all values of k with which we tested. Moreover,
the execution time’s growth rate with respect to
the migration frequency is considerably smaller
compared that of the forwarding address ap-
proach. Thus, we can say that our scheme per-
forms well even in settings where a target object
continually migrates from node to node.

4.2 Message Overhead
So far, we have demonstrated that the access

stretch stays low for our scheme in wide-area
settings. We now evaluated its update message
overhead. First, we see how update messages
in our scheme can be limited to localized areas
in the network while still providing low stretch.
Next, we compare our scheme to the simple lo-
calized update broadcast scheme.

4.2.1 Localized Updated Dissemina-
tion

First, we demonstrate that by changing the
propagation ratio, we can effectively contain
update messages within localized sections of a
wide-area network. We performed an experi-
ment where an object was migrated randomly
100 times within the overlay network. While
varying the propagation ratio, we measured the
total distance each update message traversed in
the network. We then constructed a histogram

Vol. 48 No. SIG 12(PRO 34) A Low-stretch Object Migration Scheme for Wide-area Environments 37

a. Simple update broadcast scheme (k = 0.5) b. Our update scheme (k = 0.5)

c. Message ratio between the two schemes
for 100 migrations

d. Histogram of the distance the update messages
traversed for the two update schemes

Fig. 11 Comparison of the three update schemes with 195 nodes in 3 clusters.

Fig. 10 A histogram of the distance the update mes-
sages traversed for 100 migrations with 193
nodes in 3 clusters.

based on the distance they covered. The result
is shown in Fig. 10.

In the histogram in Fig. 10, we see that there
are hardly any messages that traversed more
than 0.5 [ms] but less than 2.0 [ms]. This ar-
rises from the geographical position of the clus-
ters as expressed in Fig. 6. From this, we can
safely say that the messages travelling less than
0.5 [ms] are messages that stayed within a clus-
ter, while those above 2 [ms] are messages that
crossed cluster boundaries. It can be observed
that messages disseminated within the cluster
of the migrated object do not differ among dif-

ferent values of k. Particularly long stretches
arise when nodes within the cluster in which the
object reside are not notified of the migration.
For different values of k, the extent to which
the nodes of the object’s local cluster are in-
formed does not change. This explains why the
stretch performance did not significantly decay
in the previous experiments. Therefore, long
stretches can still be avoided with smaller val-
ues of k. On the other hand, where the extent
of dissemination does change according to k are
the notifications that cross clusters. However,
we have already established that nodes far away
from the object are mostly unaffected in terms
of stretch. Thus, inter-cluster notifications are
for the most part, unnecessary. Hence, we can
say that by setting a small value of k, update
messages can be propagated economically while
still maintaining low access stretch.

4.2.2 Effects of the Update Message
Optimization

Next, we evaluate the effect of our optimized
broadcast scheme. To gain a comparison, we
performed the experiment in Section 4.1.1 using
two different methods. For the first, we chose a
simple localized broadcast method where up-
date messages are simply flooded until they

38 IPSJ Transactions on Programming Aug. 2007

reach a certain distance. For the second, we
only applied our optimization presented in Sec-
tion 3.2.1. During the experiment, we also
counted the total number of update messages
that was sent. The results are presented in
Fig. 11 (a)–(d).

By comparing the Figs. 11 (a) and (b), we can
discern that their average stretch performance
are identical. Thus, we confirmed that the ac-
cess stretch is not affected by this scheme. Fig-
ure 11 (c) shows the benefits of our optimization
schemes. Our optimized broadcast scheme is
clearly better than the simple broadcast scheme
as the messages sent can be reduced to a third
without degrading stretch. A much more not-
icable difference is visible when comparing the
distance the update messages travel. This is
shown in Fig. 11 (d). In the histogram, there
is a noticable difference between our scheme
and the simple broadcast scheme beyond the
2 [ms] mark. This implies that our optimiza-
tions significantly reduces unnecessary updates
that cross cluster boundaries. Thus, we can say
that not only does our scheme reduces message
count, it also reduces the area in which they are
propagated.

5. Conclusion and Future Work

In this paper, we presented a new object
migration scheme for wide-area environments.
Our solution for the problem setting was to
propagate update messages when objects mi-
grate and to provide low access stretch.

We confirmed by experiment our analysis on
access stretch bounds for when an object only
migrates once in between accesses. We were not
able to provide any theoretical strech bounds
for the general case. However by evaluation,
even if the object migrates multiple times in
betweeen accesses, we showed that the access
stretch stays very low on average.

We compared our results to that of the
conventional forwarding address approach and
showed our scheme’s significance. While a for-
warding address method is threathened by a
much longer stretch by every migration, ours
constantly gives low stretch. We also showed
that our scheme makes a large difference when
object migration frequency is high.

Finally, we demonstrated that by utilizing
our scheme, we can confine the range of up-
date propagation to small sections of the whole
network, like a cluster. We also showed that
this is enough to maintain low access stretch.

Furthermore, we demonstrated that our opti-
mized broadcast significantly reduce message
overhead in terms of the number of messages
disseminated and the area in which it is dissem-
inated. Overall, we showed that it is possible
to utilize location update messages to maintain
constantly low access stretch to mobile objects.

For future work on this topic, we will like to
improve our updating scheme. In particular,
instead of propagating updates for a distance
proportional to the migration distance, it may
be better to do so for a distance proportional to
the log migration distance. Realistically speak-
ing, this may be able to curb the update prop-
agation area when an object migrates a great
distance, without affecting the overall access
stretch. In addition, we will like to evaluate
the improved scheme in a much wider scale. So
far, we have evaluated our scheme in a metropo-
lian environment. We believe that much more
interesting results can be obtained in a more
wide-area environment.

References

1) Boger, M.: Java in Distributed Systems, Wiley
and Sons (2001).

2) van Nieuwpoort, R.V., Maassen, J., Hofman,
R., Kielmann, T. and Bal, H.E.: Ibis: An ef-
ficient Java-based grid programming environ-
ment, JGI ’02: Proc. 2002 joint ACM-ISCOPE
conference on Java Grande, New York, NY,
USA, pp.18–27, ACM Press (2002).

3) Huet, F., Caromel, D. and Bal, H.E.: A High
Performance Java Middleware with a Real
Application, Proc. Supercomputing conference,
Pittsburgh, Pensylvania, USA (2004).

4) Becla, J. and Wang, D.L.: Lessons Learned
from Managing a Petabyte, Technical report,
SLAC.

5) Philippsen, M. and Zenger, M.: JavaParty —
Transparent Remote Objects in Java, Concur-
rency: Practice and Experience, Vol.9, No.11,
pp.1225–1242 (1997).

6) Roy, P.V., Haridi, S., Brand, P., Smolka, G.,
Mehl, M. and Scheidhauer, R.: Mobile Ob-
jects in Distributed Oz, ACM Transactions on
Programming Languages and Systems, Vol.19,
No.5, pp.804–851 (1997).

7) Jul, E., Levy, H., Hutchinson, N. and Black,
A.: Fine-grained mobility in the Emerald sys-
tem, ACM Trans. Comput. Syst., Vol.6, No.1,
pp.109–133 (1988).

8) Chase, J., Amador, F., Lazowska, E., Levy, H.
and Littlefield, R.: The Amber system: Parallel
programming on a network of multiprocessors,
SOSP ’89: Proc. twelfth ACM symposium on

Vol. 48 No. SIG 12(PRO 34) A Low-stretch Object Migration Scheme for Wide-area Environments 39

Operating systems principles, New York, NY,
USA, pp.147–158, ACM Press (1989).

9) Fowler, R.J.: The complexity of using forward-
ing addresses for decentralized object finding,
PODC ’86: Proc. fifth annual ACM sympo-
sium on Principles of distributed computing ,
New York, NY, USA, pp.108–120, ACM Press
(1986).

10) Steensgaard, B. and Jul, E.: Object and na-
tive code thread mobility among heterogeneous
computers (includes sources), SOSP ’95: Proc.
fifteenth ACM symposium on Operating sys-
tems principles, New York, NY, USA, pp.68–
77, ACM Press (1995).

11) Baude, F., Caromel, D., Huet, F. and
Vayssiere, J.: Communicating Mobile Active
Objects in Java, Proc. HPCN Europe 2000 ,
LNCS, Vol.1823, pp.633–643, Springer (2000).

12) Moreau, L.: Distributed directory service and
message routing for mobile agents, Science
of Computer Programming , Vol.39, No.2-3,
pp.249–272 (2001).

13) Day, M., Liskov, B., Maheshwari, U. and
Myers, A.C.: References to Remote Mobile Ob-
jects in Thor, ACM Letters on Programming
Languages and Systems, Vol.2, No.1-4, pp.115–
126 (1993).

14) Perkins, C. and Bhagwat, P.: Highly Dy-
namic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers, ACM
SIGCOMM’94 Conference on Communica-
tions Architectures, Protocols and Applica-
tions, pp.234–244 (1994).

15) Perkins, C.: Ad-hoc On-demand Distance
Vector Routing (1997).

16) Ramasubramanian, V., Haas, Z.J. and Sirer,
E.G.: SHARP: A hybrid adaptive routing pro-
tocol for mobile ad hoc networks, MobiHoc
’03: Proc. 4th ACM international symposium
on Mobile ad hoc networking & computing ,
New York, NY, USA, pp.303–314, ACM Press
(2003).

Appendix

A.1 Analysis on the Access Stretch
Below, we provide some theoretical backing

to our scheme given a few assumptions.
A.1.1 Formalization of Our Problem

Setting
By assuming a static overlay topology, we

assume a connected graph with bidirectional
weighted edges, G(V, E, ω) where V is a col-
lection of nodes, E ⊆ V × V is a set of edges,
and ω is a weight function ω : E → [0,∞). We
assume the following properties.
• there exists a node pair (u, v) such that

(u, v) ∈ E if and only if there exists a TCP
connection between node u and node v

• for any (u, v) ∈ E, ω(u, v) ∈ R and
ω(u, v) > 0. It may be any metric that
satisfy these conditions. For example, the
round trip time for the TCP connection be-
tween node u and node v

For the analysis below, we also apply a con-
straint concerning the object’s mobility.
• ∀u ∈ V , any given object migrates at most

once between u’s access to the object.
We shall call this the object mobility contraint .

A.1.2 Distance
For any pair of nodes (u, v) ∈ V × V in our

graph G(V, E, w), we define their distance to be
the sum of the weights of all the edges that are
traversed to go from u to v. First, we define
the order of traversal from u to v by an access
series R(u, v). We define an access series from
u to v to be

R(u, v) ≡ {ri|(r0 = u)
∩ (rn = v) ∩ (ri, ri+1) ∈ E (i = 0, ..., n)
∩ ri = rj ⇔ i = j} (2)

where n is the number of hops in the traversal.
The cost δ(R(u, v)) of the traversal in the order
of a given access series R(u, v) is

δ(R(u, v)) =
n−1∑

i=0

ω(ri, ri+1) (3)

A.1.3 Shortest Path Routing
Since we assume shortest path routing, for

any pair of nodes (u, v) ∈ V ×V , their distance
d(u, v) satisfies the following property.

∀R(u, v){d(u, v) ≤ δ(R(u, v))} (4)
We will denote the access series that yield
δ(R(u, v)) = d(u, v) by R(u, v)∗

Lemma 1:
if shortest path routing is realized for all pair

of nodes (u, v) ∈ V ×V , for any 3 nodes u, v, w ∈
V , the following inequality is satisfied

d(u, w) ≤ d(u, v) + d(v, w) (5)
Proof. If d(u, w) > d(u, v) + d(v, w), we can
concatenate two access series R(u, v)∗ and
R(v, w)∗ that yield d(u, v) and d(v, w) to create
a new access series R(u, w)′. R(u, w)′ will have
a cost of d(u, v)+d(v, w). This is a violation of
Eq. 4 and thus, this is not possible.

A.1.4 Stretch
Lemma 2:
Given the object mobility constraint, ∀u ∈ V ,

u’s access to the object will forwarded at most
once.
Proof. An object access is forwarded by a node

40 IPSJ Transactions on Programming Aug. 2007

if and only if the object does not exist on the
node. The access is guaranteed to be forwarded
to a newer host of the object. Given the object
mobility constraint, if u’s access is forwarded,
it is forwarded to a node where the object cur-
rently resides. In this case, the access is no
longer forwarded, and so the access to the ob-
ject is forwarded at most once.

Property:
Given the object mobility constraint, ∀u, v,

w ∈ V when the object moves from node u
to node v, and node v propagates the update
message in the distance radius of kd(u, v) where
k ∈ R, node w’s access stretch to the object can
be bounded by 1 + 2

k .
Proof. If d(v, w) ≤ kd(u, v), node w would
have been notified of the new object’s loca-
tion, and node w accesses node v directly.
Thus, node w’s access stretch stretch(w, v) =
d(w,v)
d(w,v) = 1. If d(v, w) > kd(u, v), in the worst
case, node w will access node u. By the object
mobility constraint and Lemma 2, the access
will be forwarded to node v, the current host
of the object. In such a case, node w’s access
stretch stretch(w, v) = d(w,u)+d(u,v)

d(w,v) . By apply-
ing lemma 1, we have

stretch(w, v) =
d(w, u) + d(u, v)

d(w, v)

≤ d(w, v) + 2 · d(u, v)
d(w, v)

= 1 + 2
d(u, v)
d(w, v)

(6)

Because d(v, w) > kd(u, v), stretch(w, v) < 1 +
2
k .

(Received January 22, 2007)
(Accepted April 24, 2007)

Ken Hironaka is currently
enrolled in the Graduate School
of Information Science and Tech-
nology at the University of
Tokyo. He was born in 1983,
and received his B.S. degree
from the University of Tokyo in

March, 2007. His current research interests in-
clude grid-enabled computing and distributed
object-oriented programming languages. His
hobbies include Ultimate frisbee, travelling
overseas, and other things that have nothing
to do with programming.

Kenjiro Taura is associate
professor at Department of In-
formation and Communication
Engineering, the University of
Tokyo. He was born in 1969,
and received his B.S., M.S.,
and D.Sc. degrees from the Uni-

versity of Tokyo in 1992, 1994, and 1997.
His major research interests include paral-
lel/distributed computing and programming
languages. He is a member of ACM and IEEE.

Takashi Chikayama is a
professor at the Department of
Frontier Informatics, School of
Frontier Sciences, the University
of Tokyo. He received degrees
of B.Eng. in 1977 and Dr.Eng.
in 1982, both from the Univer-

sity of Tokyo. From 1982, he had been at
the Institute for New Generation Computing
Technologies engaged in the Fifth Generation
Computing Project until he moved to the Uni-
versity of Tokyo in 1995. His research inter-
ests include parallel and distributed processing
systems, programming languages, software de-
velopment systems, and machine learning tech-
nologies.

