000000000 0O0ooOooog Vol.1 No.2 125 (Sep. 2008)

g

ooobobboooobobbbooooobobboogd

un

0 o o' o o o ot
O 0 o2 o o o oft

goooooooOooooobOO0o0ooooOoOoOoOooooOoOoOoOoOoooooboOonoon
goooooooooooOoooOooooOoooooooooooOoOObObObOOOo
gooooooooooooOobooboo0o0o0ooooooooooooOObboboo
goboooooooooobobo0oooooooooooooooooobooboOogg

called sequential basic module as a computer instruction and applies the instruc-
tion level parallel execution mechanism to the thread level parallel execution.
In this model, an algorithm is divided into the sequential basic module which
run sequentially without internal synchronization, and the parallel execution
description which control parallel execution of these modules. The sequential
basic module is implemented by C language to ensure high performance. In
a parallel execution description, the sequential basics modules are defined as
a function and data input and output of each module is expressed by argu-
ments and return value of the function respectively. An execution order of
basic module is determined only by data flow dependency between the sequen-
tial basic modules. The parallel execution description is converted into the
graph generation data structure of C language by the translator. The runtime
environment generates the native threads for the number of cores to use at
first. Then these native threads generate, update and select the graph data
structure one after another and start to run the selected module. This runtime
environment is called ‘Thread Interpreter’, and the first simple implementation
of ‘Thread Interpreter’ is that the runtime process is executed by multiple na-

tive threads exclusively. The ‘auto-tuning function’ which adapts parameters
and algorithms of the sequential basic modules to a change of computational
complexity by the property of input data and/or to a change of the system
resource consumption. This is embedded in Thread Interpreter which results
in the high calculation efficiency and stable realtimeness.

goooooooooooOoOoCbOOOO0OoOoOoOooooooobOOObObObOOOO
gooooooOooooooooOooooooooCcUoooUooooooooOoon
gobooooooooooboOoOoOoooooooooooooooobooboOoOoOog
gooooooooooOoboOoOo0oOoOoooooooooobOoOoOOObObbOOOO
gooooooooooo—-oOoOoOoO0o0oO0OO0OO0OO0OO0OCOCCOOOOOOOOOOOOo
gooooooooooooOoboOooO0oboOooooooooooooObObobbOo0o
goooooooooooooooOoOooooooooooboooOoOoOOoOoOoOg
gooooooooooOoOoboooOooooooooooooobODOOObOObOOoOooOoo
gooooooooooboooo0ooooooooooooOoboOooooOOObbOno
gooooooooOooooooboboboooooooooooOOoOoOoOoOoOoOoooon
goooooooooOoboboboOoOoooooooooooooobooOoOoObObOOoOoOnO
gooooooooooOoooOoboOoOoOoOoooooooooooOOOoObOObObOOoOo
gooooooooooooOoOooboOoO0o0o0ooooooooooooOoObbbOooo
goooooooooooooooooboooooooo

go0b 200 30 180000

Design and Implementation of a Programming Model for
Multi Core

Ryust SAkAL ™! Nosuniro KaTo,™ SaTosnr HosHINA T2
and TOMOFUMI SHIMADA!

fl0o00000000oooOoO0o0o00ooOOoOoOooOoooooooooo

Core Technology Center, Digital Media Network Company, Toshiba Corporation
t2 000000 PC&OOOOOODO PCOOOOODO

PC Development Center, PC & Network Company, Toshiba Corporation

In this presentation, we propose a programming model for implementing a
parallel program on multi-core. This model interprets a non-persistent thread

125 (© 2008 Information Processing Society of Japan



