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called sequential basic module as a computer instruction and applies the instruc-
tion level parallel execution mechanism to the thread level parallel execution.
In this model, an algorithm is divided into the sequential basic module which
run sequentially without internal synchronization, and the parallel execution
description which control parallel execution of these modules. The sequential
basic module is implemented by C language to ensure high performance. In
a parallel execution description, the sequential basics modules are defined as
a function and data input and output of each module is expressed by argu-
ments and return value of the function respectively. An execution order of
basic module is determined only by data flow dependency between the sequen-
tial basic modules. The parallel execution description is converted into the
graph generation data structure of C language by the translator. The runtime
environment generates the native threads for the number of cores to use at
first. Then these native threads generate, update and select the graph data
structure one after another and start to run the selected module. This runtime
environment is called ‘Thread Interpreter’, and the first simple implementation
of ‘Thread Interpreter’ is that the runtime process is executed by multiple na-

tive threads exclusively. The ‘auto-tuning function’ which adapts parameters
and algorithms of the sequential basic modules to a change of computational
complexity by the property of input data and/or to a change of the system
resource consumption. This is embedded in Thread Interpreter which results
in the high calculation efficiency and stable realtimeness.
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In this presentation, we propose a programming model for implementing a
parallel program on multi-core. This model interprets a non-persistent thread
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