000000000 0000000 Vol.1 No.3 34 (Oct. 2008)

handling mistake. Second, while the native code can allocate resources in a
gooao Java VM, those resources must be manually released, unlike Java. Mistakes
in this resource management cause leaks and other errors. To detect Java re-
source errors, we used the typestate analysis also used for detecting general

JNI |:| |:| |:| |:| |:| |:| |:| |:| |:| |:| |:| memory errors. Third, if a reference to a Java resource lives across multiple
native method invocations, it should be converted into a global reference. How-

ever, programmers sometimes forget this rule and, for example, store a local

reference in a global variable for later uses. We provide a syntax checker that

0O 0O O il 0Oo0o oottt detects this bad coding practice. We have implemented our analysis techniques

in a bug-finding tool called BEAM, and executed it on opensource software
including JNI code. In the experiment, our analysis techniques could find 84

000000000 Java Native Interfaced JNIOO OO O0O0O00000000 JNI-specific bugs without any overhead and increased the total number of bug

000000000000000000JNIOODD0000000000000 reports by 73%
000000000000000000000 JNIODOO0000000000
0000000000000000 3000000000000000000000
00000000000000 Javad0OD0O0O0O000000000000000
00000000000000000000000000000000000000
00000000000000 200000000000 JavaVMOOOODOOO
00000000000 000000 JwaO0OOOODO0O0OOO0O0O0OO0O
00000000000000000000000000000000000000
00000000000000000000000000000000000000
0000 300Java0000000000000000000000000000
0000000000000 0000000000000000000000000
00000000000000000000000000000000000000
00000000 000000000000000000000000000000
000000000000000000 BEAMOOOOOOOOOOOOOOOO
O0JNIOOOOODO0000000000000000000000000 840
0JNIOOOOODOOOOOD0O00000000000 73%000000000
ooooooo

goo0O200 50 220000

Finding Bugs in JNI Programs

Gon Konpor'! and TaMryA ONODERAT!

In this presentation, we describe static analysis techniques for finding bugs in
programs using the Java Native Interface (JNI). The JNI is both tedious and
error-prone because there are many JNI-specific mistakes that are not caught
by a native compiler. This presentation is focused on three kinds of common
mistakes. First, explicit statements to handle a possible exception need to be
inserted after a statement calling a Java method. However, such statements t1000000000000DO000D0
tend to be forgotten. We present a typestate analysis to detect this exception Tokyo Research Laboratory, IBM Research

34 (© 2008 Information Processing Society of Japan

