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Reachability between Steiner Trees in a Graph

HarukaMizuta1,2,a) Takehiro Ito1,3,b) Xiao Zhou1,c)

Abstract: In this paper, we study the reachability between Steiner trees in a graph: Given two Steiner trees of an
unweighted graph, we wish to transform one into the other via Steiner trees by exchanging a single edge at a time. This
decision problem is PSPACE-complete in general. In this paper, we give a linear-time algorithm to solve the problem
when restricted to interval graphs.

1. Introduction
The Steiner tree problem on graphs is one of the most well-

known NP-complete problems [3]. Let G be an unweighted graph
with vertex set V(G) and edge set E(G). For a vertex subset
S ⊆ V(G), a Steiner tree of G for S is a subtree of G which in-
cludes all vertices in S ; each vertex in S is called a terminal. For
example, Fig. 1 illustrates four Steiner trees of the same graph
G for the same terminal set S . Given an unweighted graph G, a
terminal set S ⊆ V(G), and an integer k ≥ 0, the Steiner tree
problem is to determine whether there exists a Steiner tree T of
G for S such that T consists of at most k edges.

In this paper, we study the following problem: Suppose that
we are given two Steiner trees of a graph G for a terminal set
S ⊆ V(G) (e.g., the leftmost and rightmost ones in Fig. 1), and
we are asked whether we can transform one into the other via
Steiner trees for S such that each intermediate Steiner tree can be
obtained from the previous one by exchanging a single edge, that
is, two consecutive Steiner trees T and T ′ in the transformation
satisfy both |E(T )\E(T ′)| = 1 and |E(T ′)\E(T )| = 1. We call this
decision problem the Steiner tree reconfiguration problem. For
the particular instance of Fig. 1, the answer is yes as illustrated
in the figure.
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Fig. 1 A sequence ⟨T0, T1, . . . , T3⟩ of Steiner trees of the same graph G for
the same terminal set S , where the terminals are depicted by squares,
non-terminals by circles, the edges in Steiner trees by thick lines.
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Similar problems have been extensively studied under the re-
configuration framework [8], which arises when we wish to find
a step-by-step transformation between two feasible solutions of
a combinatorial (search) problem such that all intermediate so-
lutions are also feasible. The reconfiguration framework has
been applied to several well-studied problems, including satis-
fiability [4], [14], independent set [2], [7], [8], [12], vertex
cover [8], [9], [15], clique [8], [10], dominating set [5], [6], [16]
shortest path [1], [11], and so on. (See also a survey [17].)

Ito et al. [8] studied the spanning tree reconfiguration prob-
lem, which can be seen as Steiner tree reconfiguration when
restricted to the case where all vertices in a given graph are ter-
minals. They showed that any instance of spanning tree recon-
figuration is a yes-instance, that is, there always exists a desired
transformation between two spanning trees in any graph.

In this paper, we study the complexity status of Steiner tree
reconfiguration. We can show that this problem is PSPACE-
complete in general. Thus, in this paper, we prove that the prob-
lem is solvable in linear time for interval graphs. To do so, we
first give a sufficient condition and a necessary condition for the
existence of a desired transformation between two Steiner trees;
we emphasize that these conditions hold for any graph. We then
show that our necessary condition is indeed a necessary and suf-
ficient condition for interval graphs.

2. Preliminaries
In this section, we first define some basic terms and notation.

Then, we introduce a sufficient condition and a necessary condi-
tion for the existence of a reconfiguration sequence between two
Steiner trees.

2.1 Definitions
In this paper, we assume without loss of generality that graphs

are simple and connected. For a graph G, we denote by V(G) and
E(G) the vertex set and edge set of G, respectively. For a vertex
subset V ′ ⊆ V(G), we denote by G[V ′] the subgraph of G induced
by V ′. We simply write G \ V ′ = G[V(G) \ V ′].

For a graph G and a terminal set S ⊆ V(G), a subtree T of G is
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a Steiner tree for S if S ⊆ V(T ) holds. For convenience, although
T is not a rooted tree, we call each degree-1 vertex of T a leaf of
T . We say that a leaf v f of T is free if it is a non-terminal, that
is, v f ∈ V(T ) \ S . Thus, T \ {v f } is also a Steiner tree for S , and
hence a Steiner tree having a free leaf is not minimal.

For a graph G and a terminal set S , we say that two Steiner
trees T and T ′ for S are adjacent if both |E(T ) \ E(T ′)| = 1 and
|E(T ′) \ E(T )| = 1 hold; we write T ↔ T ′ in this case. For
two Steiner trees Tp and Tq for S , a sequence ⟨T0,T1, . . . , Tℓ⟩ of
Steiner trees for S is called a reconfiguration sequence between
Tp and Tq if T0 = Tp, Tℓ = Tq, and Ti−1 ↔ Ti holds for each
i ∈ {1, 2, . . . , ℓ}. Note that any reconfiguration sequence is re-
versible, that is, ⟨Tℓ,Tℓ−1, . . . , T0⟩ is a reconfiguration sequence
between Tq and Tp. We write Tp ↭ Tq if there is a reconfigura-
tion sequence between Tp and Tq. Then, the Steiner tree recon-
figuration problem is defined as follows:

Input: An unweighted graph G, a terminal set S ⊆ V(G),
and two Steiner trees T0 and Tr for S

Question: Determine whether T0 ↭ Tr or not.
We denote by a 4-tuple (G, S ,T0,Tr) an instance of Steiner tree
reconfiguration. Note that Steiner tree reconfiguration is a de-
cision problem, and hence it does not ask for an actual reconfigu-
ration sequence.

2.2 Sufficient condition and necessary condition
In this subsection, we give a sufficient condition and a nec-

essary condition for the existence of a reconfiguration sequence
between two Steiner trees. These conditions will play important
roles in this paper to prove our results, and we emphasize that
they hold for any graph.

We first give a sufficient condition, as follows.
Theorem 1. Let (G, S ,T0,Tr) be an instance of Steiner tree re-
configuration. If V(T0) = V(Tr), then it is a yes-instance.

Proof. Suppose that V(T0) = V(Tr) holds. Then, we have
G[V(T0)] = G[V(Tr)]. Therefore, both T0 and Tr form spanning
trees of G[V(T0)] = G[V(Tr)]. It is known that any two spanning
trees are reconfigurable each other by exchanging a single edge
at a time [8], and hence the theorem follows. □

Theorem 1 says that any two Steiner trees are reconfigurable
each other as long as they consist of the same vertex set. On the
other hand, since we can exchange only a single edge at a time,
two adjacent Steiner trees having different vertex sets satisfy a
special property, as in the following proposition.
Proposition 1. Suppose that T ↔ T ′ holds for two Steiner trees
T and T ′ of a graph G with a terminal set S . If V(T ) , V(T ′),
then

- V(T ) \V(T ′) contains exactly one vertex v f , and v f is a free
leaf in T ; and

- V(T ′) \V(T ) contains exactly one vertex v′f , and v′f is a free
leaf in T ′.

Proof. Suppose for a contradiction that V(T ) \ V(T ′) contains
more than one vertex. (The proof is symmetric for the case
where V(T ′) \ V(T ) contains more than one vertex.) Then, no-
tice that T \ T ′ contains at least one edge joining vertices in

V(T ) \ V(T ′). Since T ↔ T ′ and hence both |V(T )| = |V(T ′)|
and |E(T ) \ E(T ′)| = 1 hold, the edge in E(T ′) \ E(T ) must join a
vertex in V(T ) \ V(T ′) and a vertex in V(T ) ∩ V(T ′). Therefore,
the resulting Steiner tree T ′ consists of the same vertex set V(T );
this contradicts the assumption that V(T ) , V(T ′).

In this way, we have verified that V(T )\V(T ′) contains exactly
one vertex v f , and hence it is a leaf in T . Since both T and T ′

are Steiner trees for S , we know V(T )△V(T ′) = (V(T ) \ V(T ′))∪
(V(T ′) \ V(T )) ⊆ V(G) \ S . Thus, v f is free. □

We now give a sufficient condition for no-instance; by taking a
contrapositive, this yields a necessary condition for yes-instance.
Theorem 2. Let (G, S ,T0,Tr) be an instance of Steiner tree re-
configuration. Then, it is a no-instance if the following condi-
tions (a) and (b) hold:

(a) V(T0) , V(Tr); and
(b) at least one of G[V(T0)] and G[V(Tr)] has no Steiner tree

for S with a free leaf.

Proof. Suppose for a contradiction that (G, S ,T0,Tr) is a yes-
instance even though it satisfies both Conditions (a) and (b).
Then, there exists a reconfiguration sequence T between T0 and
Tr. Let Ti+1 be the first Steiner tree in T such that V(Ti+1) ,
V(T0); such a Steiner tree exists since V(T0) , V(Tr). Then,
the Steiner tree Ti in T satisfies Ti ↔ Ti+1 and V(Ti) = V(T0).
By Proposition 1, V(Ti) \ V(Ti+1) contains exactly one vertex v f

which is a free leaf in Ti. Since V(Ti) = V(T0), we can conclude
that G[V(T0)] has a Steiner tree Ti for S with a free leaf v f . By
the symmetric arguments, G[V(Tr)] has a Steiner tree for S with a
free leaf, too. This contradicts the assumption that Condition (b)
holds. □

3. Algorithm for Interval Graphs
A graph G with V(G) = {v1, v2, . . . , vn} is an interval graph

if there exists a set I of (closed) intervals I1, I2, . . . , In such that
viv j ∈ E(G) if and only if Ii∩I j , ∅ for each i, j ∈ {1, 2, . . . , n}. We
call the set I of intervals an interval representation of the graph.
For a given graph G, it can be determined in linear time whether
G is an interval graph, and if so obtain an interval representation
of G [13].

In this section, we prove that Steiner tree reconfiguration is
solvable in linear time for interval graphs. The key is the follow-
ing theorem, whose proof will be given in the remainder of this
section.
Theorem 3. Let (G, S ,T0,Tr) be an instance of Steiner tree re-
configuration such that G is an interval graph. Then, it is a yes-
instance if and only if the following conditions (a) or (b) hold:

(a) V(T0) = V(Tr); or
(b) each of G[V(T0)] and G[V(Tr)] has a Steiner tree for S

with a free leaf.
Then, we have the following corollary.

Corollary 1. Steiner tree reconfiguration can be solved in lin-
ear time for interval graphs.

Proof. It suffices to show that Conditions (a) and (b) of Theo-
rem 3 can be checked in linear time. We can clearly check Con-
dition (a) in linear time. Thus, we show that Condition (b) can be
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checked in linear time, as follows.
Notice that, for a non-terminal vertex v ∈ V(T0) \ S , if the in-

duced graph G[V(T0) \ {v}] is connected, then any spanning tree
T of G[V(T0) \ {v}] is a Steiner tree for S ; by adding the non-
terminal vertex v to T as a leaf, we can obtain a Steiner tree with
a free leaf. The same holds for Tr, too.

We now check in linear time whether such a non-terminal ver-
tex v ∈ V(T0)\S exists or not. Since G[V(T0)] is an interval graph,
we first obtain its interval representation in linear time [13]. Then,
by traversing the interval representation from left to right, we can
enumerate all cut-vertices in G[V(T0)] in linear time, and hence
the existence of a desired non-terminal vertex v ∈ V(T0) \ S can
be checked in linear time. (The same is applied to Tr, too.) □

We give a proof of Theorem 3 in the remainder of this section.
The only-if direction is immediate from Theorem 2 (by taking a
contrapositive). In addition, when Condition (a) holds, the if di-
rection is also immediate from Theorem 1. Therefore, it suffices
to prove that (G, S ,T0,Tr) is a yes-instance if both V(T0) , V(Tr)
and Condition (b) hold.

Let (G, S ,T0,Tr) be a given instance of Steiner tree recon-
figuration such that G is an interval graph, V(T0) , V(Tr), and
Condition (b) of Theorem 3 holds. Then, G[V(T0)] has a Steiner
tree for S with a free leaf, and by Theorem 1 there exists a recon-
figuration sequence between T0 and the Steiner tree with a free
leaf; the same holds for Tr. Therefore, we assume without loss of
generality that two given Steiner trees T0 and Tr have free leaves.
We will construct a reconfiguration sequence between T0 and Tr.

Let I be an interval representation of G. For an interval
Ii ∈ I, we denote by l(Ii) and r(Ii) the left and right coordi-
nates of Ii, respectively; we sometimes call the values l(Ii) and
r(Ii) the l-value and r-value of Ii, respectively. We may assume
without loss of generality that all l-values and r-values are dis-
tinct. For notational convenience, we sometimes identify a ver-
tex vi ∈ V(G) with its corresponding interval Ii ∈ I, and sim-
ply write l(vi) = l(Ii) and r(vi) = r(Ii). We say that a path P
in G is r-increasing if the r-values of the vertices along P are
increasing. Let sleft be the terminal in S which has the mini-
mum l-value, that is, l(sleft) = min{l(v) : v ∈ S }, while let sright

be the terminal in S which has the maximum r-value, that is,
r(sright) = max{r(v) : v ∈ S }. Note that sleft = sright may hold.
Then, we say that a Steiner tree F for S is in standard form if

- the unique path P in F from sleft to sright is r-increasing; and
- every terminal in S \V(P) is a leaf in F which is adjacent to

some vertex in P.
(See Fig. 2(c) as an example.)
Lemma 1. For any Steiner tree T of an interval graph G, there
exists a Steiner tree F of G such that F is in standard form, all
free leaves in T are free leaves in F, V(F) = V(T ), and T ↭ F.

Proof. Let VF be the set of all free leaves in T , and let T ′ be
the subtree of T obtained by deleting the vertices in VF . (See
Fig. 2(a) in which T ′ is illustrated by the thick dotted lines.) We
first prove the existence of a Steiner tree F′ in standard form for
S such that V(F′) = V(T ′).

Consider the induced subgraph G[V(T ′)] of G. (See Fig. 2(b).)
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Fig. 2 (a) Steiner tree T of an interval graph G, (b) Steiner tree F′ of
G[V(T ′)] in a standard form, and (c) Steiner tree F of G in a standard
form. In the figure, graphs are illustrated by their interval represen-
tations; each terminal in S is depicted by thick (red) line, and each
non-terminal by thin (black) line. Steiner trees are depicted by dotted
lines on the interval representations. In (b) and (c), the thick (green)
dotted lines represent the paths from sleft to sright.

Since T ′ is connected, G[V(T ′)] is also connected. Therefore, we
can greedily find an r-increasing path P in G[V(T ′)] from sleft to
sright. By the choice of sleft and sright, every terminal s in S \V(P)
intersects with at least one vertex in P; we arbitrarily choose such
a vertex in P, and connect s with it.

To finish the construction of F′, we now claim that every ver-
tex in V(T ′) \ S is either on P or has a path to a vertex w in P
which consists of only non-terminal vertices except for w. (See
the vertex u in Fig. 2(b) as an example for the latter case.) Then,
the terminals in S \V(P) remain leaves in F′, as required in stan-
dard form. Suppose for a contradiction that a vertex u in V(T ′)\S
does not have such a path. If both l(u) < r(sright) and l(sleft) < r(u)
hold, then u intersects with some vertex in P. Thus, u must satisfy
either r(sright) < l(u) or r(u) < l(sleft). Consider the case where
r(u) < l(sleft) holds; the other case is symmetric. Then, since
G[V(T ′)] is connected but u has no desired path to any vertex in
P, there must exist a terminal s ∈ S such that l(s) < l(sleft); this
contradicts the definition of sleft.

In this way, there exists a Steiner tree F′ in standard form such
that V(F′) = V(T ′). Then, since G[V(T )] is connected and ev-
ery vertex u with l(u) < r(sright) and l(sleft) < r(u) intersects with
a vertex in P, we can add the vertices in VF to F′ as leaves so
that the terminals in S \ V(P) remain leaves in F′; let F be the
resulting tree. (See Fig. 2(b) and (c).)

Therefore, we have verified the existence of a Steiner tree F in
standard form such that V(F) = V(T ) and all free leaves in T are
free leaves also in F. Then, since V(F) = V(T ) holds, Theorem 1
yields that T ↭ F. □

Recall that a given instance (G, S ,T0,Tr) is assumed to satisfy
Condition (b) of Theorem 3. Then, to verify that T0 ↭ Tr holds,
by Lemma 1 it suffices to construct a reconfiguration sequence
between two Steiner trees T ′0 and T ′r such that V(T ′0) = V(T0),
V(T ′r ) = V(Tr), both T ′0 and T ′r are in standard form and have
free leaves. Thus, the following lemma completes the proof of
Theorem 3.
Lemma 2. Let TA and TB be any two Steiner trees for S which
are in standard form and have free leaves. Then, TA ↭ TB.

Proof. Let PA = (a1, a2, . . . , aℓA ) and PB = (b1, b2, . . . , bℓB ) be
the paths from sleft to sright in TA and TB, respectively; and hence
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Fig. 3 Illustration for Case (i).

a1 = b1 = sleft and aℓA = bℓB = sright. We prove the lemma by
induction on the number of vertices in V(PA)△V(PB).

First, consider the case where V(PA)△V(PB) = ∅. Since both
TA and TB are in standard form, we know PA = PB and all termi-
nals in S \ V(PA) are leaves and adjacent to vertices in PA. Thus,
by greedily exchanging the edges in E(TA)△E(TB), we can obtain
a reconfiguration sequence between TA and TB.

Second, consider the case where V(PA)△V(PB) , ∅. Let j be
the first index such that a j , b j. (See Fig. 3(a).) Since both
PA and PB are r-increasing, a j and b j intersect with each other
and hence a jb j ∈ E(G). Assume without loss of generality that
r(b j) < r(a j) holds, as illustrated in Fig. 3(a). (The other case
is symmetric.) Then, we have a jb j+1 ∈ E(G). We deal with this
case according to the following three sub-cases.

Case (i): a j appears in PB. (See Fig. 3.)
Let k be the index such that bk = a j. Since r(b j) < r(a j) = r(bk)

and PB is r-increasing, we know that k > j holds. There-
fore, we simply exchange the edge b j−1b j ∈ E(PB) with the
edge b j−1bk ∈ E(G) \ E(TB), and obtain a Steiner tree T ′B for
S with the path P′B = (b1, b2, . . . , b j−1, bk, bk+1, . . . , bℓB ) from
b1 = sleft to bℓB = sright. (See Fig. 3(a) and (b).) Then, P′B
is r-increasing. Since b j−1b j ∈ E(PB), neither b j−1 nor b j is a
free leaf in TB. Thus, free leaves in TB remain free leaves also
in T ′B. If needed, we can transform T ′B into a Steiner tree T ′′B
in standard form with keeping the free leaves, as in the proof of
Lemma 1. Then, since |V(PA)△V(P′B)| < |V(PA)△V(PB)|, we can
apply the induction hypothesis to TA and T ′′B . Therefore, we have
TB ↔ T ′B ↭ T ′′B ↭ TA.

Case (ii): b j is a terminal in S . (See Fig. 4.)
Since PA is r-increasing and we have assumed without loss

of generality that r(b j) < r(a j) holds, b j does not appear in PA.
Then, since TA is in standard form, b j must be a leaf in TA which
is adjacent to a vertex ap in PA for some index p. If p , j,
then we first exchange the edge apb j ∈ E(TA) with the edge
a jb j ∈ E(G) \ E(TA). We then exchange the edge a j−1a j ∈ E(PA)
with the edge a j−1b j ∈ E(G) \ E(TA), and obtain a Steiner tree
T ′A for S with the path P′A = (a1, a2, . . . , a j−1, b j, a j, a j+1, . . . , aℓA )
from a1 = sleft to aℓA = sright. (See Fig. 4(a) and (b).) Note that,
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Fig. 4 Illustration for Case (ii).

since r(a j−1) = r(b j−1) < r(b j) < r(a j) holds, P′A is r-increasing.
Since b j is a terminal, it is not a free leaf. In addition, since
a j−1a j ∈ E(PA), neither a j−1 nor a j is a free leaf in TA. Thus,
free leaves in TA remain free leaves also in T ′A. Then, by similar
arguments as in Case (i), we thus have TA ↭ T ′A ↭ TB.

Case (iii): b j is not a terminal in S . (See Fig. 5.)
If a j appears in PB, then we apply Case (i) above. We

now consider the case where a j does not appear in PB. Let
bq be any vertex in PB such that l(bq) < r(a j) < r(bq); by
the definitions of sleft and sright, such a vertex bq always ex-
ists. Recall that a jb j+1 ∈ E(G) holds, and hence we know that
q ≥ j + 1. If a j < V(TB), then we exchange an arbitrary
chosen edge e f ∈ E(TB) incident to a free leaf with the edge
bqa j ∈ E(G) \ E(TB). Otherwise, we pick the first edge on the
path in TB from a j to a vertex in PB, and exchange it with the edge
bqa j ∈ E(G) \ E(TB). We then exchange the edge b j−1b j ∈ E(PB)
with the edge b j−1a j, and obtain a Steiner tree T ′B for S with the
path P′B = (b1, b2, . . . , b j−1, a j, bq, bq+1, . . . , bℓB ) from b1 = sleft to
bℓB = sright. (See Fig. 5(a) and (b).) By the choice of bq, P′B is
r-increasing. In addition, since q ≥ j + 1 and b j is not a terminal,
b j is a free leaf in T ′B. By similar arguments as in Case (i), we
thus have TB ↭ T ′B ↭ TA. □
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Fig. 5 Illustration for Case (iii).
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4. Conclusion
In this paper, we have shown that the Steiner tree reconfigu-
ration problem is solvable in linear time for interval graphs.
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