
情報処理学会研究報告

IPSJ SIG Technical Report

最大重み極小セパレータ問題について

土中 哲秀1,a) Bodlaender, Hans L. 2 Zanden, T.C. van der2 小野 廣隆1,b)

概要：無向連結グラフ G = (V,E) において, 2点 s, tが与えられたとき, sと t を分離する点部分集合を

s-tセパレータという. 特に, 任意の真部分集合が s-t セパレータではないものを極小 s-tセパレータとい

う. 本研究では, 点重み付きグラフに対して, 重み最大の極小 s-tセパレータを発見する問題について考察

する. まずこの問題が NP困難であることを示した上で, 木幅が tw以下のグラフに対して, O∗(9tw ·W)-

時間で重みW の極小 s-t セパレータが存在するかどうかを判定する乱択アルゴリズムを提案する.

On the Maximum Weight Minimal Separator

Tesshu Hanaka1,a) Hans L. Bodlaender2 T.C. van der Zanden2 Hirotaka Ono1,b)

Abstract: Given an undirected and connected graph G = (V,E) and two vertices s, t ∈ V , a vertex subset
S which separates s and t is called s-t separator. Additionally, S is called minimal s-t separator if no proper
set of S separates s and t. In this pater, we consider finding a minimal s-t separator with maximum weight
on a vertex-weighted graph. We firstly prove this problem is NP-hard. Then we propose an O∗(9tw · W)-
randomized algorithm to determine whether there exists a minimal s-t separator with weight W on a graph
with bounded treewidth.

1. Introduction

Given a connected graph G = (V,E) and two vertices

s, t ∈ V , a set S ⊆ V of vertices is called an s-t separator if

s and t belong to different connected components in G\S,

where G \ S = (V \ S,E). If a set S is an s-t separator

for some s and t, it is simply called a separator. If an

s-t separator S is minimal in terms of set inclusion, that

is, no proper subset of S separates s and t, it is called a

minimal s-t separator. Similarly, if a separator is minimal

in terms of set inclusion, it is called a minimal separator.

Separators and minimal separators have been consid-

ered important in several contexts and have been inten-

sively studied indeed. For example, they are obviously

related to the connectivity of graphs, which is an impor-

tant notion in many practical applications, such as net-

1 Department of Economic Engineering, Kyushu University
2 Department of Computing Science Algorithmic Systems,

Utrecht University
a) 3EC15004S@s.kyushu-u.ac.jp
b) hirotaka@econ.kyushu-u.ac.jp

work design, supply chain analysis and so on. From a

theoretical point of view, minimal separators are related

to treewidth or potential maximal cliques, which play key

roles in designing fast algorithms [3], [4].

In this paper, we consider the problem of finding the

most important minimal separator of a given weighted

graph. More precisely, the problem is defined as follows:

Given a connected graph G = (V,E), vertices s, t ∈ V and

a weight function w : V → N+, find a minimal s-t separa-

tor whose weight
∑

v∈S w(v) is maximum. The decision

version of the problem is to decide the existence of mini-

mal s-t separator with weight W . We name the problems

Maximum Weight Minimal s-t Separator.

This problem is motivated in the context of supply chain

network analysis. When a weighted network represents a

supply chain where a vertex represents an industry, s and

t are virtual vertices respectively represents source and

sink, and its weight of a vertex represents its financial im-

portance, the maximum weight minimal s-t separator is

interpreted as the set of industries that is most significant

c⃝ 2016 Information Processing Society of Japan 1

Vol.2016-AL-158 No.12
2016/6/25

情報処理学会研究報告

IPSJ SIG Technical Report

but vulnerable in the supply chain network.

Unfortunately, the problem is shown to be NP-hard,

and we then design an FPT algorithm with respect to

treewidth. It should be noted that since the condition of

s-t connectivity can be written with Monadic Second Or-

der Logic, it can be solved in f(tw) ·n time by Courcelle’s

meta-theorem, where f is a computable function and tw

is treewidth. However, the function f forms a tower of ex-

ponentials; the existence of an FPT algorithm with better

running time is not obvious. In this paper, we design an

O∗(ctw · W)-time randomized algorithm for the decision

version, where c is a constant and O∗ is the order notation

omitting the polynomial factor, by utilizing the technique

called Cut & Count; the running time is bounded by a

single exponential of treewidth. Furthermore, by apply-

ing the technique of convolution technique, we improve

the running time by reducing the base of the exponent

from c = 21 to c = 9; the running time of the resulting

algorithm is O∗(9tw ·W).

1.1 Related work

Minimal separators have been investigated long time

from many aspects. As mentioned above, they are re-

lated to treewidth or potential maximal cliques, for ex-

ample [3], [4]. In general, a graph has exponentially many

minimal separators, and in fact there exists a graph with

Ω(3n/3) minimal separators [7]. On the other hand, some

graphs have only polynomially (even linearly) many min-

imal separators. For example, a chordal bipartite graph

has polynomial number of separators [10]. For such a class

of graphs, Maximum Weight Minimal s-t Separator

can be solved in polynomial time, because we just evaluate

the weights after enumerating all the separators.

The remainder of the paper is organized as follows. In

Section 2, we first give basic terminology and basic notions

of designing algorithms. Then we show NP-hardness of

our problem in Section 3. Finally, we design randomized

algorithms based on Cut & Count technique.

2. Preliminaries

In this section, we describe some notations and defi-

nitions. Let G = (V,E) be an undirected and vertex-

weighted graph. For V ′ ⊆ V , let G[V ′] denote a subgraph

of G induced by V ′. Furthermore, we denote the set of

neighbors of v by N(v) for a vertex v. We define the

function [p] such that if p is true, it returns 1, otherwise

0.

2.1 Tree Decomposition

Our algorithms that will be presented in Sections 3 and

4 are based on dynamic programming on tree decompo-

sition. In this subsection, we give the definition of tree

decomposition.

Definition 2.1. A tree decomposition of a graph

G = (V,E) is defined as a pair ⟨X , T ⟩, where X =

{X1, X2, . . . , XN ⊆ V }, and T is a tree whose nodes are

labeled by 1, 2, . . . , N , such that

1.
∪

i∈I Xi = V .

2. For ∀{u, v} ∈ E, there exists Xi such that {u, v} ⊆
Xi.

3. For all i, j, k ∈ {1, 2, . . . , N}, if j lies on the path from

i to k in T , then Xi ∩Xk ⊆ Xj .

In the following, we call T a decomposition tree, and we

use term “nodes” (not “vertices”) for T to avoid a confu-

sion. Moreover, we call a subset of V corresponding to a

node i ∈ I a bag and denote it by Xi. The width of a tree

decomposition ⟨X , T ⟩ is defined by maxi∈{1,2,...,N} |Xi|−1,

and the treewidth of G, denoted by tw(G), is the mini-

mum width over all tree decompositions of G. We some-

times use the notation tw instead of tw(G) by simplicity.

In general, computing tw(G) of a given G is NP-

hard [1], but fixed-parameter tractable with respect to

itself [2]. In the following, we assume that a decomposi-

tion tree with the minimum treewidth is given.

Then, Kloks introduced a very useful tree decomposi-

tion for some algorithms, called nice tree decomposition[9].

In the sense, it is a special binary tree decomposition

which has four types of nodes, named leaf , introduce ver-

tex , forget and join. Moreover, Cygan et al. added a new

type of node named introduce edge [5]. This tree decom-

position is called new nice tree decomposition.

Definition 2.2. A tree decomposition ⟨X , T ⟩ is called

new nice tree decomposition if it satisfies the following:

1. T is rooted at a designated node XN ∈ X , called root

node.

2. Every node of the tree T has at most two children

nodes.

3. The nodes of T hold one of the following five node

types:

• A leaf node i which has no children and the corre-

sponding leaf bag Xi has |Xi| = 0.

• An introduce vertex node i which has one child j

with Xi = Xj ∪ {v} for a vertex v ∈ V .

• An introduce edge node i which has one children j

and labeled with an edge (u, v) ∈ E where u, v ∈
Xi = Xj .

c⃝ 2016 Information Processing Society of Japan 2

Vol.2016-AL-158 No.12
2016/6/25

情報処理学会研究報告

IPSJ SIG Technical Report

• A Forget node i which has one child j with Xi =

Xj \ {v} for a vertex v ∈ V .

• A Join node i which has two children nodes j, l ∈ X
with Xi = Xj = Xl.

We can transform any tree decompositions to new nice

tree decompositions in polynomial time. Here, given a tree

decomposition ⟨X , T ⟩, we define a subgraph Gt = (Vt, Et)

for each node t where Vt is the set of vertices added in each

introduce vertex node and Et is the set of edges added in

each introduce edge node until node t on a decomposition

tree.

2.2 Path Decomposition

A path decomposition is a tree decomposition which is

the path, in other words, each node has only one children

node. The width of path decomposition is defined like tree

decomposition, that is, maxi∈{1,2,...,N} |Xi|−1. The path-

width is defined as minimum width of path decomposition

of G and denoted by pw.

2.3 Isolation Lemma

In this subsection, we explain the Isolation lemma intro-

duced by Mulmuley et al.[11]. In Cut & Count technique,

it is used for obtaining a single solution with high proba-

bility. Therefore, the Isolation lemma allows us to count

objects modulo 2.

Definition 2.3 ([11]). A function w : U → Z isolates

a set family F ⊆ 2U if there is a unique S′ ∈ 2F with

w(S′) = minS∈F w(S) where w(X) =
∑

u∈X w(u).

Lemma 2.1 (Isolation Lemma[11]). Let F ⊆ 2U be a set

family over a universe U with |F | > 0. For each u ∈ U ,

choose a weight w(u) ∈ {1, 2, . . . N} uniformly and inde-

pendently at random. Then

Pr[w isolate F] ≥ 1 − |U |
N

.

2.4 Cut & Count

The Cut & Count technique was introduced by Cygan

et al. for solving connectivity problems[5]. The concept of

Cut & Count is counting the number of relaxed solutions

such that we do not consider whether they are connected

or disconnected. Then we compute the number of relaxed

solutions modulo 2 and we determine whether there exists

a connected solution by cancellation tricks. Now, we de-

fine a consistent cut to explain the detail of Cut& Count.

Definition 2.4 ([5]). A cut (V1, V2) of V ′ ⊆ V such that

V1 ∪ V2 = V ′ and V1 ∩ V2 = ∅ is consistent if v1 ∈ V1 and

v2 ∈ V2 implies (v1, v2) /∈ E.

This means that consistent cut (V1, V2) of V ′ has no

edge between V1 and V2. By the definition of a consistent

cut, we can explain the Cut& Count.

Let S ⊆ 2U be a set of solutions. According to [5] and

[6], Cut & Count is divided into two parts as follows.

• The Cut part : Relax the connectivity requirement

by considering the set R ⊇ S of possibly connected

or disconnected candidate solutions. Moreover, con-

sider the set C of pairs (X;C) whereX ∈ R and C is

a consistent cut of X.

• The Count part : Isolate a single solution by sam-

pling weights of all elements in U with high probabil-

ity by the isolation lemma. Then, compute |C| mod-

ulo 2 using a sub-procedure. Disconnected candidate

solutions X ∈ R \ S cancel since they are consistent

with an even number of cuts. If the only connected

candidate x ∈ S exists, we obtain the odd number of

cuts .

Given a set U and a tree decomposition ⟨X , T ⟩, the

general scheme of Cut & Count is as follows:

Step 1. Set the weight for every vertex uniformly and

independently at random by w : U → {1, . . . , 2|U |}.

Step 2. For each weight 0 ≤ W ≤ 2|U |2, compute the

number of relaxed solutions of weight W with consis-

tent cuts on a decomposition tree.

Step 3. In the root node, return yes if it is odd. other-

wise no.

Therefore, we design the concrete function that com-

putes the number of relaxed solutions of Maximum

weighted s-t minimal separator in Section 4.

3. NP-hardness

In this section, we show that Maximum Weight Min-

imal s-t Separator is NP-hard.

Theorem 3.1. Maximum Weight Minimal s-t Sep-

arator is strongly NP-hard.

Proof. We show the reduction from MAX CUT of un-

weighted graph G = (V,E), which asks the existence of

cut (C, V \C) whose value |{(u, v) ∈ E | u ∈ C, v ∈ V \C}|
is at least k. This problem is shown to be NP-hard in [8].

In the following, we construct an instance of Maximum

Weight Minimal s-t Separator from G = (V,E) and

positive integer k. Let p = (3n+1)k and G′ = (V ∪E∪V ′∪
V ′′ ∪ {s, t}, E1 ∪ E2), where n = |V |, V ′ = {v′ | v ∈ V },

V ′′ = {v′′ | v ∈ V }, E1 =
∪

e=(u,v)∈E{(u, e), (v, e)} and

E2 =
∪

u∈V {(s, u′), (u′, u)} ∪
∪

u∈V {(t, u′′), (u′′, u)}. The

vertex weights of G′ are defined by wv = 3n+ 1 for v ∈ E

c⃝ 2016 Information Processing Society of Japan 3

Vol.2016-AL-158 No.12
2016/6/25

情報処理学会研究報告

IPSJ SIG Technical Report

and 1 otherwise.

We first show that if G has a cut C of weight at least

k, G′ has a minimal s-t separator S whose weight is at

least p = (3n + 1)k. We define S = {u′′ ∈ V ′′ | u ∈
V ∩ C} ∪ {v′ ∈ V ′ | v ∈ V \ C} ∪ {e = (u, v) ∈ E | u ∈
C, v ∈ V \ C}. The weight of S is at least (3n + 1)k by

|{e = (u, v) ∈ E | u ∈ C, v ∈ V \C}| ≥ k. We can see that

S is a s-t separator, since any u ∈ C is reachable from s

even after removing S from G′ but not reachable from t.

The minimality also holds because by adding any vertex

in S we obtain a path from s to t.

We next show that if G′ has a minimal s-t separator S

whose weight is at least p = (3n + 1)k, G has a cut C of

weight at least k. By the weighting, S contains at least k

vertices in E. Note that for any v ∈ V (G), at least one of

v, v′, v′′ is included in S, otherwise S does not separate s

and t. If S does not contain any v ∈ V , let C be vertices in

V that are reachable from s after removing S; C is actually

a cut, and its weight is k. Otherwise, S contains a ver-

tex v ∈ V . In this case, S does not contain any e forming

e = (v, x) because otherwise it contradicts the minimality.

Then, we construct S′ := S \{v}∪{v′}∪{e = (u, x) ∈ E}.

By repeating this procedure, we obtain S that does not

contain any v ∈ V .

This completes the proof.

4. Algorithms using Cut & Count

In this section, we design algorithms on path/tree de-

composition using Cut & Count technique.

4.1 Bounded pathwidth

We give an algorithm that solves Maximum Weight

Minimal s-t Separator in time O∗(9pw ·W) for graphs

of pathwidth at most pw. This algorithm is based on Cut

& Count technique.

Definition 4.1. A relaxed solution of weight W is a parti-

tion (S,A,B,Q) of V , so that Σv∈Sw(v) = W , s ∈ A, t ∈
B and for all v ∈ S, there exist vertices a ∈ A, b ∈ B so

that (a, v) ∈ E, (v, b) ∈ E and for A,B,Q, there does not

exist an edge (u, v) such that u and v are in different sets.

Theorem 4.1. There exists a minimal s-t separator of

weight W if and only if there exists a relaxed solution

(S,A,B,Q) of weight W so that A and B are connected.

Proof. (⇒) Let S be a minimal s-t separator of weight

W . Let A be the connected component of V \S containing

s and similarly, B be the connected component containing

t and let Q = V \A \B \S. Note that S ∩A∩B ∩Q = ∅

and there is no edge between A,B and Q. We claim that

(S,A,B,Q) is a relaxed solution of weight W . We con-

sider a vertex v ∈ S. Suppose that v ∈ S has no edge

(a, v) for any vertices a ∈ A. Since S is minimal s-t sepa-

rator, G[V \ (S \ {v}] has s-t path. However, for A,B,Q,

there is no edge between each other and (a, v) /∈ E. Thus,

G[V \ (S \{v}] does not have s-t path. It contradicts that

S is minimal. Hence, there exists vertex a ∈ A such that

(a, v) ∈ E for all vertices v ∈ S. Similarly, there exists

vertex a ∈ B such that (v, b) ∈ E for all vertices v ∈ S.

Note that A and B are connected (by construction), s ∈ A

and t ∈ B and that the relaxed solution is clearly of weight

W .

(⇐) Suppose that (S,A,B,Q) is a relaxed solution of

weight W so that A and B are connected. We claim that

S is a minimal separator. Suppose (for the purpose of con-

tradiction) that there exists a vertex v ∈ S so that S \{v}
separates s and t. Then there exist vertices a ∈ A, b ∈ B

so that (a, v) ∈ E, (v, b) ∈ E. Since A is connected, there

exist a path (in A) from s to a. Similarly, there exist a

path (in B) from b to t. Joining these paths with the

edges (a, v) and (v, b) gives a path from s to t, contra-

dicting that S \ {v} is a separator. Hence S is a minimal

separator, and by definition it is of weight W .

To determine whether a relaxed solution (S,A,B,Q) of

weight W so that A and B are connected exists, we use a

variation on the Cut & Count technique. Since we require

connectedness of both A and B, we consider consistent

cuts of A and B.

Definition 4.2. Given a node t of the tree decompo-

sition of G, a partial solution for that node is a tuple

(S∅, SA, SB , SAB , Al, Ar, Bl, Br, Q,w), so that:

• Vt = S∅ ∪ SA ∪ SA ∪ SAB ∪Al ∪Ar ∪Bl ∪Br ∪Q

• (Al, Ar) is a consistent cut: there exists no edge

(u, v) ∈ E such that u ∈ Al and v ∈ Ar.

• (Bl, Br) is a consistent cut: there exists no edge

(u, v) ∈ E such that u ∈ Bl and v ∈ Br.

• w = Σv∈Sw(v)

• For all v ∈ S∅, N(v) ∩ (Al ∪Ar ∪Bl ∪Br) = ∅
• For all v ∈ SA, N(v) ∩ (Bl ∪ Br) = ∅ and N(v) ∩

(Al ∪Ar) ̸= ∅
• For all v ∈ SB, N(v) ∩ (Bl ∪ Br) ̸= ∅ and N(v) ∩

(Al ∪Ar) = ∅
• For all v ∈ SB, N(v) ∩ (Bl ∪ Br) ̸= ∅ and N(v) ∩

(Al ∪Ar) ̸= ∅
Here, we set another weight w′(v) for each vertex by

choosing from {1, . . . , 2|V |} uniformly and independently

c⃝ 2016 Information Processing Society of Japan 4

Vol.2016-AL-158 No.12
2016/6/25

情報処理学会研究報告

IPSJ SIG Technical Report

at random for the Isolation lemma. We also set the col-

oring c : V → {s∅, sA, sB , sAB , al, ar, bl, br, q}. Especially,

the coloring of vertex v is denoted by c(v). They rep-

resent the state of vertex v, for example, v is in S∅ if

c(v) = s∅. Then we give a dynamic programming algo-

rithm that computes the number of partial solutions.

To count the number of relaxed solutions with consis-

tent cuts, for each coloring c, w and w′ we define the

function fx(c, w,w′) as follows.

Leaf node:

In a leaf node, we define fx(∅, 0, 0) = 1, if S∅ = SA =

SB = SAB = Al = Ar = Bl = Br = ∅ and w,w′ = 0.

Otherwise, fx(c, w,w′) = 0.

Introduce vertex v node:

The function fx has five cases in introduce vertex nodes.

Note that we only add one vertex v without edges, thus if

c(v) = sA, sB , sAB , it is not a solution.

fx(c× {c(v)}, w, w′) :=

[v ̸= s, t]fy(c, w − w(v), w′ − w′(v)) (c(v) = s∅)

[v ̸= t]fy(c, w,w′) (c(v) = al)

[v ̸= s]fy(c, w,w′) (c(v) = bl)

[v ̸= s, t]fy(c, w,w′) (c(v) = ar, br, q)

0 (c(v) = sA, sB , sAB).

Introduce edge (u, v) node:

For introduce edge nodes, we check each state of end-

point of edge (u, v).

c(u) = s∅ ⇒

fx(c× {c(u)} × {c(v)}, w, w′)

:= [c(v) ̸= al, ar, bl, br]fy(c× {s∅} × {c(v)}, w, w′)

c(u) = sA ⇒

fx(c× {c(u)} × {c(v)}, w, w′)

:= [c(v) = al, ar]fy(c× {s∅} × {c(v)}, w, w′)

+[c(v) ̸= bl, br]fy(c× {sA} × {c(v)}, w, w′)

c(u) = sB ⇒

fx(c× {c(u)} × {c(v)}, w, w′)

:= [c(v) = bl, br]fy(c× {s∅} × {c(v)}, w, w′)

+[c(v) ̸= al, ar]fy(c× {sB} × {c(v)}, w, w′)

c(u) = sAB ⇒

fx(c× {c(u)} × {c(v)}, w, w′)

:= [c(v) = bl, br]fy(c× {sA} × {c(v)}, w, w′)

+[c(v) = al, ar]fy(c× {sB} × {c(v)}, w, w′)

+fy(c× {sAB} × {c(v)}, w, w′)

c(u) = al, ar, bl, br, q ⇒

fx(c× {c(u)} × {c(v)}, w, w′)

:= [c(v) = c(u)]fy(c× {c(u)} × {c(v)}, w, w′)

Forget v node:

For forget nodes, the state of v will never change for-

ward. Thus, if c(v) = s∅, sA, sB , its separator is not min-

imal. For this reason, we only sum up for each state

c(v) = sAB , al, ar, bl, br, q. The function fx in a forget

node is as follows:

fx(c, w,w′)

:=
∑

c(v)=sAB ,al,ar,bl,br,q

fy(c× {c(v)}, w, w′).

Therefore, the following theorem holds.

Theorem 4.2. For graphs of pathwidth at most pw, there

exists a Monte-Carlo algorithm that solves Maximum

Weight Minimal s-t Separator in time O∗(9pw ·W)

4.2 Bounded treewidth

Next, we show that given graphs of treewidth at most

tw, there exists a Monte-Carlo algorithm that solves

Maximum Weight Minimal s-t Separator in time

O∗(21tw ·W) by defining the function for join bags.

Join node:

We suppose join node x has two children nodes y, z and

denote each coloring by cx, cy, cz and weights of solution

sets in x, y, z by xx, wy, wz, w
′
x, w

′
y, w

′
z. Suppose that if

cx(v) = al, ar, bl, br, q, then cy(v) = cz(v) = cx(v). We

also denote two subsets of bags corresponding to nodes

y, z by Ty, Tz, respectively. Note that Ty ⊆ Xy and

Tz ⊆ Xz. For simplicity, we denote the vertex subset

c−1({s∅, sA, sB , sAB}) ⊆ Xx = Xy = Xz by S∗.

Then we sum up all combinations of vertex states. For

each vertex, there exist twenty-one combinations. The

function fx is defined as follows:

c⃝ 2016 Information Processing Society of Japan 5

Vol.2016-AL-158 No.12
2016/6/25

情報処理学会研究報告

IPSJ SIG Technical Report

fx(cx, wx, w
′
x)

:=
∑

wy+wz=wx+w(S∗)

∑
w′

y+w′
z=w′

x+w′(S∗)

∑
Ty,Tz⊆S∗

[{Ty ∪ Tz = c−1
x ({s∅, sA, sB , sAB})} ∧

{∀v ∈ c−1
x ({sAB}), cy(v) = sAB ∧ cz(v) = s∅, sA, sB)

∨(cy(v) = s∅, sA, sB ∧ cz(v) = sAB)

∨(cy(v) = sA ∧ cz(v) = sB)

∨(cy(v) = sB ∧ cz(v) = sA)}

∧{∀v ∈ c−1
x ({sA}), (cy(v) = sA ∧ cz(v) = s∅)

∨(cy(v) = s∅ ∧ cz(v) = sA)

∨(cy(v) = sA ∧ cz(v) = sA)}

∧{∀v ∈ c−1
x ({sB}), (cy(v) = sB ∧ cz(v) = s∅)

∨(cy(v) = s∅ ∧ cz(v) = sB)

∨(cy(v) = sB ∧ cz(v) = sB)}

∧{∀v ∈ c−1
x ({s∅}), (cy(v) = s∅ ∧ cz(v) = s∅)]

fy(cy, wy, w
′
y)fz(cz, wz, w

′
z).

Theorem 4.3. For graphs of treewidth at most tw, there

exists a Monte-Carlo algorithm that solves Maximum

Weight Minimal s-t Separator in time O∗(21tw ·W)

Moreover, we show that there exists a Monte-Carlo al-

gorithm that solves Maximum Weight Minimal s-t

Separator in time O∗(9tw · W) using the convolution

technique[12].

First, we set the new coloring ĉ : V →
{sĀB̄ , sĀ, sB̄ , sall, al, ar, bl, br, q}. The state sĀB̄ repre-

sents that a vertex v is in S and has no neighbor of A and

B. The state sĀ(sB̄) represents a vertex v is in S and

has no neighbor of A(B), respectively. Finally, the state

sall represents a vertex v is in S without constraints.

Then, we show the following lemma to transform be-

tween c and ĉ.

Lemma 4.1. Let x be a node of a tree decomposition and

fx(c, w,w′) be a counting function to count the number of

partial solutions of Maximum Weighted Minimal s-t

Separator of each weight w,w′, corresponding to each

coloring c, ĉ of a node x. Then we can transform from

one coloring to another coloring for each function with-

out loss of information. In addition, it is computed in

O(W ·W ′ · 9tw · |Xx|).

Proof. This proof follows [12]. We consider an immedi-

ate step i in transformation. For fx(c×{c(v)}× ĉ, w, w′),

v is a vertex which turns into the state of another coloring

in i-th step and c is subcoloring of size i− 1 and ĉ is also

subcoloring of size |Xx|−i. Here, for simplicity, we denote

fx(c × {c(v)} × ĉ, w, w′) and fx(c × {ĉ(v)} × ĉ, w, w′) by

fx(c(v)) and fx(ĉ(v)).

Transformation from c to ĉ of fx in i-th step is as fol-

lows:

- fx(sĀB̄) = fx(s∅)

- fx(sĀ) = fx(s∅) + fx(sB)

- fx(sB̄) = fx(s∅) + fx(sA)

- fx(sall) = fx(s∅) + fx(sA) + fx(sB) + fx(sAB).

Conversely, we can transform from ĉ to c as follows:

- fx(s∅) = fx(sĀB̄)

- fx(sA) = fx(sB̄) − fx(sĀB̄)

- fx(sB) = fx(sĀ) − fx(sĀB̄)

- fx(sAB) = fx(sall) − fx(sĀ) − fx(sB̄) + fx(sĀB̄).

Each transformation can be performed in O(|Xx|)-time,

hence total running time of each direction is O(W ·W ′ ·
9tw · |Xx|)-time.

Therefore, we firstly transform from the original color-

ing to the new coloring in O(W · W ′ · 9tw · |Xx|)-time.

Then we compute the following function fx for the new

coloring ĉ:

fx(ĉ, wx, w
′
x) :=∑

wy+wz=wx+w(Ŝ∗)

∑
w′

y+w′
z=w′

x+w′(Ŝ∗)

fy(ĉ, wy, w
′
y)fz(ĉ, wz, w

′
z)

where Ŝ∗ = ĉ−1({s∅, sA, sB , sAB}) ⊆ V . Finally, we

transform the coloring conversely.

Thus, we can show the following theorem.

Theorem 4.4. For graphs of treewidth at most tw, there

exists a Monte-Carlo algorithm that solves Maximum

Weight Minimal s-t Separator in time O∗(9tw ·W).

参考文献

[1] S. Arnborg, D. G. Corneil, A. Proskurowski : Complex-
ity of finding embeddings in a k-tree. In: SIAM Journal
on Algebraic Discrete Methods 8(2), 277–284 (1987)

[2] H.L. Bodlaender : A linear-time algorithm for finding
tree-decompositions of small treewidth. In: SIAM Jour-
nal on Computing 25(6), 1305–1317 (1996)

[3] H. L. Bodlaender, T. Kloks, D. Kratsch : Treewidth and
pathwidth of permutation graphs. In: SIAM Journal on
Discrete Mathematics 8(4), 606–616 (1995)

[4] V. Bouchitté, , I. Todinca : Listing all potential maximal
cliques of a graph. In: Theoretical Computer Science
276(1-2), 17–32(2002)

[5] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M.
M, van Rooij, J. O. Wojtaszczyk : Solving connectivity
problems parameterized by treewidth in single exponen-
tial time. In: Proceeding FOCS ’11 Proceedings of the
2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science 150–159 (2011)

[6] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D.
Marx, M. Pilipczuk, M. Pilipczuk and S. Saurabh : Pa-
rameterized Algorithms, Springer (2015)

c⃝ 2016 Information Processing Society of Japan 6

Vol.2016-AL-158 No.12
2016/6/25

情報処理学会研究報告

IPSJ SIG Technical Report

[7] F. V. Fomin, D. Kratsch, I. Todinca, Y. Villanger : Exact
algorithms for treewidth and minimum fill-in. In: SIAM
Journal on Computing, 38(3), 1058–1079 (2008).

[8] M. R. Garey, D. S. Johnson, and L. Stockmeyer : Some
simplified NP-complete graph problems. In: Theoretical
computer science, 1(3), 237–267 (1976).

[9] T. Kloks : Treewidth, Computations and Approxima-
tions. Lecture Notes in Computer Science 842, Springer
(1994).

[10] T. Kloks, D. Kratsch : Treewidth of chordal bipartite
graphs. In: Journal of Algorithms 19(2), 266–281 (1995)

[11] K. Mulmuley, U. V. Vazirani, V. V. Vazirani. Matching
is as easy as matrix inversion. In: Combinatorica 7(1),
105–113 (1987)

[12] J. M. M. van Rooij, H. L. Bodlaender, P. Rossmanith
: Dynamic programming on tree decompositions using
generalised fast subset convolution. In: 17th Annual
European Symposium on Algorithms, ESA 2009, Lec-
ture Notes in Computer Science 5757, Springer, 566–577
(2009)

c⃝ 2016 Information Processing Society of Japan 7

Vol.2016-AL-158 No.12
2016/6/25

