
IPSJ SIG Technical Report

Dispersion on the Line

Toshihiro Akagi1,a) Shin-ich Nakano1,b)

Abstract: The facility location problem and many of its variants have been studied. A typical problem is to find a set
of locations to place facilities with the designated cost minimized. By contrast, in this paper we consider the dispersion
problem, which finds a set of locations with some objective function maximized. Given a set P of n possible locations,
and a distance d for each pair of locations, and an integer p with p ≤ n, we wish to find a subset S ⊂ P with |S | = p
such that the objective function f (S) = minu,v∈S {d(u, v)} is maximized. The intuition of the problem is as follows.
Assume that we are planning to open several chain stores in a city. We wish to locate the stores mutually far away from
each other to avoid self-competition. So we wish to find p locations such that the minimum distance between them is
maximized. In this paper when P is a set of points on the line we first give a simple O(n log n) time algorithm, then a
faster O(n log log n) time algorithm, by the sorted matrix search method.

Keywords: facility location, dispersion

1. Introduction
The facility location problem and many of its variants have

been studied[5], [6]. A typical problem is to find a set of loca-
tions to place facilities with the designated cost minimized. By
contrast, in this paper we consider the dispersion problem, which
finds a set of locations with some objective function maximized.

Given a set P of n possible locations, and a distance d for each
pair of locations, (we assume d satisfy the triangle inequality,)
and an integer p with p ≤ n, we wish to find a subset S ⊂ P with
|S | = p such that the objective function f (S) = minu,v∈S {d(u, v)} is
maximized. This is the Max-Min version of the dispersion prob-
lem[14]. For the Max-Sum version see [9], [12], for geometric
version see[3] and for a variety of related problems see[4].

The intuition of the problem is as follows. Assume that we
are planning to open several chain stores in a city. We wish to
locate the stores mutually far away from each other to avoid self-
competition. So we wish to find p locations so that the minimum
distance between them is maximized. See more applications, in-
cluding result diversification, in [10], [12], [13].

Paper [12], [14] shows if P is a set of points on the plane then
the problem is NP-hard, and if P is a set of points on the line
then the problem can be solved in O(max{n log n, pn}) time by
dynamic programming approach. In this paper when P is a set of
points on the line we first give a simple O(n log n) time algorithm,
then a faster O(n log log n) time algorithm, by the sorted matrix
search method[7]. (See the good survey for the sorted matrix
search method in [2], Section 3.3, or our explanation in [1]).

The remainder of the paper is organized as follows. Section
2 gives an algorithm to solve a decision version of the disper-

1 Departmento of Cumputer Science, Gunma University, Kityu, 376-8515,
Japan

a) akagi@nakano-lab.cs.gunma-u.ac.jp
b) nakano@cu.gunma-u.ac.jp

sion problem, which is used as a subroutine in the algorithms in
Section 3 and 4. Section 3 contains our first algorithm for the
dispersion problem. Section 4 gives our second algorithm for the
dispersion problem. Finally Section 5 is a conclusion.

2. (k,p)-dispersion on the line
In this section we give a linear time algorithm to solve a deci-

sion version of the dispersion problem. This algorithm is used as
a subroutine in the algorithms in Section 3 and 4.

Given possible locations P = {c1, c2, · · · , cn} on the line (we as-
sume they are distinct points and appear in those order from left
to right, respectively) and two numbers p and k, then we with to
know if there exists a subset S ⊂ P with |S | = p such that f (S),
which is defined as minu,v∈S {d(u, v)}, is greater than or equal to k.

The algorithm shown below is a greedy algorithm to solve the
problem.

Algorithm 1 Test-dispersion(k,p)
1: set count = 0
2: set l = 1
3: set r = 1
4: while r < n do
5: while r < n and d(cl, cr) < k do
6: r = r + 1
7: end while
8: if d(cl, cr) ≥ k then
9: count = count + 1

10: l=r
11: end if
12: end while
13: if count ≥ p then
14: Output YES
15: else
16: Output NO
17: end if

ⓒ 2016 Information Processing Society of Japan 1

Vol.2016-AL-158 No.4
2016/6/24

IPSJ SIG Technical Report

Lemma 2.1 The algorithm is correct.
Proof. Assume for the contradiction that the algorithm output
NO but it has a subset S ⊂ P with |S | = p such that f (S) is at
least k. Let i be the minimum i such that the i-th location chosen
by our algorithm is greater than the i-th location from the left in
S . However it contradicts to the greedy choice of our algorithm.
□

Lemma 2.2 The running time of the algorithm above is
O(|P|).
Proof. Since it scans P once. □

3. p-dispersion on the line
One can design an O(n log n) time algorithm to solve the dis-

persion problem when all P are on the line, based on the sorted
matrix search method[2], [7].

Our strategy is as follows. First we can observe that the max-
imum value k∗ = f (S) of a solutions of a dispersion prob-
lem is the distance between some u ∈ P and v ∈ P. Since
the number of such distances is at most n2, sorting them needs
O(n2 log n2) = O(n2 log n) time. Then, by binary search, find the
largest k such that the (k, p)-dispersion problem has a solution,
using the linear-time decision algorithm in the preceding section,
log n2 = 2 log n times. This part needs O(n log n) time. Thus the
total running time is O(n2 log n).

However by using the sorted matrix searching method[7] (See
the good survey in [2], Section 3.3) we can improve the running
time to O(n log n), then improve farther to O(n log log n) time
in Section 4. Similar technique is also used for a fitting prob-
lem[8], [11], and a r-gathering problem[1]. Now we explain the
detail.

First let M be the matrix in which each element is mi, j =

x(c j) − x(ci), where x(v) is the coordinate of point v. Then
mi, j ≤ mi, j+1 and mi, j ≥ mi+1, j always holds, so the elements in
the rows and columns are sorted, respectively. The minimum cost
k∗ of a solution of the dispersion problem is some element in the
matrix. We are going to find the smallest k in M for which the
(k, p)-dispersion problem has a solution, as follows.

By appending a suitable number of large enough elements to M
as the elements in the topmost rows and the rightmost columns we
can assume n is a power of 2. Note that the elements in the rows
and columns are still sorted, respectively. Let M be the resulting
matrix. Our algorithm consists of stages s = 1, 2, · · · , log n, and
maintains a set Ls of (non-overlapping) submatrices of M possi-
bly containing k∗. Hypothetically first we set L0={M}. Assume
we are now starting stage s.

For each submatrix M in Ls−1 we divide M into the four sub-
matrices with n/2s rows and n/2s columns and put them into Ls.
We never copy these submatrices. We just update the index of the
corner elements of each submatrix.

Let kmin be the median of the lower left corner elements of the
submatrices in Ls. Then for the k = kmin we solve the (k, p)-
dispersion problem, using the algorithm in Section 2. We have
the following two cases.

If the (k, p)-dispersion problem has a solution then we remove
from Ls each submatrix with the lower left corner element (the
smallest element) greater than kmin. Since kmin ≥ k∗ holds each

removed submatrix has no chance to contain k∗. Also if Ls has
several submatrices with the lower left corner element equal to
kmin then we remove them except one from Ls. Thus we can re-
move at least |Ls|/2 submatrices from Ls.

Otherwise if the (k, p)-dispersion problem has no solution then
we remove from Ls each submatrix with the upper right corner
element (the largest element) smaller than kmin. Since kmin < k∗

holds each removed submatrix has no chance to contain k∗. Now
we can observe that, for each “chain” of submatrices, which is the
sequence of submatrices in Ls with lower left to upper right diag-
onals on the same line, the number of submatrices (1) having the
lower left corner element smaller than kmin (2) but remaining in Li

is at most one (since the elements on “the common diagonal line”
are sorted). Thus, if |Ls|/2 > Ds, where Ds = 2s+1 is the number
of chains plus one, then we can remove at least |Ls|/2 − Ds + 1
submatrices from Ls.

Similarly let kmax be the median of the upper right corner ele-
ments of the submatrices in Ls, and for the k = kmax we solve the
(k, p)-dispersion problem and similarly remove some submatrices
from Ls. This ends stage s.

Now after stage log n each matrix in Llog n has just one element,
then we can find the k∗ using a binary search with the linear-time
decision algorithm in Section 2.

We can prove that at the end of stage s the number of subma-
trices in Ls is at most 2Ds, as follows.

First L0 has 1 submatrix, which is less than 2D0 = 4. By in-
duction assume that Ls−1 has 2Ds−1 = 2 · 2s submatrices.

At stage s we first partite each submatrix in Ls−1 into four sub-
matrices then put them into Ls. Now the number of submatrices
in Ls is at most 4 · 2Ds−1 = 4Ds. We have four cases.

If the (k, p)-dispersion problem has a solution for k = kmin then
we can remove at least a half of the submatrices from Ls, and so
the number of the remaining submatrices in Ls is at most 2Ds, as
desired.

If the (k, p)-dispersion problem has no solution for k = kmax

then we can remove at least a half of the submatrices from Ls,
and so the number of the remaining submatrices in Ls is at most
2Ds, as desired.

Otherwise if |Ls|/2 ≤ Ds then the number of the submatrices in
Ls (even before the removal) is at most 2Ds, as desired.

Otherwise (1) after the check for k = kmin we can remove at
least |Ls|/2 − Ds submatrices (consisting of too small elements)
from Ls, and (2) after the check for k = kmax we can remove at
least |Ls|/2 − Ds submatrices (consisting of too large elements)
from Ls, so the number of the remaining submatrices in Ls is at
most |Ls| − 2(|Ls|/2 − Ds) = 2Ds, as desired.

Thus at the end of stage s the number of submatrices in Ls is
always at most 2Ds, and at the end of stage log n the number of
submatrices is at most 2Dlog n = 4n.

Now we consider the running time up to here. We implicitly
treat each submatrix as the index of the upper right element in M
and the number of lows (= the number of columns). Except for
the calls of the linear-time decision algorithm for the (k, p) disper-
sion problem, we need O(|Ls−1|) = O(Ds−1) time for each stage
s = 1, 2, · · · , log n, and D0+D1+· · ·+Dlog n−1 = 2+4+· · ·+2log n <

2 · 2log n = 2n holds, so this part needs O(n) time in total. (Here

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-AL-158 No.4
2016/6/24

IPSJ SIG Technical Report

we use the linear time algorithm to find the median.)
Since each stage calls the linear-time decision algorithm twice

and the number of stage is log n this part needs O(n log n) time in
total.

After stage s = log n each matrix has just one element. Then
we can find the k∗ among the |Llog n| ≤ 2Dlog n = 4n elements
by (1) sorting them, then (2) performing binary search with the
linear-time decision algorithm at most log 4n times. This part
needs O(n log n) time.

Thus the total running time is O(n log n).
Theorem 3.1 One can solve the dispersion problem in

O(n log n) time when all P are on the real line.

4. Faster Algorithm
In this section we give a faster algorithm to solve the dispersion

problem when all P are on the real line, using the O(n log log n)
time faster matrix search method[7].

We always update (narrow) the possible range [klow, khigh], in
which the best value k∗ of the objective function exists.

We first build two tables which is used in our faster algorithm
to solve the decision version of the dispersion problem. First we
construct a set of submatrices N of M, as follows. Partite P into
subsets, called subpaths, each of which consists of c log n consec-
utive locations, where c is a constant. Let Pt be the t-th subpath,
and Nt the matrix in which each element nt(i, j) is the distance
between i-th location and j-th location in Pt. Let N be the set of
N1,N2, · · · ,Nn/ log n.

Perform matrix search s = log c + log log n rounds for N. Now
the size of each submatrix is 1 by 1, (since c log n/2s = 1 holds
for s = log c+log log n) and the number of remaining submatrices
is at most 2Dsn/c log n = 4 · 2sn/c log n = 4n. Thus the number
of remaining distances in current N is at most 4n.

Then perform ordinary binary search (compute the median k
then check if it has a solution with cost k, then remove a half of
distances) s = 2 + 2 log log n rounds for the remaining at most
4n distances. Now the number of remaining distances is at most
4n/2s = n/ log2 n. The running time upto here is O(n log log n)

We say subpath Pt is active if N still contain a distance in Nt,
and non-active otherwise. Now the number of active subpaths is
at most n/(log n)2. For each non-active subpath Pt we construct
the following two tables ncount(i, t) and remainder(i, t).

Let Pi
t be the subpath of Pt starting at the i-th location of Pt

and ending at the last location of Pt. Then ncount(i, t) stores the
maximum number of locations such that (1) the distance between
them is at least k, where k is some number among [klow, khigh], and
(2) includes the i-th location. Note that since all distances corre-
sponding to a non-active subpath are out of [klow, khigh], so for
any k in [klow, khigh] ncount(i, t) is identical. Then remainder(i, t)
is the index of the rightmost location in the selected locations
above. One can compute those tables for a non-active subpath in
O(log n) time by dynamic programming from right to left. (We
assume the line is horizontal and c1, c2, · · · appear left to right.)
Thus we need O(n) time for all subpaths.

Now we are ready for the faster test, which needs only
O(n/ log n) time for test once. The test scans each P1, P2, · · · in
this order. We estimate the running time for scanning subpaths in

two cases.
For an active subpath we first find the first location to choose in

O(log n) time by greedy scan, then scan the rest of the subpath in
O(log n) time to compute locations to be chosen. Since the num-
ber of active subpaths is at most n/ log2 n the total running time
of these parts is O(n/ log n).

For a non-active subpath we compute the first location to be
chosen in O(log log n) time by binary search, then by just looking
up the table we compute (1) the number of locations to be chosen
in the subpath and (2) the last location to be chosen. Thus the run-
ning time for scan a non-active subpath is O(log log n) time, and
for all non-active subpaths we need O(n log log n/ log n) time.

Thus in total we need O(n log log n/ log n) time for scan once.
See our algorithm below.

Algorithm 2
PREPROCESSING-for-Faster-Test-dispersion(k,p)
1: /* Let n be the number of rows (and also columns) in P */
2: Partite P into n/ log n subpaths each of which consisting of consecutive

log n locations in P.
3: Let Nt be the distance matrix of the t-th subpath above,

and N the set of them.
4: Set klow = 0 and khigh = ∞
5: Perform Matrix Search log c + log log n rounds for N

with updating klow and khigh

6: /* Now the number of the remaining distances is at most 4n */
7: Perform binary Search 2+ 2 log log n rounds for the remaining distances.
8: /* Now the number of the remaining distances is at most n/ log2 n */
9: /* A subpath is active if it has one or more remaining distances,

and non-active otherwise */
10: for each t = 1, 2, · · · , n/ log n do
11: if t-th subpath is non-active then
12: for each i = log n, log n − 1, · · · , 1 do
13: Compute ncount(t,i) and remainder(t,i)
14: end for
15: end if
16: end for

Algorithm 3 Faster-Test-dispersion(k,p)
1: for each t = 1, 2, · · · , n/ log n do
2: if t-th subpath is active then
3: find the first location to be chosen by scan
4: then scan the rest of the subpath to compute locations to be chosen
5: else
6: /* Now t-th subpath is non-active */
7: find the first location to be chosen by binary search
8: compute the number of locations to be chosen by checking

ncount(t, i)
9: compute the last location to be chosen by checking remainder(t, i)

10: end if
11: end for
12: if the number of chosen locations ≥ p then
13: Output YES
14: else
15: Output NO
16: end if

ⓒ 2016 Information Processing Society of Japan 3

Vol.2016-AL-158 No.4
2016/6/24

IPSJ SIG Technical Report

The main algorithm consists of log n rounds, and each round
consists of the following three steps, (1) MEDIAN COMPUTA-
TION (2) TEST and (3) UPDATE. First MEDIAN COMPUTA-
TION needs O(1 + 2 + 4 + ... + n) = O(n) time in total for the
log n rounds. TEST once needs only O(n log log n/ log n) time,
and O(n log log n) time in total for the log n rounds. UPDATE
needs O(1 + 2 + 4 + ... + n) = O(n) time in total for the log n
rounds.

Thus in total the main part of the algorithm runs in
O(n log log n) time. We have the following theorem.

Theorem 4.1 One can solve the dispersion problem in
O(n log log n) time when all P are on the real line.

5. Conclusion
In this paper we have presented two algorithms to solve the

dispersion problem when all P are on the real line. The running
time of the second algorithm is O(n log log n), which is faster than
known algorithms.

Can we design a linear time algorithm for the dispersion prob-
lem when all P are on the real line?

References
[1] T. Akagi and S. Nakano, On r-Gatherings on the Line, Proc. of FAW

2015, LNCS 9130, pp. 25-32 (2015).
[2] P. Agarwal and M. Sharir, Efficient Algorithms for Geometric Opti-

mization, Computing Surveys, 30, pp.412-458 (1998).
[3] C. Baur and S.P. Feketee, Approximation of Geometric Dispersion

Problems, Pro. of APPROX ’98, Pages 63-75 (1998).
[4] B. Chandra and M. M. Halldorsson, Approximation Algorithms for

Dispersion Problems, J. of Algorithms, 38, pp.438-465 (2001).
[5] Z. Drezner, Facility Location: A Survey of Applications and Methods,

Springer (1995).
[6] Z. Drezner and H.W. Hamacher, Facility Location: Applications and

Theory, Springer (2004).
[7] G. Frederickson, Optimal Algorithms for Tree Partitioning, Proc. of

SODA ’91 Pages 168-177 (1991).
[8] H. Fournier, and A. Vigneron, Fitting a Step Function to a Point Set,

Proc of ESA 2008, Lecture Notes in Computer Science, 5193, pp.442-
453 (2008).

[9] R. Hassin, S. Rubinstein and A. Tamir, Approximation Algorithms
for Maximum Dispersion, Operation Research Letters, 21, pp.133-137
(1997).

[10] T. L. Lei and R. L. Church, On the unified dispersion problem: Effi-
cient formulations and exact algorithms, European Journal of Opera-
tional Research, 241, pp.622-630 (2015).

[11] J. Y. Liu, A Randomized Algorithm for Weighted Approximation of
Points by a Step Function, Proc. of COCOA 2010, Lecture Notes in
Computer Science, 6508, pp.300-308 (2010).

[12] S. S. Ravi, D.J. Rosenkrantz and G. K. Tayi, Heuristic and Special
Case Algorithms for Dispersion Problems, Operations Research, 42,
pp.299-310 (1994).

[13] M. Sydow, Approximation Guarantees for Max Sum and Max Min Fa-
cility Dispersion with Parameterised Triangle Inequality and Applica-
tions in Result Diversification, Mathematica Applicanda, 42, pp.241-
257 (2014).

[14] D. W. Wang and Yue-Sun Kuo, A study on Two Geometric Location
Problems, Information Processing Letters, 28, pp.281-286 (1988).

ⓒ 2016 Information Processing Society of Japan 4

Vol.2016-AL-158 No.4
2016/6/24

