
System Software Of A Future Computer System

With Mesh Interconnect

†Tomohiro Misono, ‡Kenji Kise

†Department of Computer Science, Tokyo Institute of Technology
‡Graduate School of Information Science and Engineering, Tokyo Institute of Technology

†misono@arch.cs.titech.ac.jp, ‡kise@cs.titech.ac.jp

1 Introduction
In conventional computers, it is hard for users to

freely change the number of computer components

like memories, because the expandability depends on

the specification of the motherboard. This is because

that conventional computers are interconnected by

buses and the maximum number of components which

can be attached is already determined. Moreover, an

arbitration scheme becomes complex as the number

of connections increases.

On a separate note, accelerators such as GPGPU

have been used for high-performance computing along

with CPU in recent year. Furthermore, recent studies

have shown the effectiveness of an application-specific

accelerator or processor implemented on FPGA.

These facts show that we can enhance the entire com-

puter system performance by flexibly using accelera-

tors.

Based on these backgrounds, we predict that a new

type of computer system will appear in the future

which enables its users to easily change hardware con-

figuration (add memories or I/O ports etc.) and uses

various kinds of accelerators. Therefore we have pro-

posed a new computer system composed of multiple

FPGA boards which fulfills this characteristic. This

project is currently under implementation.

In this system, each FPGA board has mainly one

function such as a processing core, memory or an

accelerator. We aim to create computer systems

with high scalability and expandability by connecting

these boards as two-dimensional mesh network. We

adopt x86 ISA for the prototype architecture because

of its popularity in commercial PC and variety of ap-

plication binaries. In this paper, we discuss the soft-

ware function required to fully utilize the proposed

computer system and show the steps of the develop-

ment of its software and system simulator.

Figure 1: Examples of hardware configuration of the

proposed computer system (a) four-board connection,

(b) six-board connection

2 System configuration
Fig.1 shows the examples of hardware configura-

tion block diagram of the proposed computer system.

Each block corresponds to an FPGA board. These

FPGA boards are connected in two-dimensional mesh

network. Inter-FPGA communication is realized by

exchanging packets through NIC (Network Interface

Controller) on each board.

In Fig.1 (a), we use four FPGA boards and in Fig.1

(b), we connect six boards. Each board’s function is

as written in the block. There exists only one Main

core board in computer system on which OS runs and

controls other Sub cores as devices. Other boards

(Sub core, memory, I/O) can be placed any places and

any numbers according to users’ demand. We believe

this flexibility makes the whole systems scalable.

Note that we don’t consider at the moment to con-

nect several processing core boards as a multi core

processor and run OS nor process switching in Sub

cores (once a program starts in a Sub core, we have

to wait until the end of the program).

3 Required software function
In order to run an operating system (mainly we

consider Linux) on the proposed hardware configu-

ration, we think the following firmware processing is

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-89

4J-07

情報処理学会第77回全国大会

needed before operating system begin:

• recognize the whole hardware configuration

• detect the memory map (initialize NIC memory

mapping table)

Main core is responsible for these initialization by

communicating every board one by one using rela-

tive offset and checking if board exists when powered

on. After initializing memory map, NIC uses memory

mapping table to handle every memory access request

(including access to the I/O region) to determine the

position of the destination board.

In order to use Sub cores, we need device drivers

because Main core recognizes Sub cores as devices.

There is small amount of private memory in a Sub

core. Main core sends an application program to that

memory and instructs the start of execution. If more

memories are needed, Sub cores allocate/free external

memories through Main core. In order to realize effi-

cient memory access, Main core (OS) should allocate

memories in a memory board close to the Sub core

which uses those memories.

4 Development framework
First, we use a function-level simulator to de-

velop software such as device drivers or an efficient

memory allocation scheme. After that we plan to

create a cycle-accurate simulator to validate mesh-

interconnect network and develop firmware program.

We use existing full system simulator. There are

several open source full system simulators which sup-

port x86 ISA[1][2][3]. QEMU[3] doesn’t do cycle-

accurate simulation but is fast. Therefore, we use

QEMU to develop our system.

There is an example of full system simulator using

QEMU called MARSS[4]. MARSS supports dynam-

ically switching between a cycle-accurate simulation

mode and a fast emulation mode using QEMU.

We plan to use QEMU as a base full system sim-

ulator and modify or enhance its function to create

simulation environment for the proposed mesh inter-

connected computer system.

5 Current Development
Currently, we have been developing a device driver

which controls Sub core. As stated in Section 4, we

currently focus on only device driver function and

don’t consider interconnections of system.

We use SimMips[5] because it is simple and has suf-

ficient ability to simulate a Sub core function. Sim-

Mips is a MIPS software simulator written in C++.

It can load a MIPS ELF binary and executes it.

We connected SimMips to QEMU as a virtual PCI

device, and write simple device driver for Linux to

control it. This time, we use SimMips internal mem-

ory and don’t use memory outside the device. Be-

cause QEMU is written in C, we make a necessary

modification to SimMips in order to connect it as a de-

vice. We checked that the implemented device driver

successfully sends MIPS ELF binary to SimMips de-

vice via DMA transfer and the device executes the

program correctly.

6 Conclusion
We have been developing a new computer system

with mesh interconnect. In this paper, we have stated

the needed software for that system. We plan to cre-

ate firmware, device driver for Sub core (accelerator)

or memory allocation scheme by using QEMU simu-

lation framework. First we develop programs in func-

tion level and then validate it with low layer simula-

tion.

To date we have completed a simple device driver

for Sub core. Our next step is to enable Sub cores

to use external memories in addition to their internal

memory.

References
[1] Nathan Binkert, Bradford Beckmann, Gabriel

Black, Steven K. Reinhardt, Ali Saidi, Arkaprava

Basu, Joel Hestness, Derek R. Hower, Tushar Kr-

ishna, Somayeh Sardashti, Rathijit Sen, Korey

Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. The gem5 simulator.

SIGARCH Comput. Archit. News, 39(2):1–7, Au-

gust 2011.

[2] bochs: The open source ia-32 emulation project

(home page). http://bochs.sourceforge.net/.

[3] Qemu. http://wiki.qemu.org/.

[4] Avadh Patel, Furat Afram, Shunfei Chen, and

Kanad Ghose. MARSSx86: A Full System Simu-

lator for x86 CPUs. In Design Automation Con-

ference 2011 (DAC’11), 2011.

[5] Naoki Fujieda, Shimpei Watanabe, and Kenji

Kise. A mips system simulator simmips for ed-

ucation and research of computer science. IPSJ

Journal, 50(11):2665–2676, nov 2009.

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-90

情報処理学会第77回全国大会

