
Ultra High-speed FPGA Accelerator for Sorting Application
Ryohei Kobayashi† Kenji Kise†

†Graduate School of Information Science and Engineering
Tokyo Institute of Technology

1 Introduction

　 In this paper, we propose an approach of sorting
acceleration by using a large FPGA. Sorting is an ex-
tremely important computation kernel that has been
tried to be accelerated in lots of fields. We design and
implement the proposed FPGA accelerator, and then
evaluate its performance by comparing with a modern
desktop computer. From this evaluation, we show how
sorting is accelerated.

2 Design and Implementation

　 Our proposed FPGA accelerator uses two ap-
proaches: Sorting Network and Merge Sorter Tree. We
describe these methods as follows.

2.1 Sorting Network

　 A sorting network [1] is an algorithm that sorts a
fixed sequence of numbers by using a fixed sequence of
comparisons. A sorting network consists of two types of
items: comparators and wires. The wires are thought
of as running from left to right, carrying values (one per
wire) that traverse the network all at the same time.
Each comparator connects two wires. When a pair of
values, traveling through a pair of wires, encounters a
comparator, the comparator swaps the values only if
the top wire’s value is greater than the bottom wire’s
value.
Besides, by changing the connection of the compara-

tors, sorting networks can realize lots of sorting al-
gorithms, such as even-odd merge sort, bitonic sort,
bubble sort, insertion sort and so on. In [2], sorting
networks on FPGAs are discussed in detail.
Figure 1 shows Batcher’s odd-even mergesort net-

work with 16-inputs and 16-outputs. Batcher’s odd-
even mergesort is devised by Ken Batcher for sorting
networks of size O(n (logn)2) and depth O((logn)2),
where n is the number of items to be sorted. This
network is simple, yet efficient and practical. Conse-
quently, we adopt this network as one of the compo-
nents of our proposed FPGA accelerator.

2.2 Merge Sorter Tree

　The merge sorter tree [3] has highly effective perfor-
mance and good hardware resource usage of the sort-
ing. The merge sorter tree is a data path that executes
merge sort and the data path consists of connecting
sorter cells as a perfect binary tree. Sorter cells com-
pare two input-values and output one of them depend-
ing on its comparison result.
Figure 2 shows how sorting is executed in the merge

sorter tree. We define a leaf of the merge sorter tree,
as a way. For this definition, the merge sorter tree of
Figure 2 is 4-way merge sorter tree. We explain how
sorting is executed in this 4-way merge sorter tree.
First, at Cycle N, each way outputs integers of ”8”,

”3”, ”1”, ”2”. Then, ”8” and ”3”, ”1” and ”2” are

IN OUT

Figure 1: Batcher’s Odd-Even Mergesort Net-
work with 16-inputs and 16-outputs

>

>

>

>

>

>

>

>

>

8 9

3 5

1 3

2 2 1

3

3

2 2
1

2

1

8 9

5
3

7 5
1

2

3

2

5

2 2

3

7

9 8

x

x: Invalid Value

Cycle N Cycle N+1 Cycle N+2

Figure 2: Sorting Process in Merge Sorter Tree

compared. Note that the sorted data sequences are
stored in the leftmost FIFOs. The sorter cells output
smaller elements depending on the comparison result,
unless their output FIFOs of the sorter cells are full.
At Cycle N+1, ”3” and ”1”, ”8” and ”5”, ”3” and

”2” are compared by three sorter cells. All sorter cells
output the smaller element of two input elements, be-
cause all of the FIFOs are not full.
At Cycle N+2, every sorter cell compares two input

elements. The sorter cell that compares ”8” and ”7”
outputs not ”7” but an invalid value ”x”, because its
output FIFO having two elements of “5” and “3” is full.
If this FIFO is not full, ”7” is emitted and is stored in
this FIFO. By executing sorting at every sort cell and
storing outputs to the FIFO in each cycle, the sorted
data sequence is emitted from the root of the merge
sorter tree.

2.3 Implemented Sorting Logic

　 As a platform for the proposed FPGA accelerator,
we use the Virtex-7 FPGA VC707 evaluation kit. This
kit originally has the Virtex-7 XC7VX485T and 1GB
DDR3 SO-DIMM memory, however, we replace this
memory with 4GB DDR3 SO-DIMM memory in order
to sort larger data sequences.
Figure 3 shows a data path of the sorting logic imple-

mented on the FPGA. The dotted line region in Figure
3 is the merge sorter tree, which executes the main part
of sorting. Squares and circles in the merge sorter tree
represent FIFOs and sorter cells respectively. Initial
Data Generator is used to generate an initial data se-

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-25

3A-03

情報処理学会第77回全国大会

>

>

>

32
32

32
32

32 32

32

32

32

512-bit
shift register

32

512-bit
shift register

32

512-bit
shift register

32

512-bit
shift register

32

512

512

512

512

Input Buffer
Merge Sorter Tree

512-bit
shift register

Initial Data
Generator

Sorting
Network

512

512

512

512

DRAM
Controller

UART
Controller

Output Buffer 32 512 512

512

512

512

512

1

64

FPGA
Virtex-7 VX485T

Figure 3: Data Path of Sorting Logic Imple-
mented on the FPGA

32.852

10.785

8.081

0

5

10

15

20

25

30

35

Corei7-4770 @ 3.4GHz
(single thread)

8-way 16-way

S
o
rt

in
g
 P

ro
ce

ss
 T

im
e[

se
c]

4.07x

Figure 4: The Sorting Process Time of the Pro-
posed FPGA Accelerator and Single Thread of
Intel Corei7-4770 operating at 3.4GHz

quence sorted by the FPGA accelerator. At first, the
initial data sequence is stored in DRAM via DRAM
Controller. After that, this data sequence is read from
DRAM, and then is carried to Sorting Network. This
Sorting Network sorts sixteen elements each (one el-
ement data size is 32-bit, hence, 512-bit input data
consists of sixteen elements) of the data sequence, and
then these elements are stored in Input Buffers. In-
put Buffer in Figure 3 is a FIFO, emitted data from
which is carried, one element by one element, to the
merge sorter tree by 512-bit shift register. Emitted
elements from the merge sorter tree are packed into
a 512-bit data by 512-bit shift register, and then are
stored in Output Buffer. Output Buffer is also a FIFO,
emitted data from which is stored in DRAM. After
the data sequence is fully sorted, for verification, this
sorted data sequence is displayed on a serial console
via UART Controller.
We implemented the sorting logic (shown in Figure

3) in Verilog HDL. To implement DRAM Controller,
we use an IP core provided by Xilinx [4]. As a synthe-
sis tool, we use Xilinx ISE 14.7 (Optimization Goal:
Speed, Optimization Effort: High). All implemented
logics on the FPGA operate at 200MHz and DRAM op-
erates at 800MHz. Consequently, the maximum data-
transfer speed is 12.8GB/s between the FPGA and the
DRAM.

3 Evaluation

　 We evaluate the sorting effective performance of
the FPGA accelerator when the number of ways is 8
and 16, compared with Intel Corei7-4770 operating at
3.4GHz.

We adopt merge sort as an algorithm running on
Intel Corei7-4770. Generally speaking, quick sort is
known to be the fastest sorting algorithm, however,
quick sort depends on the input-data sequence type.
For example, if input-data sequence type is sorted data
sequence in reverse order, the computational complex-
ity of quick sort is the worst-case complexity O(n2).
For this aspect, we figure out merge sort is more prac-
tical sorting algorithm than quick sort because merge
sort is insulated from the influence of the input-data se-
quence type. We code merge sort in C, compile it with
gcc 4.8.2 (-O3 optimization), and measure the sorting
process time. Merge sort is executed as single thread
of Intel Corei7-4770.
Figure 4 shows the sorting process time of the pro-

posed FPGA accelerator and single thread of Intel
Corei7-4770 operating at 3.4GHz, when the number
of sorted elements is 256M, whose data type is inte-
ger (4 bytes). To measure the sorting process time of
the FPGA accelerator, the number of cycles, which the
FPGA accelerator takes for sorting, is stored in a regis-
ter and is displayed on a serial console via UART Con-
troller after sorting is terminated. The sorting process
time of the FPGA accelerator with 8-way merge sorter
tree and 16-way merge sorter is 10.785 sec and 8.081 sec
respectively, while that of single thread of Intel Corei7-
4770 operating 3.4GHz is 32.852 sec. In other words,
the proposed FPGA accelerator can obtain higher per-
formance of up to 4.07x than Intel Corei7-4770 oper-
ating at 3.4GHz.

4 Conclusion

　 In this paper, we proposed an approach of sorting
acceleration by using a large FPGA, described design
and implementation, and evaluated the sorting effec-
tive performance, compared with Intel Corei7-4770 op-
erating at 3.4GHz. As a result, the proposed FPGA ac-
celerator can obtain higher performance of up to 4.07x
than Intel Corei7-4770 operating at 3.4GHz.
There is still room for improvement of the FPGA

accelerator, because hardware resource usage is about
one-fifth, even if the number of ways is 16. Therefore,
our future works are to expand features, such as the
number of ways, and to evaluate its sorting effective
performance.

References
[1] Donald E. Knuth. The Art of Computer Programming, Vol-

ume 3: (2Nd Ed.) Sorting and Searching. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA,
1998.

[2] Rene Mueller, Jens Teubner, and Gustavo Alonso. Sorting
networks on fpgas. The VLDB Journal, Vol. 21, No. 1, pp.
1–23, February 2012.

[3] Dirk Koch and Jim Torresen. Fpgasort: A high perfor-
mance sorting architecture exploiting run-time reconfigura-
tion on fpgas for large problem sorting. In Proceedings of the
19th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, FPGA ’11, pp. 45–54, New York,
NY, USA, 2011. ACM.

[4] Memory Interface Generator (MIG).
http://www.xilinx.com/products/intellectual-
property/MIG.htm.

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-26

情報処理学会第77回全国大会

