
IPSJ SIG Technical Report

Improving the High-Impact Bug Reports:
A Case Study of Apache Projects

Md. Rejaul Karim1,a) Akinori Ihara1,b) Xin Yang1,c) Eunjong Choi1,d)

Hajimu Iida1,e) KenichiMatsumoto1,f)

Abstract:
Good quality bug reports are the primary means for developers to fix the bugs. However, the quality of the bug reports
depends on the contents that help developers to resolve the bugs. This research aims to investigate what and how
information is provided in the bug reports. Using high-impact bug reports of Apache Camel project, we conducted a
case study. In details, we manually investigated high-impact bug reports to identify frequently reported features and
how they affect on the bug fixing time. As a result, we found out frequently reported features set for each type of
high-impact bugs. Moreover, no strong relationship exists between provided features and the bug fixing time.

Keywords: Bug Report, Bug Tracking System, Open Source, Software Repository Mining

1. Introduction
One of the key activities in the software development process

is fixing bugs reported by developers, testers, and end users [23].
To fix the bugs, developers typically rely on the information that
is contained in the bug reports [8]. Good quality bug reports help
the developers to fix the bugs [2]. However, the reporters do not
always provide adequate information in the bug reports.

Davies and Roper found that bug reports are neither complete
nor accurate, and often do not provide all the information that
developers find useful when fixing bugs. They also found that
12 percent of the total information are provided after initial sub-
mission of the bug reports [5]. As a result, developers spend
their valuable time to collect require information. Furthermore, it
revealed that it is difficult to automatically extract relevant infor-
mation from bug reports..

On the other hand, bug reporters face complexities to provide
crucial information in the bug reports [2]. For instance, stack
traces is very useful to localize bug [15]. However, bug reporters
are not able to provide it for all bug reports, because, performance
and functional bugs do not always produce it. We need to know
how to make good quality bug reports by providing lesser infor-
mation. Joel Spolsky once noted in his blog as follows: “I have
always felt that if you can make it 10 percent easier to fill in a
bug report, you will get twice as many bug reports” [18]. It is
very important to make bug reports as simple as possible. But,

1 Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-
0192, Japan

a) rejaul.karim.qw4@is.naist.jp
b) akinori-i@is.naist.jp
c) kin-y@is.naist.jp
d) choi@is.naist.jp
e) iida@itc.naist.jp
f) matumoto@is.naist.jp

it is not easy to understand for novice users and end users which
information are important for which type of bug reports at time
of submission. We need to find out important information set ac-
cording to high-impact bugs that developers find useful during
bug fixing.

The main objectives of this study are to find out frequently re-
ported information for each category of high-impact bugs to un-
derstand important information that developers find useful during
bug fixing. We expect that our findings help to develop a tool
suggesting the bug reporters how to submit more accurate high-
impact bug reports in the bug tracking system (BTS). It also helps
to write standard guideline how to fill-up bug reports. Conse-
quently, quality of high-impact bug reports will be improved.

We have done a case study on high-impact bug reports of
Apache Camel project [13]. We manually investigated each high-
impact bug report and checked each reported information. Then,
we analyzed each conversation between developers and reporters
to understand when was information provided and how they af-
fected on bug resolution. From our analysis, we have found dif-
ferent information set for each type of high-impact bugs based on
how often appears in the bug reports. We also found interesting
relationship between bug fixing time and no. of reported features
in each type of high-impact bugs.

To provide evidence to show the importance of individual fea-
tures for high-impact bugs, we answer the following research
questions in this paper.

RQ1: Which features are important to fix high-impact bugs for
each category?

RQ2: Is there any relationship between bug fixing times with
no. of reported features?

The structure of this paper is as follows. In Section 2, we ex-
plain on bug report, high-impact bug report, and important fea-

1ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

IPSJ SIG Technical Report

Fig. 1 Bug reporting system for OSS projects.

tures of bug report. In Section 3, we present the motivation of
this study with example of bug reports. Next, we describe tar-
get dataset and analysis procedure in section 4. In Section 5, we
present results of the case study. In Section 6, we explain our
major findings and how our case study can contribute in the bug
management process. In Section 7 and 8, we discuss the threats to
validity of our case study and related work, respectively. Finally,
we conclude and give future direction of our research in Section
9.

2. Background
Bug reporters (e.g. software developers, testers, and end users)

identify bugs in software projects.They submit the identified bugs
into the bug tracking system (BTS). Figure 1 shows the con-
ventional bug reporting system for Open Source Software (OSS)
projects. Then, each bug report is assigned to the appropriate de-
veloper to fix the bug. However, in some cases, bug reporters
do not provide information that are very useful for developers.
Therefore, developers request to reporters providing additional
information. Then, bug reporters provide requested information
in the comment section of bug reports. In this section, we ex-
plain on bug report, feature and high-impact bug to understand
this study.

2.1 Bug Report
BTS has an interface with some fields to create a new bug re-

port. At first, reporters write a short summary on identified bug
and then provides additional information to give a clear idea of
the bug. Some of the fields are very straightforward and contain
limit values such as version, component, and severity. A field,
named description, is a free text and contain unstructured data.
In the bug report form, there are no separate fields for Steps to
Reproduce, Stack Traces, and some others. Therefore, reporters
provide these sorts of information in the description field. In OSS
projects, bug reporting is a voluntary work. Sometimes, they
do not following guidelines of submitting bug reports. For ex-
ample, they do not mention the key word ”Expected Behavior”
for describing their expectation from the patches or the pieces of
code. As a result, developers find difficulties to understand the
bug properly.

2.2 Feature
A bug report usually consists of a number of fields. Each field

may contains one or more values. Each piece of information that
helps to describe a bug defines as a feature. Therefore, a bug re-
port contains many features such as components, expected behav-
ior. Among them, developers consider some are more important

than other features to fix the bugs. Bettenburg et al [2] surveyed
156 developers of Apache, Eclipse and Mozilla to examine what
information developers want when fixing bugs. The survey result
revealed that developers regard the ten features (shown in Table
1) as important in fixing bugs.

Table 1 List of top 10 important features

Name of Features Short Description
Steps
to Reproduce(STR)

A clear set of instructions that the developer
can use to reproduce the bug on their own ma-
chine

Stack traces (ST) A stack trace produced by the application,
most often when the bug is reporting a crash
in the application

Test Cases (TC) One or more test cases that the developer can
use to determine when they have fixed the bug

Observed
behaviour (OB)

What the user expected to happen, usually
contrasted with Observed behaviour

Screenshots (SS) A screenshot of the application while the bug
is occurring

Expected
behaviour (EB)

What the user expected to happen, usually
contrasted with Observed behaviour

Code
Examples (CE)

An example of some code which can cause
the bug

Summary (S) A short (usually one-sentence) summary of
the bug

Version (V) What version of the application the user was
using at the time of the error

Error reports (ER) An error report produced by the application as
the bug occurred

2.3 High-Impact Bug
Software engineering researchers have introduced different

high-impact bugs [4], [9], [13], [16], [17], [23] based on their
impact on end-users and developers in software system. The fol-
lowing are the different types of high-impact bugs:
(1) Surprise bugs: A surprise bug [17] is a new concept on soft-

ware bugs . It can disturb the workflow and/or task schedul-
ing of developers, since it appears in unexpected timing (e.g.,
bugs detected in post-release) and locations (e.g., bugs found
in files that are rarely changed in pre-release). As a result
of a case study of a proprietary, telephony system which has
been developed for 30 years, [17] showed that the number of
surprise bugs were very small (found in 2% of all files) and
that the co-changed files and the amount of time between the
latest pre-release date for changes and the release date can
be good indicators of predicting surprise bugs.

(2) Dormant bugs: A dormant bug [4] is also a new concept
on software bugs and defined as a bug that was introduced
in one version (e.g., Version 1.1) of a system, yet it is Not
reported until after the next immediate version (i.e., a bug is
reported against Version 1.2 or later). [19] showed that 33%
of the reported bugs in Apache Software Foundation (ASF)
projects were dormant bugs and were fixed faster than non-
dormant bugs. It indicates that dormant bugs also affect de-
velopers workflow in fixing assigned bugs in order to give
first priority to fix the dormant bugs.

(3) Blocking bugs: A blocking bug is a bug that blocks other
bugs from being fixed [20]. It often happens because of a de-
pendency relationship among software components. Since

2ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

IPSJ SIG Technical Report

a blocking bug inhibit developers from fixing other depen-
dent bugs, it can highly impact on developers task schedul-
ing since a blocking bug takes more time to be fixed [20]
(i.e., a fixer needs more time to fix a blocking bug and other
developers need to wait for being fixed to fix the dependent
bugs).

(4) Security bugs: A security bug [6] can raise a serious prob-
lem which often impacts on uses of software products di-
rectly. Since Internet devices (e.g., smartphones) and their
users are increasing every year, security issues of software
products should be of interest to many people. In general,
security bugs are supposed to be fixed as soon as possible.

(5) Performance bugs: A performance bug [12] is defined
as programming errors that cause significant performance
degradation. The performance degradation contains poor
user experience, lazy application responsiveness, lower sys-
tem throughput, and needles waste of computational re-
sources [11]. [12] showed that a performance bug needs
more time to be fixed than a non-performance bug. There-
fore, performance bugs can affect users for a long time.

(6) Breakage bugs: A breakage bug [5] is a functional bug which
is introduced into a product because the source code is mod-
ified to add new features or to fix existing bugs. Though it is
well-known as regression, a breakage bug mainly focuses on
regression in functionalities. A breakage bug causes a prob-
lem which makes usable functions in one version unusable
after releasing newer versions.

3. Motivation of this study
We found in Camel Project, eight percent of total bug reports

are marked as Invalid, two percent of total bug reports are marked
as unresolved, a number of bug reports marked as Open. We also
found that bug fixing time vary among the bugs. The figure 2
shows an example of bug report extracted from Apache Camel
Bug ID Camel-3540.

Fig. 2 Description of Apache Camel Bug ID-Camel-3540

It is a performance bug. This bug report is detailed, and con-
tains clear information about bug. Reporter provided code snip-
pets to describe where the exact problem happened. Reporter also
attached test cases in the report for developer to test after fixed.

This type of bug report is easy to understand for developers. De-
veloper fixed the bug on the same day of reporting.

The figure 3 shows an example of bug report extracted from
Apache Camel Bug ID Camel-5860. It is a Surprise bug.

Fig. 3 Description of Apache Camel Bug ID-Camel-5860

This bug report was created in December 10, 2012. Reporter
provided Stack Traces and very minimal information about the
bug. Developer could not understand the exact problem clearly.
He also could not understand how to reproduce the bug. So, one
day later, developer requested to provide additional information
(Can you submit a small test case for us the reproduce the er-
ror?) about the bug. Two months 17 days (on February 27, 2013)
later, reporter responded and provided Steps to Reproduce. Fi-
nally, developer fixed the bug after 8 days. Actually, bug fixing
time depends on many factors such as complexities of bug, im-
portance of bug, and developer’s experience. However, It also
depends on the quality of bug reports.

Among the bug reports, high-impact bug reports are more im-
pactful on software system. For instance, a security bug must be
fixed faster than other bugs. A performance bug can directly de-
crease the satisfaction of users on products. For these reasons,
developers try to fix the these sort of bugs as early as possible.
Time delay to fix high-impact bugs is very costly. Therefore, In
case of high-impact bug, good quality bug reports are more im-
portant than others.

There are some researches on identifying, classifying, and pre-
dicting high-impact bugs. To the best of our knowledge, there is
no case study on revealing important features set for each type of
high-impact bug. Therefore, we motivated to do research on how
to improve the quality of high-impact bug reports. As the first
step of our research, we try to reveal frequently reported features
by analyzing historical bug reports. It helps us to understand the
important features set according to high-impact bugs.

4. Case Study Design
In this section, we describe our case study on high-impact bug

3ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

IPSJ SIG Technical Report

reports that aims to examine how often reporters provide each
of the top 10 important features. It helps to understand the im-
portant features and how affect these features on bug resolution
according to high-impact bugs. First, we introduce our dataset
and then explains why we choose the top 10 features for our anal-
ysis. Finally, we explain our analysis procedure of high-impact
bug reports.

4.1 Analyzed Dataset
We have analyzed high-impact bug reports of Apache Camel

Project from JIRA, BTS. As a target dataset, we selected a
Dataset of high impact bugs [13]. This dataset was created
by manually reviewing four thousand issue reports in four open
source projects (Ambari, Camel, Derby and Wicket). They were
very careful about bias free bug reports selection and classifica-
tion by multiple reviews. The table 2 shows the statistics of ana-
lyzed bug reports according to high-impact bugs.

Table 2 No.of bug reports in terms of high-impact bugs

Type of high-impact bug No. of bug reports
Performance 51
Surprise 14
Breakage 39
Security 7
Dormant 69
Blocker 128

4.2 Selected Features
Bettenburg et al. [2] surveyed among 156 developers of

Apache, Eclipse and Mozilla to examine what features develop-
ers expect to see in the bug reports when fixing bugs. Based on
the feedback of developers, they revealed that steps to reproduce
is most important feature. Davies et al. [5] examined that ob-
served behavior is the most important feature based on analysis
how often reporters provide every feature in the bug reports. So,
we have selected the top ten features mentioned in the section 2.2
for our analysis to examine important features set according to
high-impact bug from the developer perspective.

4.3 Analysis procedures
Some fields of a bug report, such as the severity or version, can

only take a limited number of values. Features can be extracted
from these fields in a relatively straightforward manner using au-
tomated techniques. However, there are a number of other fea-
tures that are desirable in a bug report, which are not contained
in separate fields, such as Steps to Reproduce, Expected Behav-
ior. Unfortunately, in general BTSs have no specific support for
any of these features, and they are usually provided in descrip-
tion or comments. All of these are unstructured plain text, or as
generic attachments. In some cases, they mention steps to repro-
duce key, expected behavior key words to describe the features
in the description section. However, most of the cases, they do
not mention. Therefore, we examined manually each of the high-
impact bug reports from the developer’s perspective and recorded
each of the reported features from the bug reports.

Sometimes, bug reporters do not provide some features at ini-
tial submission. They provide it based on the request of develop-

ers. Therefore, We also examined each conversation between de-
velopers and reporters to understand features that was requested
to provide by developers

5. Analysis Results
In this section, we address the answers of the RQs mentioned

in Section 1. To answer RQs, at first, we examine frequently re-
ported features set according to high-impact bugs by analyzing
historical bug reports. Then, we try to explore relationship be-
tween no. of reported features with bug resolution time.

RQ1: Which features are important to fix high-impact bugs
for each category?

To answer this question, we examined each high-impact bug
reports. We observed how often bug reporters provided each top
10 features in the bug reports at initial submission. Then, we ex-
amined the features that was requested to provide by developers
at comment section. After that, we combine the features reported
in both initial submission and comment section to calculate how
often reporters provide each features in each bug reports. Our ob-
servations are summarized in the figure 4 as a bar chart according
to high-impact bugs. The x-axis of the bar chart represents the
features and the y-axis represents the total number.

The figure 4(A) shows the number of reported features for se-
curity bug. The mean of the reported features is 45.25. The fea-
tures, Steps to reproduce, Observed behavior, Expected behavior,
Test cases, and Code examples are found in the bug reports more
than mean. So, the most frequently reported features set for se-
curity bug is Observed Behavior, Expected Behavior,Test Cases,
and Steps to reproduce

The figure 4(B) shows the number of reported features for Sur-
prise bug. The mean of the reported features is 34.55. The fea-
tures, Observed Behavior, Expected Behavior, Test Cases, and
Code Examples are found in the bug reports more than mean. So,
the most frequently reported features set for breakage is Observed
Behavior, Code Examples, Expected Behavior, and Test Cases

The figure 4(C) shows the number of reported features for per-
formance bug. The mean of the reported features is 35.95. The
features, Observed Behavior, Expected Behavior, Test Cases, and
Code Examples are found in the bug reports more than mean.
So, the most frequently reported features set for performance bug
is Observed Behavior, Expected Behavior,Test Cases, and Code
Examples

The figure 4(D) shows the number of reported features for Dor-
mant bug. The mean of the reported features is 37.86. The fea-
tures, Steps to reproduce, Observed Behavior, Expected Behav-
ior, Test Cases, and Code Examples are found in the bug reports
more than mean. So, the most frequently reported features set
for breakage bug is Observed Behavior, Code Examples, Steps to
reproduce, and Test Cases

The figure 4(E) shows the number of reported features for
Breakage bug. The mean of the reported features is 25.64. The
features, Observed Behavior, Stack Traces, and Code Examples
are found in the bug reports more than mean. So, the most fre-
quently reported features set for breakage bug is Observed Be-
havior, Code Examples, Stack Traces, and Steps to reproduce

The figure 4(F) shows the number of reported features for

4ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

IPSJ SIG Technical Report

0

20

40

60

80

100

STR OB EB ST TC CE EN SH ER

p
er

ce
n

ta
ge

(A) Security Bug

0

20

40

60

80

100

STR OB EB ST TC CE SH ER

p
er

ce
n

ta
ge

(B) Surprise Bug

0

20

40

60

80

100

STR OB EB ST TC CE EN SH ER

p
er

ce
n

ta
ge

(C) Performance Bug

0

20

40

60

80

100

STR OB EB ST TC CE SH ER

p
er

ce
n

ta
ge

(D) Dormant Bug

0

20

40

60

80

100

STR OB EB ST TC CE SH ER

p
er

ce
n

ta
ge

(E) Breakage Bug

0

20

40

60

80

100

STR OB EB ST TC CE SH ER

p
er

ce
n

ta
ge

(F) Blocker Bug

Fig. 4 Observed features in terms of high-impact Bugs

Blocker bug. The mean of the reported features is 36.59. The
features, Steps to reproduce, Observed Behavior, Expected Be-
havior, Test Cases, and Code Examples are found in the bug re-
ports more than mean. So, the most frequently reported features
set is Observed Behavior, Code Examples, Test Cases, and Steps
to Reproduce

RQ2: Is there any relationship between bug fixing times
with no. of reported features?

We set up this RQ to identify whether reported features affect
on bug fixing time or not. To answer this RQ, we calculated the
required time to fix a bug by subtracting resolution time from re-
porting time. Then, we calculated the average bug fixing time,
average bug fixing time when no. of reported features greater
than or equal fours, and average bug fixing time when no. of
reported features less than fours. We summarize our findings in
table 3.

Table 3 Average bug resolution time in terms of high-impact Bugs

Type of Overall time ≥ 4 features <4 features
high-impact bug (in minutes) (in minutes) (in minutes)
Performance 184.52 70.56 270.98
Surprise 142.82 104.66 174.43
Breakage 250.78 140.64 316.86
Security 59.77 35.56 92.04
Dormant 110.21 183.12 61.92
Blocker 109.91 156.61 60.22

The table 3 shows that the average bug fixing time are min-
imum for Performance, Surprise, Breakage, and Security when
the no. of reported features greater than or equal fours. In case of
Dormant and Blocker, average bug fixing time is higher the when
no. of reported features greater than or equal fours.

6. Discussions
In this section, we explain our major findings and how our case

study can contribute in the bug management process:
In our first analysis (RQ1), we find out the frequently reported

features set across all types of high-impact bugs. During bug fix-
ing, developers usually ask reporters to provide more features that
find useful to fix the bug. To calculate frequently reported fea-
tures, we consider both initially submitted features and features
that request in the comment section during bug fixing. Therefore,
our findings suggest that frequently reported features set may be
the important features set across all type of high-impact bugs.

In our first analysis, we find that 5 features above the mean
value for Security, Dormant, and Blocker bugs. 4 features are
above the mean value for Surprise and Performance bugs. In case
of Breakage, 3 features are above than the mean value. So, we
suggest important features set for each type of high-impact bugs
that are the combination of 4 features. For this reason, we try to

5ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

IPSJ SIG Technical Report

understand if the reporters provide at least 4 features in the bug
reports whether it affects on bug resolution.

In our second analysis (RQ2), we find the average bug-fixing
time for performance, surprise, Breakage, and Security are lower
when the number of reported features greater than or equal fours.
In case of Dormant and Blocker, we find the average bug fixing
time is higher when no. of reported features greater than or equal
fours.

From the analysis result, we can conclude that if bug reporters
provide at least four features among the top 10 features in the bug
report then bug-fixing time may reduce. Because, in that case,
the bug report is easy to understand that helps to localize and to
assign appropriate developer to fix the bug.

Our findings from the case study help to develop automatic
tools. If the reporters do not provide important features in the
bug report then tool may generate automatic suggestion report to
notify what additional features should be included in the bug re-
ports. It also helps to write standard guideline how to fill-up high-
impact bug report so that reporters can submit more accurate bug
reports in the bug tracking system (BTS). In this way, our case
study can contribute to improve bug management process.

7. Threads to Validity
For our case study we identified the following threats to valid-

ity.
We examined high-impact bug reports of Apache Camel

Project from Jira in our case study. Many open source projects
use Jira as BTS. So, our finds may not be applicable for others
projects.

We used dataset of high-impact bug for our analysis. The data
set contains limited number of high-impact bug reports. So, our
result may not be fully representative of their perspective.

We investigated frequently reported features set according to
high-impact bugs. For example, Observed Behavior, Expected
Behavior, Test Cases, and Steps to reproduce considers the most
useful features for security bug based observing frequently ap-
pear these features in the bug reports. But, actual developers may
find different features set for each type of high-impact bugs.

We analyzed high-impact bug reports of open source projects.
But our findings from this case study might not be applicable to
any corporate projects. We need to analyze OSS projects as well
as corporate projects to verify the generality of our findings.

8. Related Works
Hooimeijer and Weimer built a descriptive model to predict

whether a bug report is triaged within a given amount of time [7].
They assumed that description readability is a good indicator for
the quality of a bug report. In contrast, our notion of quality is
based the readability as well as contained of the description of a
bug report. Developers find the most useful information in de-
scription. Therefore, measuring only readability does not enough
to evaluate the quality of bug report.

Buttenburg et al. [2] investigated the quality of bug reports
from the perspective of developers.They surveyed among expe-
rience developers and bug reporters to understand important fea-
tures for bug reports. From the surveyed results, they found infor-

mation mismatch between what developers consider most help-
ful and what users provide. They also developed CUEZILLA to
measure the quality of bug reports from very poor to very good
on five-point Likert scale. However, based on the surveyed re-
sults, they point out top 10 important features for developers to
fix the bugs. In this case study, we analyzed carefully each high-
impact bug reports to find out how often reporters provides these
top 10 important features in the bug reports. We also analyzed
the relation between no. of reported features and bug resolution
to understand how affect reported features on bug fixing time.This
result will help to build recommendation system to suggest how
to report bug more accurately at initial submission.

Rocha et al. [14] done an empirical study on recommendations
of similar bugs and developed a tool named NextBug to recom-
mend similar bug reports to developers. They used description to
identify similar bug reports. Therefore, the accuracy of NextBug
depends on the content of description. Our case study can be a
first step to improve the quality of description of bug reports.

In order to inform the design of new bug reporting tools, Ko et
al. [10] conducted a linguistic analysis of the titles and descrip-
tion of bug reports. They observed a large degree of regularity
and a substantial number of references to visible software enti-
ties, physical devices, or user actions. Their results suggest that
future bug tracking systems should collect data in a more struc-
tured way.

Several studies used bug reports to automatically assign devel-
opers to bug reports [1], assign locations to bug reports [3], and
predict effort for bug reports [21]. All these approaches should
benefit by our case study because, the performance of their model
affect on the quality of the bug report.

Xia et al. [22] proposed a new and accurate method named
DevRec for the developer recommendation problem. They use
summary and description to generate terms and topics to build
prediction model for DevRec. Then, they apply K-nearest neigh-
bors algorithm on the topics of new bug reports and all historical
bug reports to find the similar bug reports. Gegick et al. [6] used
IR based technique to identify Security. Ohira et al. [13] clas-
sified different type of high-impact bug based on the content of
bug reports. All these approaches rely on good quality bug re-
ports. Our case study will help tools developers to suggest how
to report bug more accurately in order to improve the quality bug
reports.

9. Conclusions and Future Works
In this paper we conducted a case study on Apache Camel

project to investigate frequently reported features according to
high-impact bugs. We manually checked each bug reports and
analyzed reported features from the developers perspective.We
found that the highest number of features are reported for secu-
rity bug and the lowest number of features reported for Breakage.
Observed behavior reported in the highest number of bug reports
across all types of high-impact bugs. Screenshots and Error Re-
ports are found in a very few bug reports.We also found that sim-
ilar features set in Surprise, Performance and Dormant, Blocker
bug based on reported features. Our findings will help to develop
tools recommending the bug reporters about the additional fea-

6ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

IPSJ SIG Technical Report

tures that should be included in the high-impact bug reports. It
will also help to formulate guidelines for reporters how to fill up
bug report form more accurately. Our future works are as follows:

Study more Datasets: Currently, We analyzed only high-
impact bug reports of Apache Camel project. We plan to examine
high-impact bug reports of different application domain projects
that will help to mitigate generalization threads of our study.

Survey among experience developers: We found different
features set according to high-impact bugs. We plan to survey
among experience developers to validate our findings. It will help
to build more useful features set according to high-impact bugs.

Develop automatic recommendation tool: Some bug re-
porters such as novice users, end users do not have proper knowl-
edge about features that should be included in the bug reports.
Automatic suggestion tool might be helpful for them to improve
the quality of bug reports. We plan to develop an automatic
recommendation tool to suggest how to report high-impact bugs
more accurately.

10. Acknowledgements
This work has been supported by Program for Advancing

Strategic International Networks to Accelerate the Circulation of
Talented Researchers: Interdisciplinary Global Networks for Ac-
celerating Theory and Practice in Software Ecosystem. Also,
part of this research was conducted under the Japan Society
for the Promotion of Science, Grant-in-Aid for Young Scientists
(B:16K16037).

References
[1] Anvik, J., Hiew, L. and Murphy, G. C.: Who Should Fix This Bug?,

Proceedings of the 28th International Conference on Software Engi-
neering, ICSE ’06, ACM, pp. 361–370 (2006).

[2] Bettenburg, N., Just, S., Schroter, A., Weiss, C., Premraj, R. and Zim-
mermann, T.: What Makes a Good Bug Report?, Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, SIGSOFT ’08/FSE-16, ACM, pp. 308–318 (2008).

[3] Canfora, G. and Cerulo, L.: Fine Grained Indexing of Software Repos-
itories to Support Impact Analysis, Proceedings of the 2006 Interna-
tional Workshop on Mining Software Repositories, MSR ’06, ACM,
pp. 105–111 (2006).

[4] Chen, T.-H., Nagappan, M., Shihab, E. and Hassan, A. E.: An Empir-
ical Study of Dormant Bugs, Proceedings of the 11th Working Con-
ference on Mining Software Repositories, MSR ’14, ACM, pp. 82–91
(2014).

[5] Davies, S. and Roper, M.: What’s in a Bug Report?, Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM ’14, ACM, pp. 26:1–26:10 (2014).

[6] Gegick, M., Rotella, P. and Xie, T.: Identifying Security Bug Re-
ports via Text Mining: An Industrial Case Study, Proceedings of the
7th Working Conference on Mining Software Repositories, MSR ’10,
IEEE Press (2010).

[7] Hooimeijer, P. and Weimer, W.: Modeling Bug Report Quality, Pro-
ceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ASE ’07, ACM, pp. 34–43
(2007).

[8] Just, S., Premraj, R. and Zimmermann, T.: Towards the Next Gener-
ation of Bug Tracking Systems, Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC, ICSE
’09 (2008).

[9] Kashiwa, Y., Yoshiyuki, H., Kukita, Y. and Ohira, M.: A Pilot Study of
Diversity in High Impact Bugs, Proceedings of the 30th International
Conference on Software Maintenance and Evolution (2014).

[10] Ko, A. J., Myers, B. A. and Chau, D. H.: A Linguistic Analysis of
How People Describe Software Problems, Proceedings of the Visual
Languages and Human-Centric Computing, VLHCC ’06, IEEE Com-
puter Society, pp. 127–134 (2006).

[11] Molyneaux, I.: The Art of Application Performance Testing: Help for
Programmers and Quality Assurance, O’Reilly Media, Inc., 1st edi-

tion (2009).
[12] Nistor, A., Jiang, T. and Tan, L.: Discovering, Reporting, and Fix-

ing Performance Bugs, Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, IEEE Press, pp. 237–246
(2013).

[13] Ohira, M., Kashiwa, Y., Yamatani, Y., Yoshiyuki, H., Maeda, Y., Lim-
settho, N., Fujino, K., Hata, H., Ihara, A. and Matsumoto, K.: A
Dataset of High Impact Bugs: Manually-classified Issue Reports, Pro-
ceedings of the 12th Working Conference on Mining Software Reposi-
tories, MSR ’15, IEEE Press (2015).

[14] Rocha, H., Valente, M., Marques-Neto, H. and Murphy, G. C.: An Em-
pirical Study on Recommendations of Similar Bugs, Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolu-
tion, and Reengineering, SANER ’16, IEEE Press, pp. 46–56 (2016).

[15] Schroter, A., Bettenburg, N. and Premraj, R.: Do Stack Traces Help
Developers Fix Bugs?, Proceedings of the 7th IEEE Working Confer-
ence on Mining Software Repositories, MSR ’10, IEEE, pp. 27–30
(2010).

[16] Shihab, E., Ihara, A., Kamei, Y. and Ibrahim, W.: Predicting Re-
opened Bugs: A Case Study on the Eclipse Project, Proceedings of
the 17th Working Conference on Reverse Engineering, WCRE ’10,
IEEE, pp. 249 – 258 (2010).

[17] Shihab, E., Mockus, A., Kamei, Y., Adams, B. and Hassan, A. E.:
High-impact Defects: A Study of Breakage and Surprise Defects, Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE
’11, ACM, pp. 300–310 (2011).

[18] Spolsky, J.: Joel on Software blog, FogBUGZ (online), available
from 〈http://www.joelonsoftware.com/news/fog0000000162.html〉
(accessed 2000-011-22).

[19] Sun, C., Lo, D., Wang, X., Jiang, J. and Khoo, S.-C.: A Discrimi-
native Model Approach for Accurate Duplicate Bug Report Retrieval,
Proceedings of the 32Nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE ’10, ACM, pp. 45–54 (2010).

[20] Valdivia Garcia, H. and Shihab, E.: Characterizing and Predicting
Blocking Bugs in Open Source Projects, Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR ’14,
ACM, pp. 72–81 (2014).

[21] Weiss, C., Premraj, R., Zimmermann, T. and Zeller, A.: How Long
Will It Take to Fix This Bug?, Proceedings of the Fourth International
Workshop on Mining Software Repositories, MSR ’07, Washington,
DC, USA, IEEE Computer Society, pp. 1– (2007).

[22] Xia, X., Lo, D., Wang, X. and Zhou, B.: Accurate Developer Rec-
ommendation for Bug Resolution, Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE), WCRW ’13, Koblenz,
Germany, IEEE, pp. 72–81 (2013).

[23] Zimmermann, T., Nagappan, N., Guo, P. J. and Murphy, B.: Char-
acterizing and Predicting Which Bugs Get Reopened, Proceedings of
the 34th International Conference on Software Engineering, ICSE ’12,
IEEE Press, pp. 1074–1083 (2012).

7ⓒ 2016 Information Processing Society of Japan

Vol.2016-SE-192 No.9
Vol.2016-EMB-41 No.9

2016/6/3

