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1 Introduction
Studies of the structure and functions of large com-

plex networks have attracted a great deal of attention in
many different fields such as sociology, biology, physics
and computer science [1]. As a particular class, we fo-
cus on spatial networks embedded in the real space, like
urban streets, whose nodes occupy a precise position in
two-dimensional Euclidean space, and whose links are real
physical connections [2].

In this paper, we address a problem of classifying and
characterizing spatial networks in terms of local connec-
tion patterns of node degrees, by especially focusing on
the property that the maximum node degrees of these net-
works are restricted to relatively small numbers. Such
characteristic connection patterns that appear frequently
in some networks can be regarded as their main building
blocks, just like network motifs in [3].

2 Proposed Method
Let G = (V,E) be a given spatial network, where

V = {u, v,w, · · ·} and E = {(u, v), · · ·} mean sets of nodes
and links, respectively. In this paper, we only consider
undirected networks such that (u, v) ∈ E implies (v, u) ∈ E,
but we can straightforwardly extend our approach to deal
with directed networks. For each node u ∈ V, we denote
its degree by r(u). Then, we can consider a mixing matrix
C(2) whose i- jth element c(i, j) is calculated by

c(i, j) = |{(u, v) ∈ E | r(u) = i, r(v) = j}|, (1)

By setting a marginal probability defined as p(i) =∑
j c(i, j)/|E| for each degree i, where |E| means a num-

ber of elements in a set E. we can calculate the expected
value for the i- jth element of C as |E|p(i)p( j) after |E| in-
dependent trials assuming a binomial distribution. Thus,
we can obtain the following Z score z(i, j) with respect to
the observed value c(i, j),

z(i, j) =
c(i, j) − |E|p(i)p( j)√
|E|p(i)p( j)(1 − p(i)p( j))

. (2)

where |E|p(i)p( j)(1 − p(i)p( j)) is the variance of |E| tri-
als for the binomial distribution with the probability of
p(i)p( j). Evidently, when z(i, j) is large (or small), we can
conjecture that there exist a significantly large (or small)
number of links between nodes with degrees i and j. In our
proposed method, we calculate a feature vector x(2) from
the network by suitably arranging each Z score z(i, j) such
that i ≤ j, i.e., x(2) = (z(1, 1), z(1, 2), · · ·)T , where xT means

Figure 1: Dendogram constructed by bi-mixing method.

a transposed vector of x. Recall that since the maximum
node degree of spatial networks is restricted to relatively
small numbers, the dimensionality of the feature vector
x(2) does not become too large. Let G = {G1, · · · ,GN}
be a set of given networks; then we can calculate a feature
vector xn from each network Gn. Based a cosine similarity
between these feature vectors, we consider the following
dissimilarity measure,

d(Gm,Gn) =

√
1 − (xm)T xn

||xm||||xn||
, (3)

where ||x|| means the standard L2 norm defined by ||x|| =√
xT x. Finally, we construct a dendrogram of these net-

works based on Ward’s minimum variance method [4] us-
ing the above dissimilarity measure. We call this proposed
method the bi-mixing method. Below we summarize the
algorithm of our proposed method.

3 Experience
In this section, we show our experimental results ob-

tained by applying the bi-mixing methods. We used OSM
(OpenStreetMap) data of seventeen cities in our experi-
ments, In August, 2015, we obtained the OSM data of
these seventeen cities from Metro Extracts∗. Each con-
tinent of Europe, North America, South America, Asia,

∗https://mapzen.com/data/metro-extracts
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Table 1: Ranking by 2-2, 3-3, 4-4 mixing pattern

Rankk City Name nz(2-2) G C City Name nz(3-3) G C City Name nz(4-4) G C
1 Brasilia .5612 g2 SA Vienna .7258 g3 EU Richmond .7781 g1 NA
2 New Delhi .5421 g2 AS Venice .6273 g3 EU New York .7627 g1 NA
3 Jakarta .4733 g2 AS Seoul .5533 g1 AS Barcelona .7445 g1 EU
4 Cairo .4116 g1 AF Tokyo .4584 g1 AS San Francisco .6905 g1 NA
5 London .4089 g2 EU Bologna .4566 g1 EU Paris .6782 g1 EU
6 Tokyo .4028 g1 AS New Delhi .4529 g2 AS Washington DC .6703 g1 NA
7 Washington DC .3874 g1 NA Jakarta .4483 g2 AS Cairo .6552 g1 AF
8 Los Angeles .3725 g1 NA London .4267 g2 AS Los Angeles .6328 g1 NA
9 Bologna .3657 g1 EU Los Angeles .4245 g1 NA Tokyo .5976 g1 AS
10 San Francisco .3602 g1 NA Brasilia .4075 g2 SA Seoul .5470 g1 AS
11 Paris .3565 g1 EU San Francisco .4005 g1 NA Bologna .5423 g1 EU
12 New York .3470 g1 NA Cairo .3996 g1 AF Jakarta .5321 g2 AS
13 Barcelona .3221 g1 EU Richmond .3890 g1 NA Brasilia .5208 g2 SA
14 Seoul .3155 g1 AS Washington DC .3709 g1 NA London .4760 g2 EU
15 Vienna .2888 g3 EU Paris .3378 g1 EU New Delhi .4684 g2 AS
16 Richmond .2733 g1 EU Barcelona .3301 g1 EU Vienna .3996 g3 EU
17 Venice .2432 g3 EU New York .3194 g1 NA Venice .2882 g3 EU

Figure 2: Differences of normalized z score of bi-mixing

Africa is abbreviated by EU, NA, SA, AS, and AF. Here
note that p(i) is a ratio of nodes with degree i defined by
p(i) = |{u ∈ V | r(u) = i}|/|V|, and since p(5), p(6), · · ·
were very small values for each city, we treated them as
one variable defined by p(5)← ∑i>4 p(i). From this OSM
data, we can see that although the area and the numbers
of nodes and links, |V| and |E| are substantially different,
the degree distributions defined by p(i) are quite similar
as common characteristics of these spatial networks. We
consider that these results are intuitively interpretable.

Figure 1 shows the dendrogram constructed by our bi-
mixing method, where these cities are depicted by ma-
genta (NA), red (EU), blue (AS), green (SA), and cyan
(AF), respectively. As shown in this figure, we can clas-
sify these cities into the three groups, i.e., g1, g2 and g3,
by using the cut-off point around 0.55 depicted by a green
dotted line.

Figure 2 shows the difference of each average of the
normalized Z scores (hence abbreviated by nz) devided
into three groups based on dendogram over the seventeen
selected cities, where the nz of each city is defined by
nz(i, j) = z(i, j)/||x(2)||, and they are directly used for calcu-
lating the cosine similarity between any pair of the cities.
From this figure, we can see that the average normalized Z
scores for the three groups substantially differ in the three
characteristic mixing patterns, 2-2, 3-3 and 4-4, which are
referred to as the discriminative mixing patterns.

Tables 1 show the rankings of the cities according to

their nz with respect to the three discriminative mixing pat-
terns, 2-2, 3-3 and 4-4, respectively. From these tables,
we can see that the groups g1, g2 and g3 are individually
characterized by relatively larger values at the 4-4, 2-2 and
3-3 patterns, respectively. Thus, we can consider that the
characteristics of these cities can be reasonably described
in terms of a relatively small number of selected mixing
patterns, as building blocks of given spatial networks.

4 Conclusion
We addressed the problem of classifying and charac-

terizing spatial networks in terms of local connection pat-
terns of node degrees, by especially focusing on the prop-
erty that the maximum node degrees of these networks are
restricted to relatively small numbers. In our experiments
using spatial networks constructed from urban streets of
seventeen cities, we confirmed that our method can pro-
duce intuitively interpretable results which reflect regional
characteristics of these cities. Moreover, we showed that
these characteristics can be reasonably described in terms
of a relatively small number of selected mixing patterns,
as main building blocks of given spatial networks. In fu-
ture, we plan to evaluate our method using various spatial
networks, and attempt to establish more useful techniques
for uncovering degree mixing patterns, as building blocks
of given spatial networks.
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